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There are hundreds of thousands of fisheries-related mortalities of seabirds each year.  

Population trends for these species are highly influenced by changes in adult survival, 

their maximum growth rates are low, and little additional mortality can have a large 

impact on the population.  As a result, many albatrosses and petrels are at risk of 

extinction, but limited demographic data makes it difficult to quantify the risk for 

many species.  The goal of this research is to use population modelling tools to assess 

potential impacts with minimal data.  In particular, the question of how much 

additional mortality a population can sustain is addressed when there is only 

knowledge of the adult survival rate, age at first breeding, and the number of breeding 

pairs. 

 

In this thesis, a simple decision rule designed for marine mammals is applied to 

albatrosses and petrels.  In order to use this rule, adult survival, age at first breeding, a 

minimum estimate of the population size, and the maximum growth rate of the 

population are needed.  While estimation of adult survival is well developed, work 

was required to calculate the other values from available data.  A simple population 

model was developed to extrapolate from the number of breeding pairs to the total 
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population size (given survival and age at first breeding); the effect of variable 

fecundity rates on the calculation of generation time and the maximum growth rate of 

a population was examined, relative to an estimate that only requires survival and age 

at first breeding; and a method for estimating the age at first breeding using capture-

recapture data was suggested that accounts for study duration and emigration, in 

addition to capture probability.   

 

This work can help managers make better informed decisions when little is known 

about a population.  For example, around 5,800 pairs of Gibson’s albatrosses 

(Diomedea gibsoni) breed each year.  Based on the work presented in this thesis, they 

may be able to sustain 1,000 – 1,200 additional mortalities per year.  However, given 

concern about their conservation status, a mortality level below 100 – 120 is desired, 

and any mortality beyond that level suggests a need for more intensive management.   
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Chapter 1.  Introduction to population modelling of 

albatrosses and petrels with minimal demographic 

information 

 

It was only that and light was all it needed and a certain cleanness and order. 

-Ernest Hemingway, A Clean, Well-lighted Place (1933) 

 

Albatrosses and petrels (the Procellariiformes) are naturally long-lived birds, killed on 

land and at sea by sources of anthropogenic origin, likely at rates beyond those they 

can sustain.  The New Zealand region is home to the breeding colonies for over forty 

Procellariiform species, many of which are threatened (BirdLife International 2009), 

and understanding their population structure and reaction to changes in survival or 

other demographic parameters is important to their management.  There is a dearth of 

data for most of these species for many demographic parameters (Brooke 2004a), and 

the inaccessibility of colonies make many species difficult and costly to study.   

 

Procellariiform populations are sensitive to changes in adult survival (Crespin et al. 

2006), which means that their ability to sustain mortalities beyond natural mortality is 

limited (Chapter 2).  While many species are thought to be in decline (Gales 1998), 

definitive population trends are lacking for most species (Baker et al. 2002), and 

population estimates are based on rule-of-thumb multipliers from estimates of the 

number of breeding pairs (Gales 1998, Taylor 2000, Brooke 2004a, Brooke 2004b).  

This means that there is a need to manage the species using minimal demographic 

data, and developing a way to assess the impacts or likely impacts from human 
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activities.  In short, there are two important questions that need to be addressed: (1) 

how many additional deaths beyond natural mortality can each species sustain, and (2) 

how many deaths beyond natural mortality are occurring?  This thesis addresses the 

first question using a population modelling approach, particularly in the context of 

limited data.   

 

1.1 Relevant biology of New Zealand Procellariiformes 

Procellariiformes are colonial, often building their colonies in difficult to access 

locations, such as steep offshore islands in the sub-Antarctic (Schreiber and Burger 

2002).  The order is divided into four families: the albatrosses (Diomedeidae), the 

petrels (Procellariidae), the diving petrels (Pelecanoididae), and the storm petrels 

(Hydrobatidae); in this thesis, the three petrel families are generically referred to as 

petrels, with emphasis placed on species in family Procellariidae.  Many species are 

limited to small populations with very few colonies in a small geographic area, while 

a few species such as sooty shearwater (Puffinus griseus, also known as t
�
t
�
 in New 

Zealand) and white-chinned petrels (Procellaria aequinoctialis) are common and have 

numerous colonies (Brooke 2004a).  They are characterized by high survival rates and 

delayed and low fecundity, with larger birds such as albatrosses having the highest 

survival rates (Appendix A).   

 

Nearly all species lay a maximum of one egg per year, and some albatross species 

(such as those in Diomedea) skip a year of breeding after successfully rearing a chick.  

Fledged chicks spend a number of years at sea before returning to a colony as pre-

breeders.  After a prospecting period, birds form strong pair-bonds, and both members 

of the pair raise young birds.  Pairs show fidelity to breeding sites from year to year.  
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Breeding success (the probability that a laid egg will result in a fledged chick) is 

typically high, although more variable than survival, and is subject to environmental 

conditions (Chastel et al. 1995, Jenouvrier et al. 2005).  Greater detail on the biology 

of Procellariiformes is available from a variety of sources: Brooke (2004a) has 

detailed descriptions of individual species, and Schreiber and Burger (2002) provide a 

good general introduction to seabird biology.   

 

In some ways, Procellariiformes are good candidates for building population models, 

while there are also difficulties.  Strong site fidelity for most species – especially 

albatrosses – means that they are good candidates for capture-recapture studies, as 

repeat observations on the breeding population may be achieved.  This allows precise 

estimation of survival rates for adult breeders for many species, and can also be used 

to estimate the age at first breeding by banding chicks and observing them returning 

(e.g. Jenouvrier et al. 2005, Crespin et al. 2006).  For burrowing species (Puffinus), 

field methodology becomes more complex (e.g. Imber et al. 2003, Clucas et al. 2008).  

In addition, access to many colonies is costly, and accurate assessment, especially of 

age at first breeding, may take many years of field work.  

 

Demographic parameters for juveniles are difficult to estimate as they are not present 

in the study area.  Survival estimates for juveniles can only be based on birds banded 

as chicks, and naturally incorporate emigration as well as mortality.  Moreover, they 

can not be assessed for a number of years, when birds begin returning to the colony.  

Further, birds return to the colony and begin breeding at different ages (Jenouvrier et 

al. 2008), further complicating estimation.  In a typical situation, where a small area 

of a colony is studied, annual survival estimates for juvenile birds are of limited use 
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(unless emigration can otherwise be estimated).  Even in the best cases (emigration 

known), they would represent average survival prior to return, or a model-based 

analog. 

 

Population estimates ( N̂ ) for most seabird species are imprecise (Baker et al. 2002, 

Brooke 2004a).  Because non-breeding birds are difficult to observe at colonies 

(Baker et al. 2002), census data is only available for the number of breeding pairs (or 

a proxy, such as the number of nests).  Further, for many species, there has been no 

census for a number of years (Taylor 2000, Brooke 2004a).  Total population 

estimates are based on the estimated number of breeding pairs times a rule-of-thumb 

multiplier (Gales 1998, Taylor 2000, Brooke 2004a, Brooke 2004b).  Thus, the 

number of breeding pairs is used as an index of abundance.  However, because even 

mature birds do not necessarily breed every year and a variety of factors may 

influence the probability of breeding (Chastel et al. 1995, Cam et al. 1998, Jenouvrier 

et al. 2005), short-term trends in the breeding population may not be indicative of 

trends in the general population, while, longer-term, the index is more useful but may 

be non-linear.  Importantly, while it is known that population estimates derived from 

the number of breeding pairs are imprecise, there appears to be no information 

available on the level of imprecision.  In Chapter 3, an improved multiplier based on a 

simple population model is introduced, and uncertainty around the multiplier is 

estimated. 

 

The challenge of this thesis, and the challenge presented to managers, is to make 

calculations when the available data is limited relative to biological understanding.  In 

some cases, data is not available to make meaningful estimates of important 
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population parameters.  In other cases, parameters of interest can not be separately 

identified from other parameters.  One example is the problem of separating survival 

from emigration, where many survival estimates are actually estimates of local 

survival, a product of survival and not emigrating.  In this case, the only way to 

estimate survival is to make an assumption about its relationship with emigration.  

The approach adopted for this work is to determine required information, and, where 

required, to make pragmatic assumptions allowing calculations to be made from 

known information. 

 

1.2 Status of New Zealand Procellariiformes 

The typical species in the New Zealand region has between 1,000 and 100,000 

breeding pairs, and breeds at a limited number of locations on a few offshore islands 

(Gales 1998, Brooke 2004a).  Due to the limited amount of census data for most 

species, it is difficult to know if the population is increasing or decreasing, although 

some species are thought to be in decline (Appendix A, BirdLife International 2009).  

The status of 22 individual species or sub-species of Procellariiformes deemed by the 

New Zealand Ministry of Fisheries to be vulnerable to fishing (Fletcher et al. 2008) 

and breeding in the New Zealand region is given in Appendix A.   

 

 

Figure 1.1.  Antipodean albatross (Diomedea antipodensis) lunging for a bait discard. 
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It is important to develop methods for assessing the status of Procellariiformes that 

use data that is likely to be available or reasonably inferred from similar species.  In 

the case of New Zealand Procellariiformes, the available data is limited for most 

species.  This necessarily leads to use of population models that simplify reality.  

While simple models run the risk of missing key factors, some level of simplification 

may have little effect on estimates of important parameters (Yearsley and Fletcher 

2002).  For many species, estimates of adult survival, age at first breeding, and the 

number of breeding pairs are available.  The work presented in this thesis is motivated 

by limitations in data, and methods are developed with those restrictions in mind.   

 

1.3 Threats to New Zealand Procellariiformes 

There are a variety of human-caused threats to Procellariiformes in the New Zealand 

region and worldwide.  Seabirds are attracted to fishing vessels (Figure 1.1; Barton 

1979, Yorio and Caille 1999), and there have been high levels of mortalities 

associated with numerous commercial fisheries (Weimerskirch and Jouventin 1987, 

Brothers 1991, Weimerskirch et al. 1997, Gales 1998, Gales et al. 1998, Ryan and 

Boix-Hinzen 1999, Sagar et al. 2000, Inchausti and Weimerskirch 2001, Tuck et al. 

2001, Baker et al. 2002, Nel et al. 2002, Ryan et al. 2002, Lewison and Crowder 

2003, Baker et al. 2007, Croxall 2008, Moore and Žydelis 2008, Ryan and Watkins 

2008, Zador et al. 2008).  While it is difficult to estimate fisheries related mortalities 

accurately (Uhlmann et al. 2005, Miller and Skalski 2006), and mitigation measures 

have drastically reduced bycatch rates in some fisheries (SC-CAMLR 2006), it is 

thought that hundreds of thousands of seabirds are killed each year (Baker et al. 

2007).  On land, there are risks including mortality and habitat degradation associated 

with alien species (Seto and Conant 1996, Imber et al. 2000, Baker et al. 2002, Imber 
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et al. 2003, Jouventin et al. 2003, Igual et al. 2006, Jones et al. 2008).  Seabird 

demographic parameters, such as breeding success and survival, are also linked to 

environmental conditions (Baduini et al. 2001, Thompson and Ollason 2001, 

Weimerskirch et al. 2003, Ainley et al. 2005, Grosbois and Thompson 2005, 

Jenouvrier et al. 2005, Votier et al. 2005, Crespin et al. 2006, Delord et al. 2008), and 

climate change must be considered a threat (Croxall 2004, Boyce et al. 2006, 

Sutherland et al. 2006, Barbraud et al. 2008).  Baker et al. (2002) provide a good 

overview of additional threats that seabirds face, such as over-extraction of prey-

species, and chemical and physical pollution. 

 

1.4 Potential biological removal of birds 

One approach to species management is to determine the number of deaths that the 

population can sustain beyond natural mortality.  In Chapter 2, a simple decision rule 

is presented to calculate the number of excess deaths that may be sustained, termed 

the potential biological removal (PBR).  The PBR method is based on a rule designed 

for marine mammals, 

max min

1

2
PBR R N f=  

where maxR  is the maximum annual net recruitment rate, minN  is a minimum estimate 

of population size (the 20th percentile) and f is a recovery factor between 0.1 and 1 

(Wade 1998, Taylor et al. 2000, Hunter and Caswell 2005, Niel and Lebreton 2005). 

 

Seabirds and many other bird species have similar life histories as pinnipeds and 

cetaceans, characterized by long life, delayed maturity, and low fecundity.  Because 

of this, the simulation work performed by Wade (1998) in developing the rule for 

cetaceans and pinnipeds is also relevant for seabirds.   While the use of the PBR 



 

 8 

approach for seabirds has been alluded to in the literature (Hunter and Caswell 2005, 

Niel and Lebreton 2005), estimating maxR  using typical matrix model approaches 

(Caswell 2001) can be difficult.   This is because it requires a population undergoing 

rapid expansion or, alternatively, broad assumptions for the potential ranges of 

various parameters.  Niel and Lebreton (2005) noted that work they had done using 

allometric relationships (Blueweiss et al. 1978, Allaine et al. 1987, Gaillard et al. 

1989) to estimate the maximum growth rate for birds ( max max 1Rλ = + ) given only 

adult survival (s) and age at first breeding (α ) allowed the PBR method to be applied 

to birds if a population estimate was also available.   

 

The PBR method requires relatively little information in order to make management 

decisions.  It was initially developed for cetaceans and pinnipeds and there have been 

no adaptations when applying it to birds.  In Chapter 2, I provide guidelines for 

appropriate use of the method and case studies comparing results from this method to 

other approaches, and PBR calculations for 22 species or sub-species of seabirds 

breeding in New Zealand are provided in Appendix A, based on available data.  

However, the population estimates used are imprecise (Brooke 2004a), and potentially 

subject to high levels of bias. 

 

1.5 Population estimates 

Breeding seabirds appear at colonies and non-breeding birds often do not (Baker et al. 

2002).  Because of this, the ‘population size’ of seabirds is often given by the number 

of breeding pairs (e.g. Woehler and Croxall 1997, Baker et al. 2002, Elliott and 

Walker 2005, Delord et al. 2008).  For the PBR method to be applied, an estimate of 

the actual population size – not an index of it – must be available.  Population 
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estimates for albatrosses and petrels are based on the number of breeding pairs times a 

rule-of-thumb multiplier (Gales 1998, Taylor 2000, Brooke 2004a, Brooke 2004b).  

For example, Brooke (2004b) suggests a multiplier of 5 for long-lived seabirds who 

are annual breeders, but with no information about the potential uncertainty in the 

rule-of-thumb multiplier.   

 

Complications to this extrapolation include uncertainty in survival rates and other 

demographic parameters.  In particular, the proportion of adults that breed in a given 

year is unknown, as some breeding pairs may skip a year, and some bird species 

(those in Diomedea) breed biennially.  Further, the proportion of birds breeding may 

vary substantially according to species (Chastel et al. 2005) and year (Cam et al. 1998, 

Chastel et al. 2005, Jenouvrier et al. 2005).  

 

In Chapter 3, a simple population model is considered to provide an improved rule-of-

thumb multiplier.  Sets of demographic parameters for the model are generated by 

constraints placed on the asymptotic growth rate λ.  This allows both a rule-of-thumb 

multiplier and its uncertainty to be calculated given only s , α , and λ .  Uncertainty 

in the number of breeding pairs is also easily incorporated into a population estimate 

and into the 20th percentile estimate ( minN ) used in the PBR calculation.  Combining 

uncertainty in the estimated number of breeding pairs and in the rule-of-thumb 

multiplier allows a more realistic assessment of the uncertainty in the population size 

of Procellariiformes than has been provided before, and means that the PBR method 

no longer requires an estimate of the total population size, but only of the number of 

breeding pairs. 
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1.6 Generation time and maximum growth rate 

In order to calculate the maximum growth rate for birds, Niel and Lebreton (2005) 

relied on a simplified calculation of generation time.  Generation time is important to 

calculating maximum annual growth rates because the intrinsic maximum growth rate 

per generation is approximately constant (Fowler 1988, Niel and Lebreton 2005).  In 

addition to its role in the calculation of maxλ , generation time can be used in a variety 

of other contexts, such as determining the sensitivity of a population to changes in 

adult survival or fecundity (Lebreton and Clobert 1993, Gaillard et al. 2005, Lebreton 

2005) or studying evolution rates (Sarich and Wilson 1973, Martin and Palumbi 1993, 

Gillooly et al. 2005).  

 

In order to calculate the mean generation length, age-specific survival and fecundity 

rates, and the population growth rate are generally required (Leslie 1966, Gaillard et 

al. 2005, Niel and Lebreton 2005).  For many species, parameter estimates for 

juveniles may be difficult to estimate as they are often not present in the study area 

(Schwarz and Arnason 2000).  This is particularly true for albatrosses and petrels, 

where non-breeding birds are typically at sea (Baker et al. 2002).  Gaillard et al. 

(2005) and Niel and Lebreton (2005) were able to calculate mean generation time 

knowing only age at first breeding (α ), adult survival ( s ) and annual growth rate (λ ) 

by assuming constant fecundity and survival from the age at first breeding.  However, 

in many populations – including Procellariiformes where not all animals begin 

breeding at the same age – fecundity increases over a number of years (Schwarz and 

Arnason 2000).  In particular, data for 6 of the 13 bird species used by Niel and 

Lebreton (2005) suggested increasing fecundity with age. 
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In Chapter 4, I develop a simple calculation of generation time for any animal 

population that allows for increasing fecundity over time, but still does not require 

knowledge of juvenile survival.  In this context, fecundity refers to overall 

reproductive output per animal, and increases with age may be due to an increase in 

the proportion of animals breeding, to improved breeding success, or to an increase in 

the number of offspring per female.  The new calculation of generation time allows a 

modification of the calculation of maxλ  for birds, when using the more general 

population model.  Further, in the absence of detailed knowledge of age-specific 

fecundity, an ad hoc adjustment to age at first breeding can be used in the Niel and 

Lebreton (2005) allometric-based formula to achieve estimates of maxλ  similar to 

those achieved by more standard matrix model approaches (Caswell 2001).  

 

1.7 Estimating the mean age at first breeding 

For Procellariiformes, where breeding birds produce one egg per year, variation in 

age-specific fecundity rates is primarily due to the delayed entry into breeding, and 

the mean age at first breeding is an obvious value to use as an ad hoc adjustment in 

the calculation of maxλ .  In Chapter 5, emphasis is placed on calculating the mean age 

at first breeding using capture-recapture data, with results applicable beyond the PBR 

method.  Problems with using the observed mean age at first breeding related to study 

duration and emigration are discussed, using albatrosses as an example.  The observed 

mean age at first breeding for albatrosses can have substantial negative bias (even 

with perfect detectability), and model-based estimates based should be used.   

 

If certain assumptions about emigration are met, it is shown in Chapter 5 that 

Bayesian capture-recapture methods are capable of providing minimally biased 
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estimates of age at first breeding and other parameters, even when parameters such as 

juvenile survival are unknown.  However, the effect of the model used for recruitment 

may be large, and in studies of limited duration it may not be possible to distinguish 

between competing models.  Because of this, model-based error can not be ignored.  

In addition to simple examples, capture-recapture data for Gibson’s albatrosses 

(Diomedea gibsoni) is used to estimate the age at first return and breeding. 

 

1.8 Summary 

A rule-of-thumb tool was developed for calculating the number of additional 

mortalities that Procellariiformes can sustain given only adult survival, age at first 

breeding, the number of breeding pairs, and a management goal.  This expands the 

work of Niel and Lebreton (2005) and Wade (1998) by recognizing limitations in the 

data available for albatrosses and petrels, and by combining knowledge of their 

population structure with population modelling tools to overcome those limitations.  

The suggested use for this is as a screening tool.  For example, if estimated mortalities 

from all human-related sources are below the calculated threshold then they are likely 

sustainable; if they are greater than an upper limit then they are likely unsustainable.  

Levels of mortality in between these two values suggest that a more detailed study is 

necessary.  Initial screening tools allow valuable research time and money to be 

directed towards species with the greatest need for additional research.  In the final 

chapter, in addition to an overall discussion, tools developed in each chapter will be 

combined to calculate the PBR for Gibson’s albatrosses given census data and using 

fecundity and survival estimates from capture-recapture data. 

 



 

 13 

The benefits of this research extend beyond calculating the number of 

Procellariiformes that may be killed in fisheries.  Threats to bird species come from a 

variety of sources, such as wind turbines (Everaert and Steinen 2007), power lines 

(Bevanger 1998), or motor vehicles (Forman and Alexander 1998), and the PBR 

approach can be applied to them as well.  Knowledge of the population size of 

seabirds has more general applications, such as calculating their consumption of food 

(as in Brooke 2004b) or converting harvest levels to harvest rates, as well as being a 

basic population parameter.  The formulas for generation time allow more accurate 

calculations than those provided by Gaillard et al. (2005) and Niel and Lebreton 

(2005) for species where fecundity differs by age class while still only using data 

likely to be available; these can be applied to any species.  Finally, in addition to its 

use in calculating maximum growth rate, age at first breeding is a basic biological 

parameter important in the calculation of age-specific fecundities where appropriate 

care is necessary to achieve reliable estimates. 
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Chapter 2. Estimating the ability of birds to sustain 

additional human-caused mortalities using a simple decision 

rule and allometric relationships 

 

Many bird species are subject to human-caused mortality, either through direct 

harvest (e.g. game birds) or through incidental mortalities (e.g. fisheries-related 

bycatch of seabirds, impact with vehicles, wind turbines, or power lines).  In order to 

assess the impact of additional mortalities on birds, both the number of birds killed 

and their ability to sustain those deaths must be estimated.  Niel and Lebreton (2005) 

applied a simple decision rule (Wade 1998) to estimate the level of additional human-

caused mortality or potential biological removal (PBR) that can be sustained for bird 

species given only (1) estimates of the population size, adult survival, and age at first 

breeding, and (2) the current population status and management goals.  We provide 

guidelines for appropriate use of the method and case studies comparing results from 

this method to other approaches.  Particular focus is placed on applying the method to 

Procellariiformes. 

 

PBR limits may then be set without a population model and when monitoring levels 

are minimal, and in a computationally straightforward manner.  While this approach 

has many advantages, there are limitations.  The PBR method was initially developed 

for cetaceans and pinnipeds and there have been no adaptations for the unique biology 

of birds which may need further consideration.  Additionally, because this is a 

simplifying method that ignores differences in life stages, it may not be appropriate 
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for very small populations or for those listed as ‘critically endangered’, and further 

work is needed for situations where mortalities have large gender or age bias.   

 

2.1 Introduction 

The annual growth rate, current status, and management objectives for a species 

determine the level to which it can sustain additional mortalities.  Among bird species, 

harvests or incidental mortalities come from a variety of sources, such as indigenous 

harvest, recreational hunting, collision with man-made objects (vehicles, wind 

turbines, power lines), and bycatch in fisheries.  This work was motivated by work on 

fisheries bycatch of seabird species (primarily albatrosses and petrels, the 

Procellariiformes) in New Zealand where limited demographic information is 

available.  Typically, demographic information is limited to rough estimates of the 

population size, adult survival, and age at first breeding (Brooke 2004).  This 

constraint meant that a method for estimating potential biological removal from 

minimal information was needed. 

 

In the marine mammal setting, Wade (1998) developed a simple rule for estimating 

allowable bycatch of pinnipeds and cetaceans.  Potential biological removal (PBR), or 

the number of additional mortalities than can be sustained each year by a population, 

may be calculated given an estimate of the population size, the maximum annual net 

recruitment rate ( maxR ), and a management objective.  While the rule is simple, it 

allows for density dependence, stochasticity, and the potential for bias in its estimate 

of PBR.  Among similar rules, the Wade rule performed best over a range of 

conditions (Milner-Gulland and Akçakaya 2001), including different growth-

fecundity combinations, suggesting that it can be used for a variety of species.  
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However, while methods to estimate population sizes are available for a wide variety 

of species, maxR  is only observable under optimal conditions.  In order to use the 

Wade rule for species under non-optimal conditions, maxR  must be estimated. 

 

For bird species, Niel and Lebreton (2005) provide an estimate for maxR  given only 

adult survival ( s ) and age at first reproduction (α ) under optimal conditions.  In 

addition to being mathematically simple, this approach is relevant to the available 

data: while detailed knowledge of the biology of many species is limited, reasonable 

estimates for s  and α   are often either directly available or may be inferred from 

similar species.  Niel and Lebreton (2005) apply the decision rule of Wade (1998) 

using point estimates for population size, s , and α , but do not explore the impact on 

the PBR of uncertainty in these estimates.  The impact of uncertainty is important to 

consider, as s  and α  are typically estimated under non-optimal conditions and 

population estimates for seabirds are imprecise. 

 

Combining the work of Wade (1998) and Niel and Lebreton (2005) allows estimation 

of allowable harvest levels for birds given only management objectives, an estimated 

population size, adult survival ( s ) and age at first reproduction (α ).  Although the 

PBR approach tends to be conservative (Hall and Donovan 2001), it has the benefit of 

allowing decision making with minimal information, providing a quick and simple 

method for calculating an estimate of PBR that can be compared to an estimate of 

human-caused mortalities.  If the estimate of such mortalities is substantially greater 

than the PBR, the species might be over-exploited, suggesting a need for increased 

monitoring, additional analysis, and possible management intervention.  Conversely, 

if the mortality estimate is substantially below the PBR estimate, it is likely that such 
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mortality is not a substantial force on population trends.  Note that this requires all 

sources of human-caused mortality to be considered: in practice, some or all sources 

of mortality may be difficult or impossible to assess, particularly for wide-ranging 

species such as seabirds.  In the case of a declining population, knowing that a 

particular source of mortality is well below the PBR estimate, could lead to focussing 

on alternative sources of mortality, such as ecosystem change, pollution, or disease, 

more quickly than might otherwise be achieved.  If the PBR estimate is close to the 

estimate of human-caused mortality, it suggests that further information is required.  

Overall, use of this approach mean that minimal effort can provide valuable 

information for a large number of species, allowing research effort and resources to be 

focussed on those populations for which there is a clear need. 

 

The primary objectives of this chapter are to describe the PBR method in detail and to 

explore the impact of uncertainty in the estimates used to calculate the PBR.  Three 

examples of its use are provided.  The first two involve the greater snow goose (Anser 

caerulescens atlanticus) and the magpie goose (Anseranas semipalmata), and allow 

results to be compared with those from a detailed population model. The third 

example involves white-chinned petrel (Procellaria aequinoctialis), where relatively 

little is known about the population, and for which there appears to be high level of 

human-caused mortality, from bycatch in longline fisheries.  

 

2.2 Methods 

Potential biological removal (PBR), or the number of additional mortalities than can 

be sustained each year by a population, is estimated by 

max min

1

2
PBR R N f=        (2.1) 
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where maxR  is the maximum annual recruitment rate, minN  is a conservative estimate 

of population size (Wade (1998) recommended the 20th percentile) and f is a 

recovery factor between 0.1 and 1 (Wade 1998, Taylor et al. 2000, Hunter and 

Caswell 2005, Niel and Lebreton 2005).  This simple formula can be applied to a 

variety of management objectives, such as maintaining a species at or above the 

maximum net productivity level (MNPL; the population size at which the annual 

increase in population size is maximised) or minimizing time to recovery by setting 

different levels of f  (Wade 1998).  This method provides a conservative estimate of 

PBR for the MNPL objective, assuming a convex ( 1θ > ) or logistic ( 1θ = ) density-

dependent growth curve, given by 

1 max 1 t
t t t

N
N N N R

K

θ

+

  
= + −  

   
 

where N  is abundance, t  is time, and K  is the carrying capacity (Wade 1998).  

While the rule is simple, it allows for density dependence, stochasticity, and the 

potential for bias in its estimate of PBR, and was developed through extensive 

simulation.  

 

While methods to estimate population sizes are available for a variety of species, and 

the recovery factor is based on a management decision, maxR  is only observable in 

optimal conditions for population growth (i.e. as N goes to 0 in this population 

model).  In order to use Equation 2.1 for species in non-optimal conditions, maxR  must 

be estimated by other means.  Niel and Lebreton (2005) use allometric relationships 

(Blueweiss et al. 1978, Allaine et al. 1987, Gaillard et al. 1989) to estimate maxR  in 

terms of adult survival ( s ) and age at first reproduction (α ) for a variety of bird 
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species.  This key result allows a mathematically simple approach to estimating the 

PBR for bird species. 

 

2.2.1 Estimating Rmax 

The maximum annual net recruitment rate ( maxR ) and maximum annual population 

growth rate ( maxλ ) are related by the equation max max 1R λ= − , and estimation is done 

via maxλ .  With appropriate demographic information, matrix population models can 

be constructed to estimate maxλ  (Caswell 2001).  However, for many species too little 

data is available to construct such matrices. 

 

The methods of Niel and Lebreton (2005) allow estimates of a theoretical maximum 

annual growth rate ( maxλ ) and the mean optimal generation length ( opT ) knowing only 

age at first reproduction (α ) and adult survival ( s ) for bird species.  This approach 

assumes constant fecundity and constant adult survival after age of first reproduction.  

Two key relationships are used in the calculation by Niel and Lebreton (2005): 

( )maxln 1opTλ ≈  

and 

max

op

s
T

s
α

λ
= +

−
 

Combining these yields 

1

max
max

exp
s

s
λ α

λ

−  
 = + 

−   

                      (2.2) 

which can be solved using numerical methods.  Alternatively, Niel and Lebreton 

(2005) provide a quadratic solution based on a first-order Taylor series 
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approximation.  Niel and Lebreton (2005) show for eleven bird species undergoing 

growth that the estimates from Equation 2.2 are similar to estimates achieved from 

matrix approaches ( 0.884r = ).  These species have a variety of life history traits, 

including early ( 1α = ) to late ( 12α = ) reproduction, and low ( 0.73s = ) to high 

( 0.987s = ) survival (Niel and Lebreton 2005).  Maximum growth rates for a variety 

of survival/age at first reproduction combinations are shown in Figure 2.1. 

 

In practice, population parameters (α , s ) may not be available for all species of 

interest and would rarely be available for optimal conditions.  If life history data for a 

similar species are available, it may be reasonable to use estimates from that species.  

Otherwise, plausible values for α  and s  may be reasonably estimated from data at 

hand, providing a plausible range for maxλ .  Further, under the Niel and Lebreton 

method, exponential growth will occur as long as conditions are optimal (as is the 

case with the matrix approaches used to calibrate the method).  Relating these growth 

rates to the theoretical maximum growth rate under density dependence (i.e. when N 

is close to 0) is one of many approximations used when combining the two 

approaches. 

  

2.2.2 Calculating Nmin 

To calculate the PBR  requires a conservative estimate of the population size ( minN ), 

suggested by Wade (1998) to be the lower bound of a 60% confidence interval.  That 

is, the PBR decision rule incorporates both the population estimate and an estimate of 

the uncertainty surrounding it.  Depending on the species, population estimates may 

be characterized in several ways, such as an estimate ( N̂ ) and standard error ( ˆˆ
N

σ ), an 
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estimate and a coefficient of variation (�ˆ ˆ
ˆˆ

N N
CV Nσ= ), or as an upper ( UN ) and lower 

limit (
LN ) for a ( )1 %α−  confidence interval.  In some cases these may be estimated 

directly by the researcher, or may be available in the literature. 

 

Wade (1998) assumed that the population estimate ( N̂ ) followed a log-normal 

distribution with known coefficient of variation ( ˆ ˆN N
CV Nσ= ), where the pth 

percentile estimate is given by 

( )( )2
ˆ

ˆ exp ln 1p p N
N N Z CV= +     (2.3) 

where pZ  is the p
th standard normal variate.  Equation 2.3 is correct when N̂  

represents the median; if it represents the mean, the right-hand side must be divided 

by 2
ˆ1

N
CV+ .  For 0.2N , the lower bound of a 60% confidence interval, 0.2p = , and 

0.84pZ ≈ − .  In practice, percentile estimates ( ˆ
pN ) are based on an estimated 

coefficient of variation (�
N̂

CV ) rather than a known one.  The ratio of the two 

percentile estimates is 

�( ) ( )
2

2
ˆ ˆ

ˆ
exp ln 1 ln 1p

p N N

p

N
Z CV CV

N

  
= + − +  

  
 

This difference may be small if �
N̂

CV  is reasonably close to 
N̂

CV , but can be 

substantial otherwise.  For example, if ˆ 0.5
N

CV =  and �ˆ 0.4
N

CV = , there is an 8% bias 

in 0.2N̂ , which increases to 21% for �ˆ 0.25
N

CV = .  Hereafter, it will be assumed that 

�
ˆ ˆN N

CV CV≈ , and the notation 
N̂

CV  will be used throughout. 
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In some cases, such as when decision makers must use estimates available in the 

literature, the only population estimates available may be upper and lower bounds of a 

( )1 %α−  confidence interval.  In these cases, and assuming that the confidence 

interval is again based on a log-normal distribution,  

ˆ
L U

N N N=        (2.4) 

and, 

( )
2

ˆ

1 / 2

ln
exp 1

2
U L

N

N N
CV

Z α−

  
 = −    

    (2.5) 

Equations 2.4 and 2.5 may then be used in Equation 2.3 to estimate pN . 

 

A Taylor series approximation, ( )2 2
ˆ ˆln 1

N N
CV CV+ ≈ ,  may be used in Equation 2.3 to 

estimate min 0.2
ˆN N=  as 

( )ˆmin 0.2
ˆ exp

N
N N Z CV=     (2.6) 

This approximation is valid for ˆ 0.6
N

CV < , resulting in a 0%  to 4%−  bias in 0.2N , 

and the approximation is reasonable up to ˆ 1
N

CV =  ( 13%−  bias in 0.2N ).  Combining 

Equation 2.6 with Equation 2.1 yields 

( )ˆmax 0.2

1 ˆ exp
2 N

PBR R f N Z CV=        (2.7) 

 

2.2.3 Selecting f 

The value selected for f  can be used to implement alternative management 

strategies.  For example, a value of 0.1 can be used to provide a minimal increase in 

recovery time for a depleted population, to maintain a population close to its carrying 
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capacity, or to minimize the extinction risk for a population with limited range, while 

a value of 1 could be used to maintain a healthy, growing population at or above its 

maximum net productivity level (Wade 1998, Taylor et al. 2000).  Wade (1998) 

suggests a value of 0.5 for most healthy populations, as this provides protection 

against bias in population estimates, maximum growth rates, and mortality estimates.  

While this approach was designed to maintain a population at or above MNPL, a value 

of 1 2f< <  could be used to control a population at a lower level, while 

min
ˆ2 /f N N>  would be expected to reduce the population size no matter where it was 

in relation to carrying capacity. 

 

The recovery factor f is selected based on a species’ population status, with a value of 

0.1 suggested for threatened or endangered species (Wade 1998, Taylor et al. 2000, 

Niel and Lebreton 2005).  BirdLife International maintains the International Union for 

the Conservation of Nature and Natural Resources (IUCN) population status for birds.  

Birds are classified according to IUCN criteria (IUCN 2001) as ‘least concern’, ‘near 

threatened’, or ‘threatened’.  ‘Threatened’ species are further classified as 

‘vulnerable’, ‘endangered’, or ‘critically endangered’.  Without further information, it 

may be reasonable to set 0.5f =  for ‘least concern’ species, 0.3f =  for ‘near 

threatened’, and 0.1f =  for all threatened species.  A value of 1.0f =  may be 

appropriate for ‘least concern’ species known to be increasing or stable.   

 

Further, the value of f  could be an important part of an adaptive management system 

(Williams et al. 2002).  With ongoing monitoring, the value could be updated to 

reflect increasing knowledge of the system, with initial values set based on a variety 

of considerations but allowed to increase or decrease if warranted.  For example, it 
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may be reasonable to set 0.3f =  for a vulnerable species that had a large population 

and breeding range (i.e. some level of additional decline would not jeopardize the 

viability of the species), monitor the population, and determine if f needed to be 

lowered or could eventually be raised.  Alternatively, it may be preferable to start with 

a conservative value ( 0.1f = , say) and increase it after the species’ status improved.   

 

2.2.4 Harvest rates 

In some cases it may be preferred to calculate an allowable harvest rate ( ah ), rather 

than the PBR.  The relationship between the allowable harvest rate and PBR is  

ˆa

PBR
h

N
=  

or, substituting into Equation 2.1, 

min
max

1
ˆ2a

N
h R f

N
=  

Using the estimate of minN  from Equation 2.6, this is re-written as 

( )ˆmax 0.2

1
exp

2a N
h R f Z CV=          (2.8) 

The maximum harvest rate ( maxh ) using the PBR approach, applied to a non-

threatened species with an increasing population trend and with a perfect census, is 

max max

1

2
h R=                 (2.9) 

Thus, combining Equations 2.8 and 2.9, the ratio between the allowable harvest rate 

and maximum harvest rate, is  

( )ˆmax 0.2exp
a N

h h f Z CV=  

That is, the allowable harvest rate is decreased from the maximum harvest rate by 

only two sources: the recovery factor and the variation in the population estimate.
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2.2.5 Sensitivity of the PBR estimate 

The PBR estimate depends on several factors, and changing any of them changes the 

estimate.  In some cases, this change may be straightforward, while it is more 

complex in others.  The impact of changes in different factors on the PBR may be 

examined through sensitivity or elasticity analyses (Caswell 2001), or less formally, 

as done here.  For example, increasing the recovery factor from 0.1f =  to 0.5f =  

clearly results in a five-fold increase in the PBR, while an decrease in the CV  from 

50% to 49% would increase the PBR by approximately 0.4% (see Equation 2.7).  Both 

of these results are intuitive, and are straightforward computationally.  The 

relationships between the PBR and s  and α  are computationally more challenging 

and less intuitive. 

 

For example, the Chatham albatross (Thallasarche eremita) is a critically endangered 

species which has an estimated survival of 0.87s =  (Robertson et al. 2003).  

However, other albatrosses typically exhibit survival rates of 0.95 or more (Brooke 

2004).  It is important to understand the impact on the PBR of using 0.87s =  versus 

using a survival estimate from other species in the genus; in general, the desire should 

be to use a survival rate that reflects survival during optimal conditions.  Similarly, it 

is not always clear which value to use for α .  While the Niel and Lebreton model 

assumes constant fecundity from the age of first reproduction, this may not always be 

the case.  For example, great cormorants (Phalocracorax carbo) begin breeding at 

2α =  but fecundity and age-specific breeding success increase until age 5 

(Frederiksen et al. 2001, Niel and Lebreton 2005).  It is not immediately clear which 

value of α  is appropriate to use in Equation 2.2.  For example, suppose 0.89s = .  If 

2α =  then max 1.25λ = , whereas if 3α =  then max 1.18λ = .  The PBR based on these 
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estimates differs by over 30%.  In practice, using a mid-point value for α  produces 

similar results to modifying the population model to allow for increasing fecundity 

over time, low estimates of α  may be reasonable if age at first breeding is density 

dependent (i.e. fecundity is reduced in early age classes) and conditions are non-

optimal, and high estimates of α  produce the most conservative PBR. 

 

In a Leslie matrix approach, which many researchers are familiar with, all else being 

the same, higher survival would lead to greater annual growth.  The Niel and Lebreton 

method recognizes the biological relationship between survival and fecundity, and in 

this method survival is numerically tied to fecundity and generation length.  That is, 

birds with the highest survival rates (e.g. albatrosses) also have the lowest fecundities.  

The inverse relationship between fecundity and survival means that higher survival 

estimates are associated with lower annual growth (Figure 2.1), a counterintuitive 

relationship for those used to matrix models, where population parameters are 

controlled individually.  Note that this inverse relationship means that the curves 

presented in Figure 2.1 include some combinations of s  and α  unlikely to be 

observed (e.g. low survival, and high age at first breeding does not occur).  Further, 

caution is warranted for species where estimates of survival approach 1: maxλ  quickly 

decreases in this region, so a small change in the estimate of s could lead to a large 

change in the estimate of maxλ  and the PBR. 

 

From a management perspective, this means that an underestimate of survival results 

in an overestimate of PBR.  Survival is typically estimated using capture-recapture 

methods which naturally incorporate emigration but not immigration (Nichols and 

Hines 2002, Peery et al. 2006).  This means that survival estimates tend to be 



 

 32 

negatively rather than positively biased.  Further, most survival estimates are derived 

in non-optimal conditions.  Consequently, if survival estimates are derived in non-

optimal conditions or estimates have not been adjusted for possible emigration from 

the study area, conservative (i.e. high) survival estimates should be used to avoid 

over-estimation of maxλ  and PBR. 
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Figure 2.1.  Maximum annual growth rate ( maxλ ) as a function of age at first breeding 

(α ) and adult survival estimated by the methods of Neil and Lebreton (2005). 
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2.3 Case studies 

Three species were chosen to illustrate use of the PBR approach described in this 

paper.  Greater snow geese are a well-studied population where maxλ  may be 

estimated using census data, matrix model approaches, or the Niel and Lebreton 

method.  Magpie geese are a common waterfowl in tropical northern Australia with a 

history of indigenous and recreational harvest.  Sustainable harvest rates were 

estimated in the late 1980s using census data (Bayliss 1989) and more recently using a 

population model (Brook and Whitehead 2005b).  Finally, like many 

Procellariiformes, the white-chinned petrel is a species for which there is limited 

demographic information, and which has suffered high mortality rates in fisheries; it 

therefore provides an application of the approach when alternative management 

methods are not available.  The PBR approach was also applied to other 

Procellariiformes of interest to New Zealand managers; a summary is provided in 

Appendix A. 

 

2.3.1 Greater snow geese 

Greater snow geese are an abundant and widespread North American goose whose 

population was reduced to less than 10,000 birds in the early 1900s (Menu et al. 

2002).  Protection measures allowed the population to rebound to 100,000 birds by 

1970, and nearly 750,000 birds by 1998 (Menu et al. 2002). After adjusting for known 

harvest rates, they are a good example of a species that is growing at near optimal 

rates.   

 

There is now concern about overabundance, and research is focussed on finding a 

minimal harvest rate ( ch ) that would control the population (Gauthier and Brault 
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1998, Menu et al. 2002, Gauthier and Lebreton 2004).  They are well enough studied 

to allow population models (Gauthier and Brault 1998, Gauthier et al. 2001, Gauthier 

and Lebreton 2004) to be constructed.  This, combined with accurate census data, 

makes this species a good one for which to compare different approaches to 

estimating harvest rates necessary to control the population.  Available data includes 

census data and resulting growth rates, and harvest and/or survival rates for the 

periods 1970-74, 1975-83, and 1984-1998, corresponding to high growth/low harvest, 

low growth/high harvest, and moderate growth/moderate harvest periods, 

respectively.   

 

Niel and Lebreton (2005) compared a matrix model estimate of max 1.167λ ≈  from 

Gauthier and Brault (1998), with a point estimate of max 1.21λ ≈  (Equation 2.2), using 

0.83s =  and 3α = .  This survival rate includes hunting mortality; both approaches 

may be improved by estimating survival in the absence of hunting (natural survival, 

0s ).  For the period 1990-98, Gauthier et al. (2001) estimated this as 0ˆ 0.91s = , 

compared to an estimate from Gauthier and Brault (1998) of 0ˆ 0.88s = .  The higher 

estimate (all else the same) increases the matrix model estimate to max 1.257λ ≈ , and 

decreases the estimate to max 1.164λ ≈  (Equation 2.2); both approaches are sensitive to 

the estimate of s  but in opposite directions.  A minimum harvest rate of 10.5%ch =  

for adults was estimated to result in a stable or declining population (Gauthier and 

Lebreton 2004). 

 

Growth rates from census data and harvest rate estimates (Menu et al. 2002) from the 

three periods were used to provide a census-based estimate of maxλ .  Since most birds 
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that were harvested would have otherwise survived and had offspring at normal rates 

(i.e. assuming additive mortality, an assumption supported by Gauthier et al. 2001), 

the observed growth rate is approximately ( )max 1 hλ λ≈ − , or ( )max 1 hλ λ≈ − .  

Hence, potential growth rates for each time period ( max, pλ ) were estimated as the ratio 

of the observed growth ( pλ ) and the complement of the harvest rates.  Adult harvest 

rates for each period (
ph ) were used, as the population is most sensitive to these, and 

juvenile survival rates were low (although it is important to note that young geese are 

disproportionately harvested; Menu et al. 2002, Gauthier and Lebreton 2004).  Hunter 

and Caswell (2005) provide some discussion on this topic, although for purposes of 

illustration differential harvest rates between age classes are ignored.  For each time 

period, the period-specific maximum growth rate was then estimated as 

max,

ˆ
ˆ

ˆ1
p

p

ph

λ
λ =

−
 

Assuming independence between 
pλ  and 

ph , and using the delta method (Rice 1995), 

max,

2

2 2
ˆ1

ˆ ˆ ˆ
ˆ ˆ1 1p p p

p

h

p p
h h

λ λ

λ
σ σ σ

 
≈ +  

 − − 
 

In order to weight the growth rate in each year equally, maxλ  was estimated as 

3

max max,1
ˆ ˆ

p pp
wλ λ

=
=∑  and 

max max,

32 2 2

1
ˆ ˆ

ppp
wλ λσ σ

=
=∑  where 

{ } { }# years in period # all yearspw = .  A plausible range was considered to be 

maxmax
ˆ ˆ2 λλ σ± ; the use of the term confidence interval is avoided due to uncertainty in 

the shapes of the distributions involved and to the simplifications and approximations 

used.  From this, Equation 2.9 was used to estimate maxh  as a proxy for ch .  However, 

the PBR method is designed to keep a population at or above MNPL; if the desired 
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population level is below this value then the required harvest rate may be greater than 

maxh  (e.g. 1f > ).  An empirical estimate is also available, noting that 

( )max max
ˆ ˆ1 1 1/ch hλ λ λ≈ − ⇒ = −  by setting 1λ =  with approximate standard error 

max

2
max

ˆˆ ˆ
ch λσ σ λ≈ . 

 

In addition to the growth and harvest rates used above, Menu et al. (2002) provided 

independent estimates of adult survival for the periods 1970-74 and 1984-98.   This 

allows the uncertainty in adult survival and age at first breeding, and an adjustment 

for harvest rates, to be incorporated into the estimate of  maxλ  from Equation 2.2, 

generating a plausible range.  Once again assuming that most harvested birds would 

have otherwise survived, potential or natural survival for each period ( 0,ˆ
ps ) is 

approximated as the ratio of adult survival for the period ( ˆ
ps ) and the complement of 

the adult harvest, or  

0,

ˆ
ˆ

ˆ1
p

p

p

s
s

h
=

−
 

From the delta method, 

0,

2

2 2
ˆ1

ˆ ˆ ˆ
ˆ ˆ1 1p p p

p

s h

p p

s

h h
λσ σ σ

 
≈ +  

 − − 
 

Natural mortality was then estimated in an analogous manner to maxλ , with weights 

based on the period length.  Finally, while some birds begin breeding by age two, 

breeding propensity increased from 0.35 at age 3 to 0.77 and 0.85 at ages 3 and 4, 

respectively (Gauthier and Brault 1998).  Values from 2α =  to 4α =  are reasonable 

for this species, with the best estimate being 3α = .  Survival and breeding estimates 

were used in Equations 2.2 and 2.8 to provide plausible ranges for maxλ  and maxh , 
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where plausible ranges were the middle 95% of 10,000 samples, each generated by 

sampling from { }2,3,4α ∈  with probability { }0.25,0.50,0.25pα =  and 

( )
0ˆ0 0ˆ ˆ~ , ss N s σ .  Finally, estimates of maxλ  and the harvest rate necessary to control 

the population from the three approaches were compared. 

 

2.3.2 Magpie geese 

Magpie geese are a common waterfowl in tropical northern Australia, currently 

harvested at a rate of up to 18% of the population, and it is unclear if this rate is 

sustainable (Brook and Whitehead 2005a).  They number approximately 3.5 million 

(Brook and Whitehead 2005a), with a reasonable lower bound of 2 million (Bayliss 

and Yeomans 1990, Brook and Whitehead 2005b). Between 130,000 and 360,000 

birds are harvested annually (Brook and Whitehead 2005a).  The primary source of 

harvest is indigenous (100,000-290,000 annually), with another 30,000-70,000 per 

year harvested recreationally (Brook and Whitehead 2005a).  Thus, current harvest 

rates are likely between 4% and 10%, but may be as high as 18%. 

 

Bayliss (1989) and Brook and Whitehead (2005b) estimated the maximum annual rate 

of population growth in order to estimate allowable annual harvest rates.  The 

maximum annual rate of population growth was estimated by Bayliss (1989) using 

aerial survey counts at max 2.18λ =  (i.e. a potential 118% annual population growth at 

low densities), with an allowable harvest rate of approximately 30% per annum.  The 

annual harvest appears to be well below the sustainable harvest rate calculated by 

Bayliss (1989).   
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Brook and Whitehead (2005b) used matrix methods to estimate max 1.18λ = , with an 

extreme upper bound of max 1.65λ =  and a more realistic upper bound of max 1.32λ = .  

For these methods, reasonable assumptions lead to an annual sustainable harvest rate 

of 5-14% with a best estimate of 8.5% (Brook and Whitehead 2005b), far lower than 

the 30% estimated by Bayliss (1989).  Thus, their method suggests that current 

harvest rates may be too high. 

Using the PBR approach, the only estimates needed are age at first breeding, adult 

survival, conservation status, and population size to estimate maxλ ,  ah , and the PBR.  

Consistent with the values used by Brook and Whitehead (2005b), α  was set between 

2 and 3 years, with an assumed minimum adult survival rate of 0.85, a best estimate of 

0.93, and an assumed maximum of 0.95.  The best population estimate of 3.5 million, 

with a lower bound of 2 million, was used to estimate minN  (Equations 2.4, 2.5, and 

2.6).  As the current population trend is unknown, a value of 0.5f =  is suggested by 

Wade (1998).  In practice, the choice of f should incorporate impacts on stakeholders, 

such as lower harvest limits, along with conservation goals, and could also be 

influenced by the level of monitoring.  While less information is available for magpie 

geese than for greater snow geese, this still allows plausible ranges for maxλ , ah , maxh , 

and PBR to be calculated.   

 

2.3.3 White-chinned petrel 

Seabirds, such as the white-chinned petrel, have low fecundity and delayed maturity, 

making them vulnerable to any reduction in adult survival.  Fisheries bycatch (and 

other related mortalities) are currently estimated to kill hundreds of thousands of 

seabirds each year (Baker et al. 2007), and there is general concern about the impact 
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of bycatch and other threats (see Baker et al. 2002 for a good review of threats to 

Procellariiformes).  White-chinned petrels appear to be undergoing a population 

decline (Berrow et al. 2000), are commonly caught in longline fisheries, and the 

species is listed as vulnerable (BirdLife International 2009).  During 1997 and 1998, 

between 80,000 and 200,000 seabirds were killed in the unregulated Patagonian 

toothfish fishery, of which approximately 60% were white-chinned petrels (SC-

CAMLR 1998).  They are the most commonly caught seabird species in the Southern 

Ocean (Weimerskirch et al. 1999).  Further, bycatch in the Patagonian toothfish 

fishery was heavily male-skewed (>80%), with nearly all birds killed in adult 

plumage (Ryan and Boix-Hinzen 1999, Nel et al. 2002).  They may also be affected 

by future changes in marine habitat in the southern oceans (Croxall 2004).  

 

There are approximately 2.5 million breeding pairs of white-chinned petrels 

worldwide, and perhaps 7 million birds total (Brooke 2004). These estimates are 

imprecise, so ˆ 0.5
N

CV =  was assumed.  Birds begin breeding around 6.5α =  

(Schreiber and Burger 2001). One published survival estimate ( 0.79s = ; Schreiber 

and Burger 2001) is clearly wrong: it apparently comes from the misapplication of 

0.79 0.019 lns x= +  where x  is weight in grams (Croxall and Gaston 1988).  Based 

on a weight of 1350 g (Brooke 2004), correct application of this equation suggests 

ˆ 0.93s =  although the predictive power of the equation was only 2 0.27R =  (Croxall 

and Gaston 1988).  For the white-chinned petrel’s sister species, the spectacled petrel 

(Procellaria conspicillata), Ryan (2006) suggested that plausible levels of adult 

survival range from 0.94 to 0.98, based on other petrels.  Brooke (2004) provides 

estimates for related species ranging from 0.92 to 0.94.  I set ˆ 0.93s =  and ˆ 6.5α = , 
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and considered s  between 0.90 and 0.97 and α  between 6 and 7 to represent a 

plausible range. 

 

Given the population decline, IUCN status, and age and gender bias in mortalities, a 

reasonable value of f is 0.1.  However, the large population size and number of 

breeding colonies provide a buffer against any immediate threat to the population 

viability, so a less conservative value of 0.3f =  may be acceptable if combined with 

adequate monitoring and a willingness to modify the value based on the monitoring.  

Because of the bias in gender and age in bycatch estimates, a modified PBR estimate 

was also estimated based on the number of breeding males rather than the total 

population.  This is, to some extent, an ad hoc approach, and suggests future effort 

may be needed in this area.  Finally, we note that managing a species that is 

vulnerable to bycatch from a variety of fisheries is a daunting task, both operationally 

and politically.  Bycatch estimates are subject to deficiencies such as missing data, 

misidentification, bird loss prior to observation, and lack of standardisation (Uhlmann 

et al. 2005, Miller and Skalski 2006).  In this context, the PBR estimate is essentially 

an assessment tool to determine if estimated or plausible bycatch levels may have a 

detrimental effect, rather than a management tool for setting bycatch goals.   

 

2.4 Results 

For species such as large waterfowl or seabirds with delayed fecundity and moderate 

to high survival ( 3; 0.8sα ≥ ≥ ), the maximum annual growth rate is less than 1.25 

(Figure 2.1).  For large waterfowl such as geese, maxλ  may be near 1.2 (see examples 

in Niel and Lebreton 2005), while for seabird species such as Procellariiformes, maxλ  

is commonly less than 1.1, indicating that, even under optimal conditions, these 
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populations can not grow faster than 7% (albatrosses), or 10% (petrels, shearwaters), 

in one year.  This limits their ability to sustain high levels of additional mortality and 

their ability to quickly recover from depletion, most especially for species such as 

albatrosses.  For albatrosses and petrels, especially for populations that are threatened 

or depleted, the maximum harvest rate may need to be 0.5% or less in order to 

minimize recovery time or maintain a population close to carrying capacity.  For 

species such as greater snow geese where the population size has created problems, 

harvest levels equal to or greater than maxh  may be required to control growth; for 

large waterfowl this is on the order of 10%. 

 

2.4.1 Greater snow geese 

Maximum growth rates (estimate ± SE) using Eqs. (2.2 & 2.8) for greater snow geese 

were estimated from the census and harvest data for the 1970-74 (1.190 0.032± ), 

1975-83 (1.136 0.016± ), and 1984-98 (1.165 0.011± ) periods, which combined to  

 

 

Table 2.1.  Maximum growth rate ( maxλ ) and the harvest rate ( ch ) required to prevent 

population growth in greater snow geese using matrix models (MM), and census-

harvest (CH) and Niel and Lebreton (2005) (NL) growth estimates combined with the 

PBR harvest rate estimate.  

Method Plausible range Plausible range
MM 1.167 na 10.5% na
CH 1.160 (1.148, 1.178) 8.0% (7.4%,   8.9%)
NL 1.200 (1.134, 1.323) 10.0% (6.7%, 16.2%)

chmaxλ
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provide a census-based estimate of max
ˆ 1.160 0.009λ = ± .   A minimal harvest rate 

necessary to control the population was estimated using Equation 2.9 (Table 2.1).  

Empirical estimates (± SE) from the census-harvest data suggested ˆ 0.138 0.007ch = ±  

for the entire time period, or  ˆ 0.119 0.013ch = ±  for the 1975-83 period, when high 

harvest rates resulted in low growth.  Similarly, natural survival estimates (± SE) for 

1970-74 ( 0.869 0.045± ) and 1984-98 ( 0.851 0.047± ) were combined to estimate 

natural survival (0.856 0.037± ).  Incorporating uncertainty in survival rates, together 

with sampling from plausible values of α , allowed uncertainty in the Niel and 

Lebreton (2005) estimate of maxλ  and the PBR estimate of maxh  (Eqs. 2.2 & 2.8) to be 

quantified.  The census-harvest estimates (CH), these estimates (NL), and the matrix 

model estimates (MM) from Gauthier and Lebreton (2004) are summarized in Table 

2.1.  

 

All of the growth and harvest estimates fall in the same general range.  When growth 

rates are the same, the matrix model and empirical census estimates for 
ch  suggest 

that a somewhat higher harvest rate is necessary to maintain or reduce the population 

than by using maxĉh h= .  This could be a result of inherent conservatism in the PBR  

 

approach or due to the desired population level being below the level which would be 

maintained by maxh .  Finally, bounds on maxλ  and ch  are largest when uncertainty is 

incorporated into Equations 2.2 and 2.8.  This is quite reasonable, as these estimates 

are based on minimal information compared to the more sophisticated approaches 

available.   
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2.4.2 Magpie geese 

Assuming age at first reproduction between 2 and 3 years and survival ranging from 

0.85 to 0.95, the plausible range for maxλ  is 1.13 1.29− , with a best estimate 

of max 1.17λ = .  Thus, if the population were known exactly and known to be 

increasing, it would be reasonable to set the harvest rate at max 8.5%h = , ranging from 

max 6.5%h =  to max 14.5%h = , similar to the range provided by Brook and Whitehead 

(2005b).  However, when we protect against potential bias and include uncertainty in 

the population estimate, the PBR method suggests a lower harvest rate.  With a 

population estimate of 3.5 million, a lower bound 2 million, and assuming the lower 

bound comes from a 95% CI, minN  is approximately 2.8 million (Equations 2.4, 2.5, 

and 2.6).  Combining this with a ‘best’ population estimate of 3.5 million, and setting 

0.5f =  (as suggested by Wade (1998) when the population trend is unknown) leads 

to a harvest rate from Equation 2.8 of 3.3%ah =  (Equation 2.7), ranging from 

2.6%ah =  to 5.7%ah = .  Thus, while initial harvest rate estimates are similar to 

Brook and Whitehead (2005a, 2005b), once variability in population estimates, 

protection against potential bias in population estimates or harvest levels, and the 

unknown trend are considered, PBR harvest rates are reduced by more than 50%.  A 

less conservative estimate may be reasonable if there is ongoing monitoring of the 

species (i.e. 1.0f =  leads to 6.6%ah = ). 

 

Given current knowledge of the population, total harvests under 120,000 birds would 

be recommended by the PBR method.  Thus, the current harvest of at least 130,000 

birds is higher than would be suggested without greater knowledge of the population, 

and is potentially even occurring at a rate greater than maxh .  If the population were 
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found to be increasing, the harvest could be increased to 230,000 birds.  Given that 

current harvests are at, near, or above the PBR levels, the customized approach to the 

specific conditions of the species and the associated harvest methods and pressures, 

such as that undertaken by Brook and Whitehead (2005a), was very valuable.  

However, the PBR approach is again validated as giving results similar to those from 

a more sophisticated analysis, and, in other contexts, could have been used to suggest 

that a more sophisticated analysis was needed. 

 

2.4.3 White-chinned petrels 

The approximately 7 million white-chinned petrels (Brooke 2004), and the 

assumption that ˆ 0.5
N

CV = , leads to min 4.6N =  million.  Assuming 6.5α =  and 

0.93s = ,  max 1.08λ ≈ , with a plausible range from 1.06 to 1.10.  This range is 

consistent with other petrels, while albatross populations may grow 4-7% annually in 

optimal conditions.  Using max 1.08λ ≈  and 0.1f = , the mortality rate for white-

chinned petrels should be below 0.27%ah =  and annual human-caused mortalities 

(plausible range) should be limited to 19,000 birds (14,000 – 24,000 birds); a less 

conservative approach, with 0.3f = , would allow mortalities up to 57,000 birds 

(43,000 – 71,000 birds).  Annual mortality estimates from the 1990s Patagonian 

toothfish fishery were well above the PBR with 0.1f =  and were possibly above the 

PBR with 0.3f = . 

 

Further, when considering the PBR estimate based only on the 2.5 million breeding 

males (adult males constitute approximately 80% of the bycatch), mortality limits 

drop to 6,800 ( 0.1f = ) and 20,000 ( 0.3f = ).  When considering the gender and age 
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bias in bycatch, it appears that annual mortalities were past those suggested by 

0.3f = .  While it is difficult to assess the impact on the population from these levels 

of mortality, it is clear that bycatch from just one fishery had the potential to cause 

harm to the population, and concerns about bycatch levels are justified.  

 

2.5 Discussion 

The PBR method may be used both to set harvest or bycatch limits and to compare 

current human-caused mortalities with the PBR estimates.  This can allow quick 

detection of potentially over-exploited species, as well as detection of species where 

current harvest rates are likely to be sustainable.  If human-caused mortality rates 

from all sources total less than 
ah , then they should not be the primary cause for any 

concern.  If a population is known to be in decline in these circumstances, other 

causes should be investigated.  For mortality rates between ah  and maxh , human-

caused mortality may be occurring at an unsustainable rate, further investigation is 

warranted, improved knowledge of the population is desirable, and mitigation 

measures should be considered.  Finally, if mortality rates are greater than maxh , it is 

likely that human-caused mortalities are occurring at a rate detrimental to the species 

and should be reduced. 

 

Of course, estimating the number of human-caused mortalities is a daunting task in its 

own right, and it is important that all substantial sources of mortality are included.  

For example, in the white-chinned petrel example only direct mortalities from a single 

fishery were considered, and these estimates were imprecise.  Estimating bycatch 

levels for even common species vulnerable to multiple fisheries is challenging and 

typically requires a large number of assumptions; for rare species these problems are 
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magnified (Uhlmann et al. 2005).  In addition to other sources of bycatch mortality, 

there may be indirect mortalities that occur through competition for food stocks with 

fisheries or through marine habitat change due to global climate change.  Some 

species may be impacted by collisions with man-made objects, such as wind turbines 

(Everaert and Steinen 2007), power lines (Bevanger 1998), or motor vehicles (Forman 

and Alexander 1998).  Similarly, many waterfowl species are subject to direct harvest 

but may also be vulnerable to human-caused habitat loss or degradation.  In contexts 

where only one source of human-caused mortality is considered, the interpretation of 

the PBR changes.  In these cases, PBR estimates above single-source mortality levels 

may suggest that those mortality levels are sustainable if there were no other human-

caused mortalities.  Hence, that information coupled with a declining population may 

suggest that effort be directed towards evaluating other sources of human-caused 

mortality.     

 

The PBR mortality limits tend to be precautionary as little is assumed about the 

population structure, a conservative population estimate is used, and the potential for 

biased population estimates is generally included by setting 1f < .  The selection of f 

is a management decision and should be done with care, balancing conservation goals, 

stakeholder desires, and the ability to monitor the population.  Coupled with 

conservative estimates for survival and age at first reproduction, estimates may 

become overly conservative.  However, this approach remains a powerful tool for 

making management decisions when minimal information is available and for 

directing resources towards species of concern.  In general it is limited by the 

requirement of an estimate of maxR  which may be unavailable for some species.  

When combined with maximum growth rate estimates from Niel and Lebreton (2005), 
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the PBR approach may be applied to bird species with appropriate choices for α  and 

s .  With independent estimates for the components of Equation 2.1, high values of α  

and s  are conservative, and may be chosen from studies of the species of interest or 

of similar species.  For some species the estimates of α , s , and N  may not be 

independent.  In these cases, high values of α  and s  may no longer be conservative.  

For example, if α  is also used to estimate the number of unseen juvenile age classes 

(as may be reasonable for seabirds), maxλ  is still negatively related to α , but N  

would be positively related to α ; the overall effect on the PBR is unclear. 

 

Many bird species – especially Procellariiformes – have similar life histories to 

pinnipeds and cetaceans, characterized by long life, delayed maturity, and low 

fecundity.  Because of this, the simulation work performed by Wade (1998) in 

developing the rule for cetaceans and pinnipeds is especially relevant for 

Procellariiformes, where maximum growth rates for species of particular interest to 

New Zealand managers are in the 4-10% range.  However, gender and age bias in 

bycatch rates suggest that extensions to this method, beyond the ad hoc approach used 

in the case study on white-chinned petrels, need to be developed.  While there are 

limitations to this approach, it appears to provide similar answers to more 

sophisticated analyses, and is a reasonable approach when there is minimal 

information available.  The results of Milner-Gulland and Akçakaya (2001) suggest 

that the rule could be applied to a variety of other bird species as well, such as 

moderately-lived gamebirds and waterfowl, but it may be less appropriate for short-

lived species such as songbirds.  The PBR method also ignores differences in life 

stages and gender.  If there is a large age or gender bias in mortalities, and no 

adjustments to the method are made, the results may be misleading.  By itself, the 
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method is not appropriate for very small populations or for those listed as ‘critically 

endangered’.  That is, it should not replace other impact analyses (for example, see 

Inchausti and Weimerskirch 2001, or Zador et al. 2008), but could be still be useful as 

an additional tool for researchers studying these populations. 

 

More complex population models, such as matrix models, can perform well when 

relevant population parameters are known.   Their complexity may allow a level of 

realism beyond that possible through the simplified model used to estimate maxλ  and 

the simple PBR decision rule.  In the case studies where results from different 

methods were compared, more sophisticated methods yielded more precise results.  

Additionally, when assumptions can be made regarding missing population 

parameters, matrix approaches are still valuable, both in general population modelling 

and as a method to estimate maxλ .  However, the PBR method, combined with the Niel 

and Lebreton method for estimating maxλ , requires very little information in order to 

arrive at a decision and is easy to calculate.  Finally, the PBR method, having 

undergone considerable simulation study, is quite robust to estimation errors (Wade 

1998, Milner-Gulland and Akçakaya 2001).   

 

The PBR method can be used whatever estimate of maxλ  is available, whether it is 

from Equation 2.2, a matrix approach, or from census data.  However, direct 

estimation of maxλ  via matrix or census methods requires a quickly growing 

population, where density dependence is unlikely to be a factor.  Even in cases where 

this occurs, estimation via matrix methods requires more information than the Niel 

and Lebreton method, and estimation via census trends requires long time-series.  

Alternative methods, such as placing reasonable bounds on unknown parameters in 



 

 49 

matrix models, may lead to imprecise estimates of maxλ , due to the number of 

parameters that need to be estimated.  The Niel and Lebreton method is limited by the 

assumption that all breeding age classes have a constant fecundity rate.  However, in 

Chapter 4 an adjustment to the estimate of maxλ  is developed when fecundity changes 

with age; it is also shown that ad hoc adjustments to α , as used by Niel and Lebreton 

(2005), work reasonably well. 

 

The Niel and Lebreton (2005) estimate of maxλ  combined with the PBR approach is a 

valuable tool for management of bird species.  It may be used as an initial tool to 

direct resources and research effort towards species where more information is needed 

to assess whether mortality levels are sustainable.  For species where minimal 

information is available such as seabirds, it provides a way to assess mortality levels 

or harvest rates.  
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Chapter 3.  Population estimation of albatrosses and petrels 

with minimal demographic information 

 

Seabirds such as albatrosses and petrels (the Procellariiformes) are frequently caught 

in longline and trawl fisheries, and accurate assessments of the population size will 

help determine the level to which they are impacted.  An approach to assessing the 

potential for seabirds to sustain additional mortalities given only adult survival (s), 

age at first breeding (α), a minimum population estimate, and conservation goal is 

available (the PBR approach: see Chapter 2, Wade 1998, and Niel and Lebreton 

2005).  While s and α may be available or reasonably inferred for seabirds, population 

estimates are typically based on limited data and educated guesses, extrapolated from 

the number of breeding pairs.  This chapter provides an approach to population 

estimation for Procellariiformes given s, α, and the number of breeding pairs ( B ).   

 

The approach is based on building a simple population model and considering the sets 

of parameter values that lead to plausible asymptotic estimates of the growth rate λ.  

A Markov Chain Monte Carlo (MCMC) approach is developed for fast simulation.  

The estimates of λ, together with an estimate of the number of breeding pairs, lead to 

a set of plausible population estimates conditional on the original population model.  

Additional robustness may be developed by considering multiple population models.  

These can be used to estimate a minimum population size and, importantly, bounds on 

the population size.  Estimates are based on asymptotic results assuming constant 

values for s, α and breeding parameters, and will perform better for populations with 

limited temporal variation.  Combined with the PBR approach, this allows at least a 
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rough assessment of the potential for Procellariiformes to sustain additional 

mortalities given only s and α, and the number of breeding pairs. 

 

3.1 Existing population estimation methods 

Procellariiformes begin life as well-tended chicks, spend several years away as 

juveniles, return either to their natal colony or elsewhere as pre-breeders, and, if 

successful at acquiring a mate, become breeders.  Breeding pairs attempt to raise, at 

most, one chick annually (with the exception of a few small tropical species not 

considered here; Brooke 2004).  However, not all adult birds are breeders, and 

breeders may skip breeding for a year, so there is also a group of non-breeding adults.  

For many populations, little is known about the numbers of juveniles, pre-breeders, 

and non-breeding adults. 

 

Estimates of the number of breeding pairs usually refer to per annum breeding pairs 

and omit skipping breeders, rather than the total number of pairs that sometimes 

breed.  In particular, breeding pairs belonging to Diomedea skip breeding the year 

after breeding successfully yet are still part of a breeding pair.  Non-breeding adults 

are then potentially composed of two groups of birds; the first group are those that 

bred successfully in the previous year and are therefore obligate non-breeders, and the 

second group are other non-breeders, which includes both mature birds who are not 

currently members of a breeding pair as well as members of a breeding pair who skip 

breeding even though they are not obligate non-breeders.   

 

For many seabirds, current population estimates are imprecise (Baker et al. 2002, 

Brooke 2004a) and are based on the number of breeding pairs times a rule-of-thumb 
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multiplier (Gales 1998, Taylor 2000, Brooke 2004a, Brooke 2004b).  Many available 

estimates in compilations about seabirds (Taylor 2000, Brooke 2004a, BirdLife 

International 2009) come from Gales (1998), which does not specify the methodology 

used in calculating the multiplier.  Brooke (2004b) suggests a multiplier of 5 for long-

lived seabirds who are annual breeders, based on a simple population model with 

assumed parameter values.  There appears to be no information about the potential 

variability in any of the rule-of-thumb multipliers. 

 

In the primary literature, population size of seabirds is often used interchangeably or 

near-interchangeably with the number of breeding pairs (e.g. Woehler and Croxall 

1997, Baker et al. 2002, Elliott and Walker 2005, Delord et al. 2008).  This is because 

many standard methods of estimating animal abundance (Schwarz and Seber 1999) 

are not applicable, as typically only breeding birds appear at colonies (Baker et al. 

2002).  Information limited to the number of breeding pairs may be helpful in looking 

at population trends (as in Woehler and Croxall 1997, Elliott and Walker 2005, 

Delord et al. 2008).  However, there may be substantial variability in the proportion of 

birds breeding in a given year (Cam et al. 1998, Chastel et al. 2005, Jenouvrier et al. 

2005).  Thus, short-term trends in the number of breeding pairs may not be related to 

trends in the population size, while the long-term relationship between the number of 

breeding pairs and population size may not be linear.  

 

Chastel et al. (1995) studied three seabird species and found that body condition could 

influence both breeding success and the proportion of experienced breeders not 

breeding.  In addition to entirely skipping breeding, some birds also abandoned eggs 

early in the nesting season.  The longest-lived species in the study, the blue petrel 
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(Halobaena caerulea), had the highest variability in the number of non-breeding 

adults, suggesting that they prefer to reduce reproductive effort to increase survival 

probability (Chastel et al. 1995).  This suggests that counts of the short-term number 

of breeding pairs, especially for long-lived birds such as albatrosses and large petrels, 

could be influenced by environmental conditions rather than a change in population 

size.  For example, Elliott and Walker (2005) observed a c. 50% increase in the 

number of nests of the Antipodean albatross (Diomedea antipodensis) on Antipodes I. 

between 2001 and 2004.  However, the maximum annual growth rate for this species 

is around 4% (Appendix A), suggesting that the observed increase was not due to 

intrinsic population growth alone. 

 

Further, the proportion of non-breeding experienced breeders varies considerably 

between species (Chastel et al. 1995).  It is possible that the average proportion of 

non-breeding adults is related to population density (i.e. density-dependent).  In order 

to assess the ability of a population to sustain additional mortalities, an actual 

population estimate is needed.  This suggests that any rule-of-thumb multiplier 

relating the number of observed breeding pairs to the total population size needs to 

account for uncertainty in the proportion of non-breeding adults.

 

3.2 Matrix population models 

A common tool used in population modelling is matrix population models (Leslie 

1945, Leslie 1948, Lefkovitch 1965, Caswell 2001, Lebreton 2005).  These are 

especially useful for Procellariiformes, as the discrete time nature of matrix models is 

consistent with the annual (or biennial) breeding cycle.  Matrix population models 

may be categorised as age-based (Leslie 1945, 1948), stage-based (Lefkovitch 1965), 
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or both (Lebreton 2005).  Age-based models are used to track the population using 

age classes (e.g. the number of one-year olds, two-year olds, or three-year olds or 

older).  Stage-based models are used when the population is better characterised by 

developmental stages (i.e. seeds, immature plants, mature plants).  Procellariiformes 

experience distinct stages, but these are closely linked to age, and so could be 

modelled using either approach.  Alternatively, age-by-stage-based models, which 

consider both the age and the stage of population members, could be employed.  In 

these models, for example, a seven-year old bird that had returned to the colony but 

not yet begun to breed would be modelled differently than a seven-year old bird that 

had begun to breed.  Lebreton (2006) and Caswell (2001) provide good reviews of 

matrix models. 

 

All of these discrete time models follow the form 

( )1t ta P aθ+ =
� ��

 

where ( )P θ
�

 is a square projection matrix whose entries relate to transition 

probabilities from one age/stage category to another (i.e. in an age-based matrix, the 

i,jth entry is the probability of surviving from age i to age j; when j = 1, the entries 

relate to fecundity) which may depend on parameters θ
�

; and ta
�

 is the number of 

animals in each age-, stage-, or age-by-stage- category in year t.  The total population 

size at time t is tt
N a=

�
.

 

3.2.1 Transition matrix structure 

Common choices for θ
�

 (Lebreton 2006) include time (i.e. ( ) t
P Pθ =
�

 is a random 

environment matrix) or tN  (i.e. ( ) ( )t
P P Nθ =
�

 is a density-dependent model).  The 
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simplest model is one where ( )P Pθ =
�

 is a constant matrix.   In some cases, a more 

complex model can be reasonably represented by a simpler one.  For example, a 

density-dependent model ( ) ( )t
P P Nθ =
�

 may be closely approximated by 

( )ˆ |
tN NP P N ==  for N  in the region of tN .  In other words, as long as the population 

does not change much, a simple fixed projection matrix may be used in place of a 

more complex density-dependent one.  While the complex model may be more 

biologically plausible, a simpler model can be easier to interpret and its parameters 

may be computationally easier to estimate with available data.  However, like any 

extrapolation, if the matrix model is used to make projections far from the region of 

estimation, use of the simpler model may yield unrealistic results. 

 

For Procellariiformes, any biologically plausible model, that tries to capture intricate 

nuances, would be complex.  It should include different stages, such as chicks, at-sea 

juveniles, prospecting pre-breeders, and adults.  Adults would also be characterised by 

their state (i.e. breeders, obligate non-breeders, otherwise skipping breeders, or long-

term non-breeders).  The difference between stage and state is somewhat subtle (and 

mathematically ignorable).  Birds progress from one stage to another, but never go 

backwards.  That is, a pre-breeder may remain a pre-breeder or become an adult, but 

can not return to being a juvenile.  States, on the other hand, do not have this 

limitation.  A breeding adult one year may become an obligate non-breeder the next, 

an otherwise skipping breeder the following year, and a breeder again the year after.   

 

Transition rates between stages for Procellariiformes should be age-dependent.  For 

example, a 2-year old juvenile albatross is not ready to become a prospecting pre-
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breeder, while a 7-year old one likely is.  Further, these transition rates may be 

density-dependent.  For example, it is reasonable to assume that in low-density 

conditions, a younger bird may be able to find a high-quality nesting location, 

whereas in high-density conditions it may be more difficult.  Transition rates between 

adult states may not be (or may be minimally) age-dependent.  However, they are 

likely to vary according to environmental conditions (Chastel et al. 1995, Cam et al. 

1998, Jenouvrier et al. 2005).  In general, parameters that the population is sensitive 

to, such as adult survival, are likely to not vary greatly, while parameters that the 

population is insensitive to, such as breeding success, are likely to be more stochastic 

(Gaillard et al. 1998, Doherty et al. 2004). 

 

The lack of data available for many species of Procellariiformes requires the use of a 

much simpler model, even though it is reasonable to assume that there is density-

dependence and environmental stochasticity.  Further, while Procellariiformes go 

through distinct stages, these stages are predominantly described by age differences.  

Transition rates between adult states may ultimately be reduced to the proportion of 

adult birds that breed in a given year.  A simplification used here is to assume that that 

proportion is constant.  Hence, a simple age-based population model with a constant 

projection matrix will be used.

 

3.3 Simple population models for seabirds 

In Niel and Lebreton (2005), a population model was selected that assumes constant 

fecundity and constant adult survival ( s ) after age of first reproduction (α ).  

Consistent with their model, an age-based population model was assumed, where all 

birds become adults at age α , adult survival and juvenile/pre-breeder survival ( Js ) 
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are constant, and a constant proportion ( k ) of birds of each age class breed each year 

with success b .  Breeding success includes all sources of mortality to age 1.  

Fecundity is then equal to / 2kb .  This model is summarized by the projection matrix 

0 0 / 2

0 0

0 0 0

0 0

J

J

kb

s
P

s s

 
 
 =
 
 
 

⋯

⋯

⋱
    (3.1) 

 

In addition, two further constraints are imposed.  Since b  represents all sources of 

mortality to age 1, and it is reasonable to assume that this period is the highest 

mortality period the birds will encounter, it is assumed that Jb s< .  Further, it is 

assumed that juveniles/pre-breeders have a higher mortality rate than adults, so 

Js s< .  An alternative model for juvenile survival will be considered later.  Also note 

that seabirds recruit to the breeding population over a number of years, and the 

assumption of constant fecundity from age α  is an obvious simplification.  Use of an 

approximate value, such as mean age at first breeding, is suggested. 

 

A common use of the projection matrix is to estimate the finite rate of increase λ  of 

the population from the dominant eigenvalue of P , and the population structure from 

the associated eigenvector (Caswell 2001, Skalski et al. 2007).  Thus, if ( )i

ta  is the 

number of birds of age i in the tth year, and (1) ( 1) ( ) T

t t t t
a a a a

α α− + =  
�

⋯  and ( )
ta
α +  

is all birds of age α or greater, then 1t ta Pa+ =
� �

, and λ  may be calculated in a 

straightforward manner.  The associated right eigenvector is proportional to the stable 

population structure (1) ( 1) ( ) T

p p p p
α α− + =  

�
⋯ , where ( )i

p  is the proportion of 

birds in the ith age class.  Combining this with the number of breeding pairs ( B ) and 
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the proportion of birds breeding allows estimates of the adult population size ( ( )
a

α + ) 

and total population size ( N ) where 

( ) 2B
a

k

α + =  

and 

( )

( )

a
N

p

α

α

+

+
=  

That is, given , , , , , ,JB s s k bα λ , then N  is determined uniquely, or  

( ), , , , , ,JN g B s s k bα λ=  

 

For example, a population with juvenile survival 0.9js = , adult survival 0.95s = , 

age of first breeding 5α = , breeding success 0.8b = , and proportion breeding 

0.5k =  is summarized by  

0 0 0 0 0.2

0.9 0 0 0 0

0 0.9 0 0 0

0 0 0.9 0 0

0 0 0 0.9 0.95

P

 
 
 
 =
 
 
  

 

From this, the asymptotic growth rate and proportion adults are 1.056λ =  and 

( ) 0.62p
α + = .  If the number of breeding pairs was 1000B = , then 

( ) 2 1000
4000

0.5
a

α + ⋅
= =  and 

4000
6,452

0.62
N = = . 

 

3.3.1 Population estimation using geometric series 

Because of the simple population model used, computational efficiency may be 

gained by noting that the population structure may be estimated using a simple 

geometric series, rather than using a built-in function that calculates eigenvectors.  Let 
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( )i
a  be the number of birds in the ith age class (in an arbitrary year), so ( )

1

i

i
N a

∞

=
=∑  

(only birds at least one year old are counted).  With the assumption of a constant 

proportion of non-breeders among different age classes, ( )1
2

i

i
B k a

α

∞

=
= ∑ , and the 

number of non-breeders (Q ) is ( ) ( )1 i

i
Q k a

α

∞

=
= − ∑ .  Also, the number of juveniles 

and pre-breeders ( J ) is ( )1

1

i

i
J a

α −

=
=∑ .   

 

For a stable population with growth rate λ , the number of birds in the ith age class in 

year 1t  ( ( )1,i t
a ) is related to the number of birds in the ith age class in year 2t  ( ( )2,i t

a ) 

by 

( ) ( )1 2 1 2, ,i t i t t t
a a λ −=  

Also, for i α≥ , and assuming constant adult survival, ( ) ( ), , ( )i t t i i
a a s

α α α− − −= ⋅ .  Thus,  

for a given year, 

( ) ( )
i

i s
a a

α
α

λ

−
 

= ⋅ 
 

 

Assuming sλ > , a geometric series results for the number of breeding pairs, 

( ) ( ) ( ) ( )1 1
2 2 0

i k

i k
B k a s ka s

αα α

α
λ λ

∞ ∞−

= =
= ⋅ =∑ ∑  

or 

( )

( )2 1

ka
B

s

α

λ
=

−
 

Rearranging, 

( ) ( )2 1 /a B s k
α λ= −  

Also, note that 

( )2 1 /Q B k k= −  
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Finally, for i α< , ( ) ( ) ( )
ii

Ja a s
αα λ

−
= .  Thus,  

( ) ( ) ( )
1 1

1 1

ii

Ji i
J a a s

α α αα λ
− − −

= =
= =∑ ∑ ,  

or, simplifying, 

( ) ( )
1

1

i

Ji
J a s

αα λ
−

=
= ∑  

Combining yields 

( ) ( )
1

1
2 1

i

Ji
B s s

J
k

α
λ λ

−

=
−

=
∑

 

The number of adults is estimated as  

( )2 1 2
2A

B k B
N B

k k

−
= + =  

and the total population as 

( ) ( )
1

1
2 12

i

Ji
B s sB

N
k k

α
λ λ

−

=
−

= +
∑

, 

or  

( ) ( )( )1

1

2
1 1

i

Ji

B
N s s

k

α
λ λ

−

=
= + − ∑        (3.2)  

 

3.3.2 Incorporating uncertainty in B 

In most practical circumstances, B  is unknown, but an estimate ( B̂ ) and estimated 

coefficient of variation ( ( )ˆ ˆ ˆ
ˆ ˆˆ

B B B
CV E B Bσ σ= ≈ ) may be available.  Wade (1998, 

Equation 3) assumed that population estimates have a log-normal sampling 

distribution.  In an analogous manner, if B  follows a log-normal distribution with 

expected value B̂  and setting ˆB B
CV CV= , the underlying number of breeding pairs 

may be simulated as 
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( )2

2

ˆ
exp ln ln 1

1
B

B

B
B x CV

CV

  
  = + +

  +  

   (3.3) 

where ( )~ 0,1x N  and ˆ
ˆˆ

B B
CV Bσ= .  This allows uncertainty in B  to be 

incorporated into population estimates. 

 

3.3.3 Alternative model 

Assuming that survival characteristics are learned over time, the assumption of 

constant juvenile survival to age α  followed by a single step is naive.  A second 

model is considered where survival is constant for all birds age 1 or older, with 

projection matrix 

*

0 0 0 / 2

0 0

0 0

0 0

0 0

kb

s

P s

s s

 
 
 
 =
 
 
  

⋯

⋱ ⋮

⋱ ⋮

⋮ ⋱ ⋱

⋯

       (3.4) 

 

For Procellariiformes, it is reasonable to assume that young birds are naturally more 

vulnerable than adults, but that birds develop adult survival skills prior to breeding 

age.  Thus, P  and *P  represent two bounds of plausibility for juvenile survival rates 

in this type of population model, with a best model somewhere in between.  The effect 

of using one population model instead of the other will be assessed to determine if it 

has a large impact on the population multiplier.

 

3.4 Parameter estimates for the population models 

For many species, capture-recapture data is collected to estimate survival rates and 

age at first breeding.  This data comes from birds banded as adults (typically breeding 
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birds) as well as from birds banded as chicks.  Because birds banded as adults are 

typically members of a breeding pair and birds banded as chicks spend several years 

away from the colony before returning (not necessarily to the study area), this data 

can not provide direct estimates of the population size (such as via the Lincoln-

Peterson estimator) of juveniles and non-breeding adults, especially long-term non-

breeding adults.  However, the estimates of survival and age at first breeding, together 

with several simplifying assumptions, do allow an estimate of the population size to 

be made via the development of a population model and through a Markov Chain 

Monte Carlo (MCMC) simulation approach. 

 

If parameter estimates and a covariance matrix are available for all parameters, then it 

is relatively straightforward to calculate approximate confidence intervals for λ  and 

N  via the delta method (Skalski et al. 2007).  Alternatively, if samples from a joint 

distribution are available, bootstrap methods can used to estimate λ  and N  (Meyer et 

al. 1986).  In practice, estimates are often available for s , α , and B , may be 

available for b , and would be rarely available for Js  (Lebreton 2001).  Further, k  is 

generally unknown; if there is a large pool of long-term, non-breeding adults, it would 

be impossible to estimate using current capture-recapture approaches.   

 

In this chapter, it is assumed that there are estimates for s , α , and B , but not for b ,  

k , and Js .  N is the parameter of primary interest, but both λ  and N  need estimates 

of all the other parameters in order to be estimated.  The distribution of λ  may or may 

not be known.  If it is, a distribution for N  may be calculated.  However, even if it is 

unknown, long-lived seabirds can not grow faster than 5-10% per year, and, in many 
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cases, it may be reasonable to assume that λ  is somewhat near 1.  In this case, a 

distribution for N  conditional on λ  may be calculated. 

 

3.4.1 Constraints on breeding success for biennial breeders 

The existence of an obligate non-breeder state for some albatrosses places a constraint 

between breeding success and the proportion of adults breeding – as breeding success 

increases, a greater proportion of adults become obligate non-breeders.  Adult birds 

may then be characterised by three states: breeders (1), obligate non-breeders (2), or 

other non-breeders (3).  The constraint between b and k may then be calculated 

(approximately) by considering the state structure of the adult birds. 

 

The number of birds of age i ( ( )i
a , i α≥ ) is divided into adult breeders ( ( ,1)i

a ), 

obligate non-breeders ( ( ,2)i
a ), and other non-breeders ( ( ,3)i

a ).  Let ik  be the proportion 

of birds of each age class that is breeding, 

( ,1)

( ,1) ( ,2) ( ,3)

i

i i i i

a
k

a a a
=

+ +
 

In this population model, ,i jk k k i j α= = ∀ ≥ , so 

( ,1) ( ,1)

( ,1) ( ,2) ( ,3) ( ,1) ( ,2) ( ,3)

i j

i i i j j j

a a
k

a a a a a a
= =

+ + + +
   (3.5) 

 

Clearly, there can be no obligate non-breeders of age α , so the state structure can not 

be constant across age classes.  However, simulations using a slightly modified 

projection matrix that included state to state transitions suggest that the proportion of 

birds in each state becomes approximately constant fairly quickly unless a large 

proportion of birds do not begin breeding until later age classes (see Section 5.7.2 for 
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further details).  Further, assuming that the proportion of birds in each state is constant 

across age classes has minimal impact on the estimated population size relative to 

other sources of error in this study.   

 

Thus, a reasonable approximation is that the proportion of birds in each state is 

constant across age classes and time, or,  

{ }
( , ) ( , )

1
( ) ( )

1

for 1,2,3 , , ,
i j

t t

i j

t t

a a
i j t

a a

ψ ψ

ψ+

+

≈ ∈ ∀           (3.6) 

Noting that the number of birds of the next age class in each state from one year to the 

next is diminished by death only, yields  

{ }( 1, ) ( , )
1 for 1,2,3i i

t ta saψ ψ ψ+
+ ≈ ∈    (3.7) 

Further, the number of obligate non-breeders of age 1i +  in year 1t +  is determined 

by the successful breeders age i  in year t  who survive,  

( 1,2) ( ,1)
1

i i

t ta a bs
+

+ =     (3.8) 

Next, let (., ) (., )n ba aη =  ( 0η ≥ ) be the ratio of breeding adults to other non-breeders, 

constant across age classes and years.  Combining Equations 3.5 to 3.8 yields 

( ,1) ( 1,1)
1

( ,1) ( ,2) ( ,3) ( 1,1) ( 1,2) ( 1,3)
1 1 1

( ,1)

( ,1) ( ,1) ( ,1)

1

1

i i

t t

i i i i i i

t t t t t t

i

t

i i i

t t t

a a
k

a a a a a a

a s

a s a bs a s bη η

+
+

+ + +

+ + +

= =
+ + + +

≈ =
+ + + +

  (3.9) 

This provides the constraint that ( )0,1 1k b∈ +   . 
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3.5 MCMC simulation 

Markov chain Monte Carlo (MCMC) methods are used to estimate the population size 

for two models, one for biennially breeding albatrosses and one for all other petrels 

(including annually breeding albatrosses such as mollymawks).  There are a variety of 

approaches that could be used to calculate sets of possible parameter values needed to 

estimate N .  MCMC simulation can be easily implemented using freeware; these 

analyses used the OpenBUGS variant (Thomas et al. 2006, version 3.0.3) of BUGS 

(Lunn et al. 2000), linked to R (R Development Core Team 2008, version 2.7.0) using 

the R2WinBUGS library (Sturtz et al. 2005). 

 

Bayes’ Theorem and laws of conditional probability may be used to estimate the 

distribution for ( ), , , , , ,JN g B s s k bα λ= .  In order to do this, the joint distribution 

( ), , , , , ,Jf B s s k bα λ  must be estimated.  To do this, note that 

( ) ( ) ( )

( ) ( )

, , , , , , , , | , , , , , ,

, , | , , , , ,

J J

J

f B s s k b f s k b B s f B s

f s k b s f B s

α λ α λ α λ

α λ α λ

=

=
 

Next, an MCMC approach is used to calculate  

( ) ( ) ( ), , | , , , , | , , , ,J J Jf s k b s f s s k b f s k bα λ α λ∝  

noting that 

( )
( )1 11 if 0 / 2

, , | , ,
0 otherwise                              

J

J

s s kb
f s s k b

α αλ λ
α λ

− − = − +
∝ 


 (3.10) 

where ( )1 10 / 2Js s kbα αλ λ− −= − +  comes from solving the characteristic equation, 

where expansion around the first row results in determinants of triangular matrices,  
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( )

( ) ( ) ( )

( ) ( ) ( )

1

1 1

0 0 / 2

0

0 det det 0 0

0

0 0

0 0 0 0

0 0

det 0 0 1 / 2 det 0

0

0 0 0 0

1

J

J

J

J

J J

J J

J J

J

kb

s

P I s

s s

s

s s

s kb s

s s s

s s

α

α α α

λ

λ

λ

λ

λ

λ λ

λ λ

λ

λ λ

λ

λ λ

+

− − −

− 
 − 
 = − =
 

− 
 − 

− −   
   − −   
   = − + −
   

− −   
   −   

= − − + −

⋯

⋱ ⋮

⋱ ⋮

⋮ ⋱ ⋱

⋯

⋯ ⋯ ⋯

⋱ ⋮ ⋱ ⋮

⋱ ⋮ ⋮ ⋱ ⋱

⋮ ⋱ ⋱ ⋮ ⋱ ⋱ ⋱

⋯ ⋯ ⋯

1 / 2, orkb

 

  ( )1 10 / 2Js s kb
α αλ λ− −= − +  

 

Use of MCMC methods provides an efficient method of estimating ( ), , | , ,Jf s k b sα λ  

and ( )| , , ,f N s Bα λ .   In some cases, it is useful to study the population distribution 

given , ,s Bα  ( ( ) ( ) ( )| , , | , , ,f N s B f N s B fα α λ λ= ); in most cases, the distribution 

conditional on λ  will be of more interest, especially when little is known about the 

distribution of λ .   

 

3.5.1 Petrel model 

For the petrel model, given ˆ, , , Bs B CVα  and a range of realistic values for λ  ranging 

from [ ],L Uλ λ  the following priors were assigned: 

 ( )~ 0, Jb U s  

 ( )0,1k U∼  

 ( )~ 0,Js U s  

 ( )~ ,L UUλ λ λ  
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These priors are vague because little is known about possible boundary values.  So 

while 0Js =  is clearly not plausible, it is unclear what the lower value would be.  

Instead, restrictions on λ  inherently create constraints for the other parameters.   

 

Any large value may be used for Uλ , as constraints on survival and other parameters 

naturally create an upper bound that may be achieved.  For Procellariiformes, this 

value is reasonably close to Niel and Lebreton’s (2005) dimensionless estimate ( maxλ ; 

Equation 2.2).  When setting the lower bound (
Lλ ), biological plausibility should be 

considered.  This can be considered through an argument about generation time or 

fecundity.  For example, if 0.93s =  and 6α = , as might be reasonable for a petrel,  if 

0.95λ =  then 0.56Js >  (Equation 3.10) .  This value is quite low and probably 

unrealistic, but it also unrealistic that the population would be decreasing at such a 

rate with 0.93s =  – this requires either very poor juvenile survival as above or 

minimal fecundity.  If 0.88Js =  and 0.95λ =  then fecundity across all adults is 

/ 2 0.06kb = , implying a very low proportion of adults breeding, very poor breeding 

success, or both.  This is due to the high sensitivity of petrel populations to changes in 

adult survival, and low values of λ  are easily explained by a decrease in adult 

survival.  On the other hand, as s  approaches λ , a decreasing proportion of adults 

need to breed to support the population (i.e. 0k → ), and the population estimate 

becomes unrealistic (i.e. lim
s

N
λ→

= ∞ ).  In other words, 0.02sλ = +  implies an 

unrealistic and fundamental shift in breeding behaviour (compared to a growing 

population) where nearly all adults do not breed, or where breeding success is 

habitually low. 
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The minimum values for Js , b , and k  increase with λ , becoming biologically 

plausible when λ  is greater than s  by some amount.  For example, for a stable 

population ( 1λ = ) with 0.93s = , then 0.72Js > , which is in the range of plausibility.  

Further, the minimum value only occurs when 1k =  and Jb s= , so in most 

simulations Js  would be well above the minimum value.  Placing a bound on Lλ  is, to 

some extent, arbitrary.  Noting that generation time for this population model is 

( )T s sα λ= + −  (Niel and Lebreton 2005), and placing a fairly weak constraint that 

the maximum plausible generation time is no greater than 40, suggests that 

0.0275L sλ = +  is reasonable. 

 

Next, ( )det P Iλ−  was calculated using Equation 3.10, and 

 ( ) ( )( )0 ~ det ,detU P I P Iλ δ λ δ− − − +  

for some small tolerance value δ  (set to 0.01); this step forces matrix model 

parameters that yield the correct λ .  The value of δ in the final step determines 

accuracy (smaller is better) and computational speed (too small and most trial 

parameter values are rejected).  The population size was calculated using Equation 

3.2.  

 

Initial values were calculated by setting 1λ = , drawing ( )~ 0.05,Js U s s− , 

( )~ 0.4, Jb U s , and using the characteristic equation to calculate 

( )1

1

2

J

s
k

s b

α

α

λ λ−

−

−
=  
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This could lead to 1k > , so the algorithm was iterated until [ ]0,1k ∈ .  WinBUGS 

code for implementing this model for petrels is given in Section 3.9. 

 

The number of breeding pairs was generated by sampling ( )~ 0,1x N  and using 

Equation 3.3.  The analysis was run for a variety of values of s  and α , and results are 

presented conditional on λ .  For the purposes of presentation, posterior values of λ  

were placed into bins of length 0.005 and centred conveniently at 1 0.005k±  for 

integer values of k , with the first bin centred at 0.03s + .   

 

The population size ( N ) per breeding pair was estimated (Equation 3.2), along with 

various quantiles of the estimate.  This relates to the rule-of-thumb multiplier that 

should be used given the number of breeding pairs.  A total population estimate ( N̂ ) 

that incorporates uncertainty in the number of breeding pairs (Equation 3.3) was also 

calculated for 0.25BCV =  and 0.5BCV = .  Of particular interest were the mean 

estimates for N̂  and the 20th percentile estimates ( minN ) for use in PBR calculations. 

 

3.5.2 Albatross model 

The model for biennial breeding albatrosses is based on the petrel model, with a minor 

modification.  Using the constraints from Equation 3.9, a prior is placed on η  where 

 ( )~ 0,10000Uη  

and the proportion of birds breeding is determined as ( )1/ 1k b η= + + .  Similar to the 

petrel model, initial values were calculated by setting 1λ = , drawing 

( )~ 0.05,Js U s s− , ( )~ 0.6, Jb U s , and using the characteristic equation (Equation 
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3.10) to calculate k  and then η .  This approach was iterated until ( )0,1 1k b∈ +   .  

WinBUGS code for implementing this model for albatrosses is given in Section 3.9. 

 

3.6 Modelled population estimates for Procellariiformes 

The population model allowed assessment of both N  and minN  given s  and α , as 

well as other percentiles, 
pN .  Additional parameters, such as the number of adults or 

juveniles, were also easily monitored.  Population estimates varied with λ  (Figure 

3.1), and became unstable as λ  approached s , with unrealistically low levels of 

juvenile survival, proportion of adults breeding, and breeding success all possible.  

However, populations of Procellariiformes are so sensitive to adult survival that 

sλ →  is unrealistic.   

 

Population estimates decrease as λ  increases (Figure 3.1), as the growth rate places 

constraints on the proportion of adults breeding (Figure 3.2) and other parameters.  

That is, a population can not grow quickly with low juvenile survival, breeding 

success, and proportion of adults breeding.  However, the percentile bounds converge 

towards the population estimate as λ  increases, as increasing values of λ  place 

constraints on other parameters limiting overall uncertainty. 

 

Lower percentiles of the population estimate were more stable (i.e. did not vary much) 

as a function of λ  than upper percentiles.  This is advantageous to PBR calculations, 

as it means that minN  is not very sensitive to the unknown growth rate.  Further, 

estimates based on the alternative model (Equation 3.4) were very similar to those of 

the primary model (Equation 3.1).  There was more uncertainty in N  for the 
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alternative model ( Js s= ; Equation 3.4) as higher values of juvenile survival implied 

lower fecundity (for the same λ ), increasing the possible combinations of b  and k , 

especially for lower values of λ .  However, the additional uncertainty was small 

enough that results are presented for the primary model only.  For example, 

calculations of minN  for the two models for an albatross with 0.96s = , 10α = , and 

ˆ 0.5
B

CV =  are within 5% of each other. 

 

Simulations were fast (3 chains, 100,000 iterations/chain, <15s processing time on an 

AMD Athlon 64X2 Dual Core Processor 3800+, 2.01 GHz, 1 GB RAM) and model 

diagnostics were good (as would be expected for a model without data).  A large 

number of iterations were necessary to produce confidence interval estimates with 

small levels of Monte Carlo error for a wide range of λ .  In a setting where speed was 

important, fewer iterations could be used by restricting the range of λ  and also by 

employing smoothers on parameter estimates as a function of λ .

 

3.6.1 Petrels 

For a typical petrel species ( 0.93s =  and 6α = ; Table A.1), the estimated population 

is ˆ 5.4N =  (90% CI: 3.4 – 9.4 B× ) and min 3.9N B= ×  when the population is stable 

(Table 3.1).  When considering a variety of survival and age at first breeding rates, 

and considering 1 0.03λ = ± , the rule-of-thumb population multiplier ranges from 

about 5 B×  (90% CI: 3.4 – 7.1 B× ) for a species that begins breeding at 5α =  with 

survival 0.90s = , to 6 B×  (90% CI: 3.7 – 11.0 B× ) for a species that begins breeding 

at 8α =  with survival 0.94s = .  A reasonable rule-of-thumb multiplier for minN  is 

min 4N B= ×  for most situations when B  is known (Table 3.1). 
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Figure 3.1.  Population size of petrels per breeding pair as a function of λ  (for a 

typical petrel species where 0.93; 6s α= = ).  
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Figure 3.2.  Minimum proportion of breeding adults for a typical petrel 

( 0.93; 6s α= = ) when Js b s= =  (black line) and when 0.9Js =  and 0.8b =  (blue 

line). 
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However, when uncertainty in the estimate of the number of breeding pairs is 

incorporated with uncertainty in the population multiplier, minN  can be considerably 

lower (Tables 3.2, 3.3, Figure 3.3).  For example, for the typical petrel species 

described above, min 2.8N B= ×  for a stable population when ˆ 0.5
B

CV = .  Modifying 

the rule-of-thumb multiplier suggests that min 4N B= ×  when B  is known, 

min
ˆ3.5N B= ×  when ˆ 0.25

B
CV = , and min

ˆ3N B= ×  when ˆ 0.5
B

CV = .   

 

While minN  varies considerably with λ  for small coefficients of variation, as 
B̂

CV  

increases, minN  begins to stabilise across different values of λ  (Figure 3.3).  This 

suggests that the use of a constant rule-of-thumb multiplier is most appropriate for 

population estimates with high coefficients of variation, which conveniently are also 

likely to be populations where the least is known about λ . 
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Figure 3.3.  minN  per estimated breeding pair for a typical petrel ( 0.93; 6s α= = ) as a 

function of λ  when ˆ 0
B

CV =  (solid blue line) and ˆ 0.5
B

CV =  (dashed green line). 
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The rule-of-thumb multiplier for minN  still varies with s  and α  for large values of 

B̂
CV .  However, for ˆ 0.5

B
CV = , the observed variation for petrels is likely within 

about 10% of min
ˆ3N B= ×  (Table 3.3).  

 

Finally, additional model constraints may be placed on population parameters.  For 

example, it may be thought that juvenile survival is close to adult survival.  This 

changes the nature of possible combinations of b  and k  at different values of λ  

(Figure 3.4).  If juvenile survival is required to be high (e.g. 0.9Js > ), then bk  is 

more constrained (Figure 3.4a) than if no additional constraints are placed on juvenile 

survival (Figure 3.4b).  This highlights that the rule-of-thumb estimates presented are 

conditional on the population model used. 
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Figure 3.4.  Constraints between breeding success and the proportion of adults 

breeding amongst petrels for (a) high juvenile survival ( 0.9Js > ) and (b) any juvenile 

survival for a typical petrel species ( 0.93; 6s α= = ) versus annual growth rate for 

30,000 simulations with 1λ > .
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Table 3.1.  Petrel population size (N) per breeding pair ( B ) for a stable ( 1λ = ), 

growing ( 1.03λ = ), and shrinking ( 0.97λ = ) population.  Upper ( 0.95N ) and lower 

( 0.05N ) limits from a 90% confidence interval, and 20th percentile estimates ( minN ), 

are included for the stable population. 

 

s α N N min N 0.05 N 0.95 N N min N N min

0.90 5 4.8 3.8 3.4 7.1 4.7 4.0 5.1 3.6
0.90 6 5.1 4.2 3.8 7.3 5.0 4.5 5.4 4.0
0.90 7 5.5 4.7 4.2 7.6 5.5 5.0 5.8 4.3
0.90 8 5.9 5.1 4.7 7.8 5.9 5.6 6.1 4.6
0.91 5 4.9 3.8 3.3 7.6 4.7 4.0 5.2 3.5
0.91 6 5.2 4.1 3.7 7.7 5.1 4.4 5.5 3.9
0.91 7 5.6 4.5 4.0 8.2 5.5 4.9 5.9 4.2
0.91 8 5.9 4.9 4.4 8.4 5.9 5.4 6.2 4.5
0.92 5 5.0 3.7 3.2 8.5 4.8 3.9 5.5 3.5
0.92 6 5.3 4.0 3.5 8.6 5.1 4.3 5.8 3.8
0.92 7 5.7 4.4 3.8 8.9 5.5 4.7 6.1 4.0
0.92 8 6.0 4.8 4.2 9.2 5.9 5.2 6.4 4.3
0.93 5 5.1 3.6 3.1 9.2 4.8 3.8 5.8 3.4
0.93 6 5.4 3.9 3.4 9.4 5.1 4.2 6.0 3.6
0.93 7 5.8 4.3 3.6 9.6 5.6 4.7 6.2 3.9
0.93 8 6.0 4.6 3.9 9.8 5.9 5.0 6.6 4.2
0.94 5 5.2 3.5 3.0 10.0 4.9 3.7 6.3 3.3
0.94 6 5.5 3.9 3.3 10.1 5.3 4.2 6.5 3.6
0.94 7 5.8 4.1 3.5 10.5 5.6 4.5 6.8 3.8
0.94 8 6.2 4.4 3.7 11.0 5.9 4.9 7.1 4.0

λ  = 1 λ  = 1.03 λ  = 0.97
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Table 3.2.  Petrel population size (N) per observed breeding pair ( B̂ ) with 

ˆ 0.25
B

CV =  for a stable ( 1λ = ), growing ( 1.03λ = ), and shrinking ( 0.97λ = ) 

population.  Upper ( 0.95N ) and lower ( 0.05N ) limits from a 90% confidence interval, 

and 20th percentile estimates ( minN ), are included for the stable population. 

 

s α N N min N 0.05 N 0.95 N N min N N min

0.90 5 4.8 3.4 2.7 8.1 4.7 3.5 5.1 3.3
0.90 6 5.2 3.7 3.0 8.3 5.0 3.8 5.4 3.6
0.90 7 5.6 4.1 3.3 8.8 5.5 4.2 5.8 3.9
0.90 8 5.9 4.4 3.5 9.2 5.9 4.6 6.1 4.2
0.91 5 4.9 3.4 2.6 8.5 4.7 3.5 5.2 3.2
0.91 6 5.2 3.7 2.9 8.6 5.1 3.9 5.5 3.5
0.91 7 5.6 4.0 3.1 9.2 5.5 4.2 5.9 3.8
0.91 8 5.9 4.3 3.4 9.5 5.9 4.6 6.2 4.0
0.92 5 5.0 3.3 2.5 9.2 4.8 3.5 5.5 3.2
0.92 6 5.3 3.6 2.8 9.3 5.1 3.8 5.8 3.5
0.92 7 5.7 3.9 3.0 9.8 5.5 4.1 6.1 3.7
0.92 8 6.0 4.2 3.3 10.3 5.9 4.4 6.4 4.0
0.93 5 5.1 3.3 2.5 9.7 4.8 3.4 5.8 3.2
0.93 6 5.4 3.5 2.7 10.1 5.1 3.7 6.0 3.3
0.93 7 5.8 3.8 2.9 10.3 5.6 4.1 6.2 3.6
0.93 8 6.1 4.1 3.1 10.7 5.9 4.4 6.6 3.8
0.94 5 5.2 3.2 2.4 10.5 4.8 3.3 6.3 3.1
0.94 6 5.5 3.5 2.6 10.7 5.3 3.7 6.5 3.3
0.94 7 5.8 3.7 2.8 11.3 5.5 4.0 6.8 3.5
0.94 8 6.2 4.0 3.1 11.8 5.9 4.4 7.1 3.7

λ  = 1 λ  = 1.03 λ  = 0.97
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Table 3.3.  Petrel population size (N) per observed breeding pair ( B̂ ) with 

ˆ 0.50
B

CV =  for a stable ( 1λ = ), growing ( 1.03λ = ), and shrinking ( 0.97λ = ) 

population.  Upper ( 0.95N ) and lower ( 0.05N ) limits from a 90% confidence interval, 

and 20th percentile estimates ( minN ), are included for the stable population. 

 

s α N N min N 0.05 N 0.95 N N min N N min

0.90 5 4.7 2.7 1.8 9.8 4.6 2.7 5.0 2.7
0.90 6 5.2 2.9 2.0 10.6 4.9 2.9 5.4 2.9
0.90 7 5.5 3.2 2.1 11.4 5.5 3.2 5.7 3.1
0.90 8 5.9 3.4 2.3 12.0 5.8 3.5 6.1 3.3
0.91 5 4.8 2.7 1.8 10.3 4.7 2.7 5.3 2.6
0.91 6 5.2 2.9 1.9 10.9 5.1 2.9 5.5 2.8
0.91 7 5.5 3.1 2.1 11.3 5.5 3.3 5.9 3.0
0.91 8 5.9 3.3 2.2 12.2 5.8 3.6 6.2 3.2
0.92 5 5.0 2.6 1.7 11.2 4.8 2.7 5.5 2.6
0.92 6 5.3 2.9 1.9 11.3 5.1 3.0 5.8 2.8
0.92 7 5.6 3.1 2.0 11.9 5.5 3.2 6.1 3.0
0.92 8 6.0 3.3 2.2 12.4 5.9 3.5 6.4 3.2
0.93 5 5.1 2.6 1.7 11.4 4.8 2.6 5.8 2.6
0.93 6 5.4 2.8 1.8 12.1 5.1 2.9 6.0 2.7
0.93 7 5.7 3.0 2.0 12.4 5.7 3.2 6.3 3.0
0.93 8 6.1 3.3 2.1 13.0 5.9 3.4 6.6 3.2
0.94 5 5.2 2.6 1.7 12.3 4.8 2.6 6.3 2.6
0.94 6 5.5 2.8 1.8 12.6 5.2 2.9 6.5 2.7
0.94 7 5.9 3.0 1.9 13.2 5.5 3.1 6.8 2.9
0.94 8 6.2 3.3 2.1 13.8 5.9 3.4 7.1 3.0

λ  = 1 λ  = 1.03 λ  = 0.97
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3.6.2 Biennially breeding albatrosses 

Albatross populations may be supported by a relatively few number of breeding adults 

due to their high survival.  For a typical albatross ( 0.96; 10s α= = , Table A.1) with 

biennial breeding, the estimated population is ˆ 12.6N =  (90% CI: 5.5 – 22.4) and 

min 7.8N =  for each per annum breeding pair when the population is stable (Table 

3.4).  When uncertainty in the number of breeding pairs is considered, min 7.3N =  

when ˆ 0.25
B

CV = , and min 6.0N =  when ˆ 0.5
B

CV = . 

 

For the range of survival and age at first breeding rates that were considered, the rule-

of-thumb population multiplier ranges from about 9 B×  for an early reproducing, low 

survival species to 17 B×  for a species that begins breeding at 12α =  with survival 

0.97s =  (although any species with such high survival rates are likely to be growing, 

not stable).  A reasonable rule-of-thumb multiplier for minN  is min 8N B= ×  when B  

is known and min
ˆ6N B= ×  for ˆ 0.5

B
CV =  for a stable population (Table 3.4); 

min
ˆ7N B= ×  is reasonable for ˆ 0.25

B
CV = .  These values are also reasonable for 

populations in near optimal conditions (Table 3.5).  For the scenarios with lower 

survival rates where a declining population is plausible, these multipliers are again 

reasonable.  
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Table 3.4.  Albatross population size (N) per observed breeding pair ( B̂ ) for a stable 

population ( 1λ = ) with coefficient of variation ˆ 0
B

CV =  and ˆ 0.5
B

CV = , with 20th 

percentile estimates ( minN ), and limits from a 90% confidence interval ( 0.05N , 0.95N ). 

 

s α N N min N 0.05 N 0.95 N min N 0.05 N 0.95

0.94 8 9.2 6.8 5.4 14.1 4.9 3.1 19.5
0.94 10 9.9 7.5 5.9 14.5 5.4 3.5 20.8
0.94 12 10.4 8.3 6.7 14.8 5.8 3.8 21.0
0.95 8 10.3 6.9 5.2 17.2 5.1 3.2 23.4
0.95 10 10.8 7.5 5.7 17.6 5.5 3.5 23.4
0.95 12 11.3 8.2 6.3 17.7 5.9 3.7 24.7
0.96 8 12.1 7.2 5.0 22.2 5.6 3.3 28.4
0.96 10 12.6 7.8 5.5 22.4 6.0 3.5 29.2
0.96 12 13.1 8.4 6.1 22.7 6.4 3.9 29.3
0.97 8 15.9 8.2 5.2 32.1 6.5 3.6 39.5
0.97 10 16.4 8.7 5.7 32.5 6.9 3.8 40.5
0.97 12 16.6 9.2 6.1 32.4 7.2 4.0 40.3

CV = 0 CV  = 0.5

 

 

 

 

Table 3.5.  Maximum growth rates achievable for albatrosses from the matrix 

population model (λmax[MM]), and population size (N and 20th percentile estimates 

minN ) per observed breeding pair ( B̂ ) for a population in near optimal conditions 

( max [MM] 0.015λ λ> − ) with coefficient of variation ˆ 0
B

CV =  and ˆ 0.5
B

CV = . 

s α λ max[MM] N CV  = 0 CV  = 0.5

0.94 8 1.05 8.2 7.8 5.2
0.94 10 1.04 9.2 8.4 5.5
0.94 12 1.03 10.1 9.1 5.8
0.95 8 1.06 8.2 7.7 4.8
0.95 10 1.05 9.2 8.4 5.6
0.95 12 1.04 10.2 9.5 6.0
0.96 8 1.07 8.1 7.6 4.9
0.96 10 1.06 9.2 8.4 5.3
0.96 12 1.05 10.1 9.4 5.9
0.97 8 1.08 8.3 7.8 5.0
0.97 10 1.07 9.2 8.7 5.5
0.97 12 1.06 10.1 9.4 5.9

N min
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3.7 Implications for management 

In order to set mortality limits using the PBR method, estimates for minN  and maxλ  are 

required.  Combining the Niel and Lebreton (2005) estimate of maxλ  with these 

estimates of minN  allows application of the PBR  method for petrels and biennially 

breeding albatrosses based on the estimated number of breeding pairs and its 

coefficient of variation given λ , s , and α .  This allows Equation 2.1 to be re-written 

as 

ˆPBR f Bτ=             (3.11) 

where τ  is a coefficient that incorporates a species’ maximum growth rate and a 

species-appropriate population multiplier, and also includes uncertainty in the 

estimate of the number of breeding pairs.  Values for τ  are presented in Table 3.6 for 

1λ ≈ .  These values vary with λ , s , and α  because the population multiplier does.  

However, they do not vary quickly, and these values should be appropriate for most 

situations in which management would consider applying the PBR method.  

 

This suggests that, for a typical petrel species with ˆ 0.5
B

CV = , ˆ0.12PBR f B= , while 

for a typical albatross species with ˆ 0.5
B

CV = , ˆ0.15PBR f B= .  Given 
B̂

CV , τ  varies 

considerably with s  and α  for petrels, but is relatively stable for albatrosses.  In 

particular, low values of s  lead to higher estimates of τ  for petrels, which means that 

an underestimate of s  (which should represent survival in optimal conditions) could 

potentially lead to too high of a PBR  estimate. 

 

The population estimates and rules-of-thumb are conditional on the model choice, so 

it is important to recognise model limitations.  For example, the estimate of λ  is 
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relatively insensitive to k  and b .  Thus, even though k  and b  are likely to be 

stochastic (Chastel et al. 1995, Doherty et al. 2004), the estimate of λ  will not change 

much.  However, the census estimate is based only on the number of breeding birds, 

so does depend highly on k .  Hence, it is best to use an average of several years’ 

worth of census data (preferably from a time when all breeders could be observed), 

rather than just one census which may have been taken during a year with an 

unusually high or low level of breeding.  More generally, the assumptions of constant 

parameter values over time and a stable age structure mean that estimates of N will be 

less accurate for populations undergoing rapid structural change (i.e. those that are out 

of equilibrium) than for those that are not.  The sensitivities of these estimates to 

assumed parameter values could be assessed by considering a range of parameter 

values (as in Table 3.1).  

 

One clear flaw in the population model is the assumption that all birds begin breeding 

at the same age.  However, given that the rules-of-thumb do not differ greatly based 

on α , the simple population model with α  equal to the mean age at first breeding 

should suffice.  Further, while model assumptions about the structure of early age 

class survival have some impact on the population estimates, the impact is not 

substantial.  This suggests that the population model used provides robust results even 

when α  is not estimated well, especially when estimating minN  for use in the rule-of-

thumb PBR  equation. 

 

This is a useful method for placing some bounds on the rule-of-thumb multipliers that 

could be used to estimate the population size of seabirds.  The lack of constraints on k 

and b lead to wide bounds for the multipliers.  However, providing more constraints 
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would mean that the ratio of unaccounted error (i.e. bias due to population 

simplifications such as assuming a constant α  and ignoring temporal variations) to 

accounted error would grow.  It is proposed as a tool when little data are available, but 

should make way to other methods when more data are available. 
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Table 3.6.  Coefficient (τ ; Equation 3.11) to use in PBR calculations for petrels and 

albatrosses given s , α , B̂ , and 
B̂

CV  for a stable population ( 1λ ≈ ). 

s α λ max[DIM] N min τ N min τ

Petrels

0.90 5 1.12 3.8 0.22 2.7 0.16
0.90 6 1.10 4.2 0.21 2.9 0.14
0.90 7 1.09 4.7 0.21 3.2 0.14
0.90 8 1.08 5.1 0.20 3.4 0.14
0.91 5 1.11 3.8 0.21 2.7 0.15
0.91 6 1.10 4.1 0.20 2.9 0.14
0.91 7 1.09 4.5 0.19 3.1 0.13
0.91 8 1.08 4.9 0.19 3.3 0.13
0.92 5 1.11 3.7 0.20 2.6 0.14
0.92 6 1.09 4.0 0.18 2.9 0.13
0.92 7 1.08 4.4 0.18 3.1 0.13
0.92 8 1.07 4.8 0.18 3.3 0.12
0.93 5 1.10 3.6 0.18 2.6 0.13
0.93 6 1.09 3.9 0.17 2.8 0.12
0.93 7 1.08 4.3 0.17 3.0 0.12
0.93 8 1.07 4.6 0.16 3.3 0.12
0.94 5 1.09 3.5 0.17 2.6 0.12
0.94 6 1.08 3.9 0.16 2.8 0.12
0.94 7 1.07 4.1 0.15 3.0 0.11
0.94 8 1.07 4.4 0.15 3.3 0.11

Albatrosses

0.94 8 1.07 6.8 0.23 4.9 0.16
0.94 10 1.06 7.5 0.21 5.4 0.15
0.94 12 1.05 8.3 0.21 5.8 0.14
0.95 8 1.06 6.9 0.22 5.1 0.16
0.95 10 1.05 7.5 0.20 5.5 0.15
0.95 12 1.05 8.2 0.19 5.9 0.14
0.96 8 1.06 7.2 0.21 5.6 0.16
0.96 10 1.05 7.8 0.19 6.0 0.15
0.96 12 1.04 8.4 0.18 6.4 0.14
0.97 8 1.05 8.2 0.21 6.5 0.17
0.97 10 1.04 8.7 0.19 6.9 0.15
0.97 12 1.04 9.2 0.18 7.2 0.14

CV  = 0 CV  = 0.5
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3.8 WinBUGS code for Chapter 3 

 
The WinBUGS model for petrels is: 

model { 
   surv.j ~ dunif(0, surv.a) 
   lambda ~ dunif(lambda.lb, lambda.ub) 
 
   # Nuisance k, b determine fecundity 
   k ~ dunif(0,1) 
   b ~ dunif(0,surv.j) 
   fec <- k*b/2   
 
   # Numerical method for constraining to characteristic equation       
   zero.hat <-  pow(lambda, alpha - 1)*(surv.a - lambda) +  

pow(surv.j, alpha - 1) *k* b/2 
   zero.l <- zero.hat - delta 
   zero.u <- zero.hat + delta 
   zero ~ dunif(zero.l, zero.u) 
 
   # Calculate the population size multiplier per BP 
   BP.perBP <- 1 
   a.alpha.perBP <- 2*BP.perBP*(1 - surv.a/lambda)/k 
   NB.perBP <- 2*BP.perBP*(1 - k)/k 
     for (i in 1:(alpha-1)) { 
       juv.term[i] <- pow(lambda/surv.j, i) 
   } 
   JUV.perBP <- a.alpha.perBP*sum(juv.term[]) 
   N.perBP <- 2*BP.perBP + NB.perBP + JUV.perBP 
   N.adults.perBP <- 2*BP.perBP + NB.perBP 
 
   # Calculate the actual population estimate given BP.hat, CV.BP, and 
   # N.perBP; see Wade 1998, Equation 3, re-arranging terms 
   Zp ~ dnorm(0,1) 
   BP <- exp(log(BP.hat/sqrt(1+CV.BP*CV.BP)) + Zp*sqrt(log(1+CV.BP*CV.BP)))  
   JUV <- JUV.perBP*BP 
   N <- N.perBP*BP 
   N.adults <- N.adults.perBP*BP 
  } 
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The WinBUGS model for albatrosses is: 

model { 
   surv.j ~ dunif(0, surv.a) 
   lambda ~ dunif(lambda.lb, lambda.ub) 
 
   # Nuisance parameters b, eta, k determine fecundity; 
   # k is constrained because successful breeders become obligate non-breeders 
   b ~ dunif(0,surv.j) 
   eta ~ dunif(0,10000) 
   k <- 1/(1 + b + eta) 
   fec <- k*b/2    
      
   # Numerical method for constraining to characteristic equation  
   zero.hat <-  pow(lambda, alpha - 1)*(surv.a - lambda) +  

pow(surv.j, alpha - 1) *k* b/2 
   zero.l <- zero.hat - delta 
   zero.u <- zero.hat + delta 
   zero ~ dunif(zero.l, zero.u) 
 
   # Calculate the population size multiplier per BP 
   BP.perBP <- 1 
   a.alpha.perBP <- 2*BP.perBP*(1 - surv.a/lambda)/k 
   NB.perBP <- 2*BP.perBP*(1 - k)/k 
     for (i in 1:(alpha-1)) { 
       juv.term[i] <- pow(lambda/surv.j, i) 
   } 
   JUV.perBP <- a.alpha.perBP*sum(juv.term[]) 
   N.perBP <- 2*BP.perBP + NB.perBP + JUV.perBP 
   N.adults.perBP <- 2*BP.perBP + NB.perBP 
 
   # Calculate the actual population estimate given BP.hat, CV.BP, and 
   # N.perBP; see Wade 1998, Equation 3, re-arranging terms 
   Zp ~ dnorm(0,1) 
   BP <- exp(log(BP.hat/sqrt(1+CV.BP*CV.BP)) + Zp*sqrt(log(1+CV.BP*CV.BP)))  
   JUV <- JUV.perBP*BP 
   N <- N.perBP*BP 
   N.adults <- N.adults.perBP*BP 
  } 
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Chapter 4.  Estimating generation time for populations with 

age-specific fecundities and unknown juvenile survival 

 

In age-classified population models where all the parameters are known, the 

generation time and growth rate may be calculated in a straightforward manner.  For 

many populations, some parameters, such as juvenile survival, are difficult to estimate 

accurately.  For populations where all animals begin breeding at the same age with 

constant fecundity, generation time and maximum growth rate may be calculated 

knowing only age at first reproduction and adult survival (Niel and Lebreton 2005, 

Chapter 2).  This result is extended to populations with age-specific fecundities but 

unknown juvenile survival, using six bird species as examples.  If age-specific 

fecundities were unknown for these species, a constant-fecundity model with an ad 

hoc adjustment to age at first breeding provides similar estimates of generation time 

and maximum growth rate. 

 

Population models where all animals begin breeding at the same age are useful as 

long as the consequences of this simplification are understood.  A more realistic 

model for many species is to allow age-specific fecundities, accounting for animals 

beginning to breed at different ages.  Generation time is an important population 

parameter (Sarich and Wilson 1973, Martin and Palumbi 1993, Lebreton and Clobert 

1993, Gaillard et al. 2005, Gillooly et al. 2005, Lebreton 2005, Niel and Lebreton 

2005), and failure to account for age-specific fecundities may lead to substantial bias 

in its estimation.  However, the estimate of generation time is also dependent on adult 

survival ( s ) and the growth rate ( λ ), and bias in the estimate of either of these can 

lead to even greater bias in the estimate of generation time. 
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Niel and Lebreton (2005) and Gaillard et al. (2005) presented an estimate of 

generation time based only on age at first breeding, adult survival, and population 

growth rate, assuming fecundity and survival are constant from the onset of breeding.  

That is, in addition to assuming that all individuals within an age class behave 

similarly, it is assumed that all mature age classes are equivalent.  Importantly, 

estimates of juvenile survival – often difficult to estimate – are not present in the 

calculation of generation time.   

 

For many species (such as albatrosses and petrels), fecundity increases over a number 

of years (Schwarz and Arnason 2000), in contrast the assumption that mature age 

classes have constant fecundity in Niel and Lebreton (2005) and Gaillard et al. (2005).  

A more realistic model for many species still assumes that individuals within an age 

class behave similarly, but allows fecundity to vary between age classes.  The 

calculation of generation time for such a model is derived.  Similar to the formula 

from Lebreton (2005) and Gaillard et al. (2005), juvenile survival is not present in the 

calculation of generation time.  Further, survival from birth to the age of first breeding 

may also be calculated.  Finally, a modification to the formula for the maximum 

growth rate for a bird species (Niel and Lebreton 2005) is presented. 

 

4.1 Introduction 

Age-classified matrix models may be constructed to study a population when age-

specific breeding and survival rates are available (Leslie 1945, Caswell 2001).  One 

key area of study is the sensitivity of the population growth rate to the different 

demographic parameters in the model (Caswell 2001).  Generation time is related to 

the sensitivity of a population to changes in adult survival or fecundity (Lebreton and 
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Clobert 1993, Gaillard et al. 2005, Lebreton 2005).  In addition to studying 

sensitivities, generation time is an important metric in other contexts.  For example, 

the intrinsic maximum growth rate per generation is approximately constant (Fowler 

1988, Niel and Lebreton 2005), and generation time is also of interest in the study of 

evolution rates (Sarich and Wilson 1973, Martin and Palumbi 1993, Gillooly et al. 

2005). 

 

Various definitions of generation time exist (Leslie 1966, Caswell 2001, Niel and 

Lebreton 2005).  The mean generation length of a population is defined as 

1

i

i i

i

T il f λ
∞

−

=

=∑       (4.1) 

where 
1

i

i j

j

l s
=

= ∏  is the survival from birth to age i, 
is  is the survival from age 1i −  to 

i , if  is the annual fecundity at age i (mean number of young),  and λ  is the annual 

(or other appropriate time unit) growth rate of the population (Leslie 1966, Niel and 

Lebreton 2005, Gaillard et al. 2005).  In this context, fecundity equals the proportion 

of animals in each age class breeding times breeding success (live birth), times the 

number of young; 1s  is the survival rate from birth to age 1.  Mean generation length 

was chosen as a suitable measure of generation time as it is insensitive to senescence 

(Niel and Lebreton 2005), which is not accounted for in most population models.   

 

Niel and Lebreton (2005) used allometric relationships to estimate the optimal 

generation time ( opT T=  when conditions are optimal) and maximum growth rate 

( maxλ ), given only adult survival ( s ) and age at first breeding (α ).  In non-optimal 

situations, they provided an estimate of generation time given α , s , and the growth 
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rate (λ ).  Their results were based on a population model in which all animals have 

constant fecundity from age α , zero fecundity prior to α , and constant survival s  for 

some age i α≤  (hereafter, the constant-fecundity model).  Further, they assumed 

sλ > , which must always occur under optimal conditions for any viable species 

(otherwise max 1λ <  and the species would not exist) and would generally be true even 

in non-optimal situations.  These assumptions lead to the relationship  

                                        
s

T
s

α
λ

= +
−

          (4.2) 

while allometric relationships lead to the approximation 

maxlnop r TT a aλ ≈         (4.3) 

where ra  and Ta  are allometric coefficients associated with body weight and 

generation time.  Hence, under ideal conditions,  

1

max
max

exp r T

s
a a

s
λ α

λ

−  
 ≈ + 

−   

        (4.4) 

which can be easily solved using iterative methods.  Niel and Lebreton (2005) then 

studied populations of 13 bird species undergoing optimal or near optimal growth, and 

estimated that, for bird species, 1r Ta a ≈  (asymmetric 95% CI: 0.98 -  1.15).  

Maximum growth rates based on allometric relationships were compared to estimates 

from matrix model methods (Caswell 2001), and they found that that there was a high 

level of correlation between the two estimates ( 0.88R = , excluding two Passerine 

species, and based on additional approximations). 

 

While Niel and Lebreton’s (2005) results are mathematically elegant, the assumption 

of constant fecundity across age classes may not hold in practice.  Of the 13 species 

used in their paper, demographic data for 6 species (Table 4.1) does not support the 
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constant fecundity assumption.  Instead, while survival is constant (or nearly constant) 

prior to first breeding, fecundity increases over a number of age classes.  Thus, a more 

realistic model – the varying-fecundity model – assumes constant survival from the 

first age class with non-zero fecundity ( β ), but allows fecundity to increase over a 

number of age classes, becoming constant at some later age (γ ).  The constant-

fecundity model, with a fixed age at first breeding α , and the varying-fecundity 

model are equivalent if α β γ= = . 

 

Equation 4.1 may be used to estimate generation time even when the constant 

fecundity assumption fails to hold, with 

ˆ ˆ
s

T
s

α
λ

= +
−

         (4.5) 

A naive estimator using Equation 4.5 based on α̂ β=  can result in substantial bias 

compared to Equation 4.1; for the six species with varying fecundity, the magnitude 

of the bias was greater than one year for two species (Table 4.2).  However, if relative 

fecundities are known, Equation 4.2 may be modified and an exact calculation of T  is 

still possible.  If relative fecundities are unknown but still thought to increase with 

age, an ad hoc adjustment may be reasonable, with α̂ β ε= +  for some ε . 

 

4.2 Methods 

The estimate of generation time presented by Niel and Lebreton (2005) and Gaillard 

et al. (2005) is derived from the definition of mean generation length (T ; Equation 

4.1) and the Euler-Lotka equation 

1

1 i

i i

i

l f λ
∞

−

=

=∑       (4.6) 
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A similar approach to theirs may be used to calculate the generation time for the 

varying-fecundity model.  In the constant-fecundity model, the assumption of constant 

fecundity and adult survival means that if f=  and is s=  for i α≥ ; 0if =  for i α< ; 

and i

il l s α
α

−=  for i α≥ .  For the varying-fecundity model, the assumptions around 

fecundity are relaxed to allow breeding to begin at age β , becoming constant by age 

γ .  That is, if f=  for i γ≥ , 0if =  for i β< , and 0 if f< ≤  for iβ γ≤ ≤ , and 

survival ( s ) is assumed to be constant from at least age β , so i

il l s β
β

−=  for i β≥ .  In 

general, β γ< , but this definition allows the constant-fecundity model to be 

contained within the set of all varying-fecundity models, with β γ α= = .  Further, 

relative fecundities are defined as i ik f f= .   

 

 

Table 4.1.  Demographic parameters and matrix model estimates of the mean 

generation time (T ) and annual growth rate ( λ ) for six bird populations where 

fecundity increases over several age classes (data from Niel and Lebreton 2005). 

β γ s

Black-legged kittiwake Rissa tridactyla 5 6 0.90 0.90 9.177 1.120
Snow goose Anser caerulescens 2 4 0.83 0.41, 0.91 5.014 1.167
Barnacle goose Branta leucopsis 3 4 0.95 0.50 7.498 1.184
Great cormorant Phalacracorax carbo 2 8 0.90 0.26, 0.47, 0.72, 6.283 1.185

0.91, 0.97, 0.99 
Black-headed gull Larus ridibundus 2 3 0.90 0.43 6.291 1.138
White stork Ciconia ciconia 2 4 0.78 0.16, 0.40 4.981 1.210

Species
1, ,k kβ γ −… T λ
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4.2.1 Calculating generation time 

Thus, for the varying-fecundity model, 
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The two infinite series have well known solutions (i.e. see Purcell and Varberg 1987, 

or other elementary calculus texts) for 1s λ < , and the equation above reduces to 
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In a similar manner, the Euler-Lotka equation reduces to 
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Solving Equation 4.8 for fl β
β λ  and substituting into Equation 4.7 yields the desired 

result, 

( ) ( )

( ) ( )

1

1

1 1

1 1 1

i

i

i

i

i

i

s ss i k
s

T
ss k

βγ

β

βγ

β

β
λλ λ

λ λ

−−

=

−−

=

 
+ − − −  

−  
=

 
− − −  

 

∑

∑
   (4.9) 

 

While Equation 4.9 is not as elegant as Equation 4.2, it has the similar benefit of not 

requiring parameter estimates for pre-breeders, which are often difficult to estimate 

(Schwarz and Arnason 2000).  In particular, pre-breeding survival rates may be 

difficult to estimate, as juvenile age classes may not be present (as is the case for 

many seabirds), and juvenile survival and emigration rates are typically confounded.  
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The other demographic parameters may be estimated using capture-recapture 

techniques, and λ  may also be estimated from census data.  When the constant-

fecundity model is valid (i.e. β γ α= = ), Equation 4.9 reduces to Equation 4.2. 

 

4.2.2 Estimating λλλλmax 

For species in ideal conditions, Equations 4.3 and 4.9 are combined to estimate maxλ  

as 
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  (4.10) 

 

A species’ annual growth potential ( max max 1R λ= − ) may be used in calculations of 

harvest limits and rates (Wade 1998, Taylor 2000, Niel and Lebreton 2005, Chapter 

2).  The percentage bias in maxR  directly translates into a proportional bias in harvest 

rate (Chapter 2).  This suggests that a useful measure of different estimates of maxλ  is  

( )max max maxR̂ R Rπ = −      (4.11) 

where positive values of π  would translate into the proportional overharvest 

compared to the desired harvest.   
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4.3 Bias in generation time and λλλλmax caused by use of the constant-fecundity 

model 

For the six bird species where fecundity increases over a number of age classes, three 

approaches to estimating T  and maxλ  are considered.  The first approach (the naive 

approach) assumes constant fecundity with α̂ β=  used to estimate maxλ  and T  from 

Equations 4.4 and 4.5.  The second approach again uses the constant-fecundity model 

(Equations 4.4 and 4.5), but uses an ad hoc adjustment of α̂ β ε= + , where 

( )min 1, / 2ε β γ= +    was chosen as a reasonable but arbitrary adjustment (i.e. add 

half a year if 1γ β= +  and a whole year otherwise).  A less arbitrary adjustment may 

be mean age at first breeding (Schwarz and Arnason 2000, Schwarz and Stobo 2000), 

but data was unavailable for these species.  The third approach uses the varying-

fecundity model (Equations 4.9 and 4.10) to estimate T  and maxλ ; the calculation of 

T  will be exact (if the parameter values are exact) for all species except for great 

cormorant (Phalacracorax carbo) where survival rates continued to vary after the 

onset of breeding (Niel and Lebreton 2005).  The bias in the estimate of T  and maxλ  

is assessed, as well as π  (the proportional bias in maxR ), for the different approaches. 

 

For species with varying-fecundity, use of the constant-fecundity model results in 

substantial bias in the estimate of generation time (Table 4.2).  The naive estimate 

(α̂ β= ) results in a mean underestimate of generation time of 0.7 years ( ˆ 0.4σ = ) for 

the six species studied.  The ad hoc adjustment performs somewhat better, with a 

mean absolute bias of 0.2 years ( ˆ 0.2σ = ) for the six species.  The varying-fecundity 

model is exact for five of the species; for the great cormorant there is a small bias 

(0.02) in the estimate of generation time. 
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All six species studied were bird species in optimal or near optimal conditions, so the 

approximation from Equation 4.10 was used to estimate maxλ  and the proportional 

overharvest ( )max max maxR̂ R Rπ = −  (Table 4.3), where maxR   is based on the matrix 

model estimates (Table 4.1).  Differences in π  due to the estimation method (and 

controlling for species) were estimated using a two-way ANOVA with Tukey’s 

adjustment for multiple comparisons (Rice 1995); 95% confidence intervals for each 

comparison were equal to the observed difference 0.20± .  The naive estimate 

performs worse than either of the other two approaches, with a mean overestimate for 

maxR  of 0.36π = .  The other two approaches perform similarly to each other, with 

0.05π =  for the ad hoc adjustment to the constant-fecundity model, and 0.08π =  for 

the varying-fecundity model.  

 

 

Table 4.2. Bias in the estimate of mean generation time from the naive constant-

fecundity model (α̂ β= ), and the adjusted constant-fecundity model 

( ( )ˆ min 1, / 2α β β γ= + +   ), by using Equation 4.5, versus using the varying-

fecundity model (Equation 4.9). 

 

naive adjusted varying

Black-legged kittiwake -0.08 0.42 na
Snow goose -0.55 0.45 na
Barnacle goose -0.45 0.06 na
Great cormorant -1.18 -0.18 0.02
Black-headed gull -0.51 -0.01 na
White stork -1.17 -0.17 na
Mean bias -0.66 0.09 na

Species

Model
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Table 4.3.  Matrix model and allometric-based estimates of maxλ   ( max[MM]λ , 

max[DIM]λ ) for the naive constant-fecundity model (α̂ β= ; Equation 4.4), the 

adjusted constant-fecundity model ( ( )ˆ min 1, / 2α β β γ= + +   ; Equation 4.4), and the 

varying-fecundity model (Equation 4.10).  The resulting proportional overharvest (π ; 

Equation 4.11) from each allometric estimate is compared to the matrix model 

estimate. 

naive adjusted varying naive adjusted varying

Black-legged kittiwake 1.12 1.12 1.11 1.11 -0.04 -0.11 -0.05
Snow goose 1.17 1.31 1.21 1.25 0.83 0.28 0.49
Barnacle goose 1.18 1.13 1.11 1.11 -0.31 -0.39 -0.38
Great cormorant 1.18 1.24 1.17 1.16 0.32 -0.06 -0.11
Black-headed gull 1.14 1.24 1.20 1.20 0.74 0.44 0.44
White stork 1.21 1.34 1.24 1.23 0.64 0.13 0.08

Species

λ max [DIM] π
λ max [MM]

 

 

 

The six species studied were also used by Niel and Lebreton (2005) to develop the 

approximation maxln 1opT λ ≈ ; thus, the same species were used to develop methods 

and then test them for bias.  However, the level of approximation used (i.e. 1 

represents a convenient value between 0.98 and 1.15) should alleviate any problems 

that this may cause.  Further, the primary conclusion – that the naive estimate is not 

very good – is intuitively correct.  In the constant-fecundity model, an underestimate 

of the age at first breeding results in an overestimate of maxλ .  By using the naive 

estimate with the constant-fecundity model when the varying-fecundity model is 

correct, in essence the age at first breeding is underestimated and a positive bias in 

maxλ  could be expected. 
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4.3.1 Sensitivity of generation time and maximum growth rate to parameter 

estimates compared to model-based bias 

Estimates of age at first reproduction, adult survival, and the growth rate are required 

to estimate generation time even for the simplest calculations of generation time (i.e. 

Equation 4.2).  If no estimates are available and values arbitrarily chosen, then 

substantial bias in the estimate of generation time may result.  For the constant-

fecundity model,  age at first reproduction and adult survival are required to estimate 

the maximum growth rate.  For this model, underestimates of age at first reproduction 

or survival lead to overestimates in maxλ ; short and moderately-lived species growth 

rates are sensitive to α , while adult survival  is more important for longer-lived 

species (Chapter 2). 

 

A hypothetical bird species with a medium-length lifespan may have 3α = , 0.8s = , 

1.1λ = , and 5.7T =  (Equation 4.2).  Similar species such as the snow goose or white 

stork show that use of the naive estimator when there is variable fecundity can 

produce bias in excess of ±0.5 years in the estimate of T  (Table 4.2) and more than 

±0.05 years-1 in the estimate of maxλ  (Tables 4.1, 4.3), potentially leading to 

substantial overharvest ( 0.25π > , Table 4.3).   

 

To achieve a similar level of bias in T , bias in s  or λ  on the order of ±0.05 would be 

necessary; to achieve bias in excess of  ±0.05 years-1 in the estimate of maxλ , the bias 

in s  would need to be in excess of ±0.10.  Thus, if this species was better described 

by the variable-fecundity model and the naive estimator was used, bias in the 

estimates of generation time and maximum growth rate caused by use of the constant-

fecundity model may be substantially greater than error related to parameter 
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estimation.  For these species, the impact of the population model on the estimate of 

generation time can be substantial and should not be ignored. 

 

The results are somewhat different for a hypothetical, long-lived species (such as 

albatrosses) which may have 10α = , 0.96s = , and 1.02λ = , and 26T =  (Equation 

4.2).  If there is a +0.01 bias in either s  or a -0.01 bias in λ , then T̂  will be biased by 

3.4 years (bias in s ) or 3.2 years (bias in λ ).  The large change in generation time for 

a small change in s  or λ  is because ( )
2

T s sλ λ∂ ∂ = −  and ( )
2

T s sλ λ∂ ∂ = − − , so 

error in either s  or λ  will have a large impact on T  if s  and λ  are close to each 

other, as would be expected for long-lived species.  Translating this into potential 

overharvest, ˆ 0.04s s= −  results in a 25% increase in the estimate of maxR . 

 

If the species was better described by the variable-fecundity model, where some birds 

begin breeding at age 8 and all birds are adults by age 12 with 

( ) ( )8 12,..., 0.2,0.4,0.6,0.8,1k k = , then the generation time is  25.9T =  (Equation 4.9).  

The naive estimator ( ˆ 8α = ; 24T = , Equation 4.5) would then have a bias of -2 years, 

and the ad hoc estimator ( ˆ 9α = ; 25T = , Equation 4.5) would have a bias of -1 years.  

In this example, use of the naive estimator translates into a 15% increase in the 

estimate of maxR  compared to the varying-fecundity estimate, and the ad hoc 

adjustment translates into a 6% increase.  Hence, while the impact of using the naive 

or ad hoc estimators to calculate generation time and maxλ  is not trivial, parameter 

errors may have substantially more effect on the estimate of generation time and maxλ  

for long-lived species. 
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4.4 Discussion 

When the constant-fecundity assumption is invalid, substantial underestimation (>1 

year) in the estimate of generation time calculated from Equation 4.5 may occur if β  

is used as the age at first breeding.  If the relative fecundities are known, it is possible 

to calculate generation time using Equation 4.9.  If the relative fecundities are 

unknown, using Equation 4.9 is not an option, and using an ad hoc adjustment to α  

could be valuable.  The ad hoc approach chosen here – add half a year if β  and γ  

differ by only a year, and a whole year otherwise – worked reasonably well for these 

species; another likely choice would be mean age at first breeding.  For long-lived 

species, the level of bias due to the constant-fecundity population model may be small 

compared to potential bias due to λ  or s .  However, the effort required to implement 

Equations 4.5, 4.9, or 4.10 is small.  For moderately-lived species, model choice may 

have a greater effect and should not be ignored.  Further, using an ad hoc adjustment 

as in Equation 4.5 should suffice when relative fecundities are unknown.  

 

The allometric relationship developed by Niel and Lebreton (2005) may be used with 

the alternate estimators of generation time to estimate maxλ  for bird populations.  

However, in the approximation maxln 1opT λ ≈ , the right-hand side was chosen from an 

estimated range (0.98, 1.15) for the sake of simplicity (Niel and Lebreton 2005), and 

there would be additional variation beyond that for an individual population.  

However, there still appears to be a benefit from using either an ad hoc adjustment to 

the age at first breeding in Equation 4.4 or the varying-fecundity model (Equation 

4.10) compared to the naive estimator.  
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As would be expected, use of a more realistic population model results in more 

accurate calculations.  In general, these results suggest that a simple population model 

with an ad hoc adjustment to age at first breeding is nearly as good.  However, for 

species with varying fecundity rates, using the earliest age that some birds begin 

breeding as an estimate of the age that all birds begin breeding can result in 

substantial bias in the estimates of generation time and maximum growth rate.  

Ultimately, this could lead to substantial overharvest of a species if the maximum 

growth rate is used to set mortality limits. 
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Chapter 5.  Estimating age at first breeding for Gibson’s 

albatrosses using capture-recapture data   

 

The age at first breeding ( Bα ) is an important demographic parameter in determining 

maximum growth rate (Chapter 2), population size (Chapter 3), and generation time 

(Chapter 4).  After adult survival, it is one of the most important parameters in 

describing the population dynamics of albatrosses and other Procellariiformes, and a 

key parameter in calculating the potential biological removal (PBR; see Chapter 2) of 

birds.  Albatrosses do not begin breeding for many years (Table A.1), with some first 

breeding in their teens.  This means that even long-term studies of birds banded as 

chicks may not last long enough to observe the entire process of recruitment to 

breeding.  Estimates based only on observations (naive estimates) may be biased by 

imperfect observation, emigration, and study length, and modelling approaches should 

be used to estimate the mean age at first breeding ( ( )BE α ).  Because breeding 

albatrosses are easily detected, most of the difficulties with estimating age at first 

breeding are related to emigration and study length, rather than capture probabilities.    

While the effect of imperfect capture probabilities on recruitment is well understood, 

the use of naive estimates for albatrosses could be tempting because breeding birds 

are easily observed. 

 

This chapter is concerned with data where there is one study area, birds are banded as 

chicks and as adults, but age is known only for birds banded as chicks.  Some of these 

chicks will emigrate away from the study area, while birds from outside of the study 

area may immigrate to it.  The emigration could be due to natal dispersal (recruiting to 
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another colony), or to philopatric birds returning outside a limited study area.  The age 

of the immigrants is unknown, so the only birds available to estimate age at first 

breeding are those that are banded as chicks and return to the study area to breed.  

Because immigrants breed at an older age than non-immigrants (Frederiksen and 

Bregnballe 2001), estimates of age at first breeding based only on birds banded as 

chicks will be negatively biased.  Further, when the study duration is limited, 

extrapolation based on a parametric model may be required, making the model choice 

important but possibly untestable. 

 

Existing capture-recapture methods are available to estimate local recruitment; i.e. the 

age at first breeding for those chicks that will breed in the study area (Lebreton et al. 

1990, Clobert et al. 1994, Pradel 1996, Pradel et al. 1997, Pradel and Lebreton 1999, 

Schwarz and Arneson 2000), with some extension possible when there are multiple 

sites (Lebreton and Pradel 2002, Lebreton et al. 2003, Hénaux et al. 2007) or other 

auxiliary information is available.  Note that reverse-time models that condition on 

observed recruitment (Pradel 1996, Pradel et al. 1997) become naive estimates when 

the capture probability is 1.  While they address bias related to an imperfect 

observation process, bias due to emigration and study length remain.  Typically, these 

local age-specific breeding rates are estimated because confounding between other 

states leads to parameter redundancy (e.g. it is impossible to distinguish between birds 

outside of the study area, breeding or not, and a dead bird).  Here, a multistate model 

is used to model recruitment to the breeding population for known-age birds banded 

as chicks, observed at one location.  Parameter redundancy is addressed by making 

assumptions about survival that allow estimation of emigration rates.  
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In this chapter, problems with the naive estimate are discussed, showing the possible 

large negative bias caused by limited study length and emigration.  However, 

appropriate modelling combined with additional model assumptions can alleviate the 

bias when the additional assumptions are correct.  Simulated capture-recapture 

datasets are generated from such a model, and model-based estimates of the mean age 

at first reproduction are compared to analytic calculations.  Finally, data for Gibson’s 

albatrosses (Diomedea gibsoni; also listed as D. antipodensis gibsoni as per Burg and 

Croxall 2004) is used as a real example with more complex models.  In the interest of 

consistency and brevity, real data and simulated data are both for biennially-breeding 

birds, such as those in genus Diomedea; however, many of the results would be the 

same or similar for other Procellariiformes.   

 

Data was provided by K. Walker and G. Elliott (New Zealand Department of 

Conservation) for 1246N =  Gibson’s albatrosses banded as chicks beginning in 1993 

(but only 4 were banded prior to 1995; Table 5.1), with data collected through 2006.  

However, only 42 Gibson’s albatrosses were observed breeding.  With limited data, 

model assumptions about recruitment to breeding play an additional role in the 

estimate of ( )BE α .  In particular, the function chosen for recruitment to breeding for 

older age classes can not be compared to data.  Three recruitment functions are 

compared to determine the sensitivity of the estimated mean age at first breeding to 

the assumed functional form. 

 

5.1 Life-cycle stages 

The population structure of Procellariiformes may be reasonably described by a stage 

by age-based population model (Lebreton 2005) with three stages.  After fledging, 
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birds leave the colony and do not return for a multi-year period, which is termed the 

juvenile stage, beginning at age 1.  Birds recruit to the colony as pre-breeders over a 

period of several years, with some birds recruiting earlier and some recruiting later.  

After a period of prospecting often lasting several years, pre-breeders become adults, 

which incorporate several breeding states.  In this chapter, it is assumed that there is at 

least one year of prospecting prior to breeding.  It is expected that a proportion of the 

birds will emigrate from the birth site prior to breeding, but that emigration will be 

low after the onset of breeding (as in Lebreton et al. 2003). 

 

Biennial breeders (Diomedea) 

Albatrosses in Diomedea raise one chick at a time, and successful breeders do not 

breed the following year (except in unusual circumstances).  This leads to three 

different adult states.  Successful breeders become obligate non-breeders the 

following year.  Failed breeders may or may not breed again the following year.  In 

addition to obligate non-breeders, there are other non-breeders, which are those birds 

that could potentially breed (i.e. were not successful breeders the prior year) but do 

not.  The other non-breeders could be further classified as birds that are in the 

breeding population but are skipping a year (skippers) or birds that are not part of the 

breeding population (long-term non-breeders); in this context, the adult stage could be 

thought of as two distinct stages, comprising those birds that sometimes breed and 

those birds that do not. 

 

5.2 Age at first return and breeding 

The expected or mean age at first return and breeding for those birds that will 

eventually return or breed are defined as 
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( ) ( ) ( )

1 1

i i

R R R

i i

E iα π π
∞ ∞

= =

=∑ ∑      (5.1) 

and 

( ) ( ) ( )

1 1

i i

B B B

i i

E iα π π
∞ ∞

= =

=∑ ∑     (5.2) 

respectively, where ( )i
Rπ  is the probability that a bird returns to a colony at age i, and 

( )i
Bπ  is the probability that a bird first breeds at age i.  The probabilities that a bird first 

returns or breeds at age i amongst those that eventually return or breed are 

( ) ( ) ( )

1

Pr i j

R R R

j

iα π π
∞

=

= = ∑      (5.3) 

and 

( ) ( ) ( )

1

Pr i j

B B B

j

iα π π
∞

=

= = ∑     (5.4) 

 

The denominators in Equations 5.1 and 5.2 represent the proportion of banded chicks 

that will eventually return ( ( )

1

j

Rj
π

∞

=∑ ) or breed ( ( )

1

j

Bj
π

∞

=∑ ) in any location.  However, 

in most studies, death and emigration are confounded, which may make it impossible 

to get unbiased estimates of ( )i
Rπ  and ( )i

Bπ . 

 

5.2.1 Naive estimates 

A simple approach to estimating the mean age at first return ( ( )N

Rα ) and first breeding 

( ( )N

Bα ) is to examine the birds that have been observed returning or breeding, and to 

calculate naive estimates, 

( ) ( ) ( )

1 1

T T
N R R

R i i

i i

iN Nα
= =

=∑ ∑     (5.5) 
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and 

( ) ( ) ( )

1 1

T T
N B B

B i i

i i

iN Nα
= =

=∑ ∑     (5.6) 

where ( )R

iN  is the number of birds observed returning to the study area and ( )B

iN  is 

the number of birds observed breeding in the study area at age i, and T is the age of 

the oldest birds in the study. 

 

The capture probability for non-breeding birds that are present in the study area may 

be low in many years, while the limited study duration means that birds likely to 

begin breeding at a younger age are more likely to be observed breeding than those 

that will begin breeding at a later age.  This means that ( )N

Rα  is likely to be positively 

biased due to the imperfect capture probability, partially offset by a negative bias 

from the limited study period, while ( )N

Bα  may be positively or negatively biased, 

depending on capture probabilities, emigration rates, and study duration.  Capture-

recapture methods combined with appropriate population models that incorporate 

capture probabilities, study duration, and emigration may be used to avoid the bias. 

 

5.2.2 The effect of emigration 

Imperfect capture probabilities clearly result in positive biases in estimates of age at 

first return and breeding, and data truncation due to a limited study duration clearly 

causes negative bias.  The effect of unmodelled emigration is less obvious; depending 

on how it occurs, it may cause no bias, positive bias, or negative bias.  Emigration 

may occur at any stage, but juvenile emigration and pre-breeder emigration are the 

primary concerns for estimating age at first return and breeding. 
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Age at first return 

The probability that a bird returns to a colony at age i is a combination of surviving to 

age i (
1

i

i kk
l s

=
= ∏  where 

ks  is annual survival from age 1k −  to k ), not returning 

prior to age i, and finally returning at age i given survival and not returning earlier 

( ( )i
Rψ ), or 

( )

( )

( ) 1
( ) ( )

                         if 

1         if 

R

R

R

k

k R R

i i
R i k

i R R R

k k

l i k

l i k

ψ

π
ψ ψ

−

=

 =


= 
− >


∏

   (5.7) 

where 
Rk  is the earliest age at which birds return.  Unmodelled emigration will then 

cause a negative bias in ( )i
Rπ .  If the probability that a juvenile bird will emigrate from 

the study area (and not returning to the study area as a pre-breeder first) equals Jε , 

then apparent survival to age i is ( )1A

i i Jl l ε= − .  In this case, use of apparent survival 

instead of actual survival causes no bias in Equation 5.1, as 1 Jε−  may be factored out 

of both the numerator and denominator in Equation 5.1 when Equation 5.7 is used for 

( )i
Rψ .  Hence, juvenile emigration of this form does not affect the mean age at first 

return (as in Lebreton et al. 1990). 

 

If the probability that juveniles emigrate depend on the age that they will return to a 

colony, then ( )( )1A i

i i J
l l ε= − , and ( )1 i

Jε−  does not factor out in Equation 5.1.  In this 

case, the mean age at first return will be biased.  The direction of bias would depend 

on whether emigration was more likely for early-returning birds (positive bias) or 

late-returning birds (negative bias).  An example of this is when there is a yearly 

probability of emigration; then the longer that a bird takes to return, the more likely it 

is to emigrate. 
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Age at first breeding 

It was assumed that birds return at least one year prior to breeding, so the probability 

of breeding at age i is a combination of returning at age j i< , surviving as a pre-

breeder from age j to i ( |i jl ), not breeding prior to age i, and finally breeding at age i 

given survival and not breeding earlier ( ( )i
Bψ ).  Hence, for Ri k> , 

( ) ( ) ( )
11 1

( ) ( ) ( ) ( )
|Pr | Pr 1

R R

ii i
i i i k

B R B R R i j B B

j k j k k j

j j j lπ α π α α ψ ψ
−− −

= = =

 = = = = = − ∑ ∑ ∏  (5.8) 

 

Similar to age at first return, if the probability of emigration out of the study area 

(given recruitment to the study area) is a fixed value for all birds ( Pε ), then the use of 

apparent survival ( ( )| | 1A

i j i j Pl l ε= − ) versus actual survival will result in an unbiased 

estimate of age at first breeding, assuming juvenile emigration is also fixed.  

However, this may be biologically implausible.  While it may be reasonable to assume 

that chicks have a fixed probability of returning to their natal area given survival, pre-

breeders who have returned to their natal area may be more likely to emigrate the 

longer they are unable to secure a mate (as in Jenouvrier et al. 2008).  In this case, 

birds that will breed at a later age will emigrate at a higher rate, and the estimated age 

at first breeding will be negatively biased unless emigration is accounted for.   

 

Recommendations for incorporating emigration in a population model 

If emigration occurs, it either needs to be well-behaved, or there needs to be a way to 

separate survival and emigration rates.  Separating survival and emigration at the 

juvenile stage is especially difficult.  This suggests making the additional model 

assumption that the probability of juvenile emigration is Jε .  If the probability of 
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emigration is a constant value for all juvenile birds (rather than a yearly rate or age-

specific probability), then bias in the age at first breeding may be avoided.  For pre-

breeders, it may be reasonable to assume that the underlying survival probability ( Ps ) 

is the same as for adults, and that the observed differences are due to annual 

emigration (
Pε ).  Further, for birds with high nest-fidelity, there will be minimal 

emigration after breeding begins, and it should be possible to calculate an estimate of 

adult survival ( s ) that is minimally affected by emigration.  This suggests the 

following: 

 

(1) Assume a fixed level of juvenile emigration, so that apparent juvenile 

survival to age Rk  is ( )1
R R

A

k k Jl l ε= − ; if this assumption is valid, then ( )RE α  

and ( )Pr
R

iα =  are unbiased.  Further, assume that the underlying annual 

survival rate for birds aged 
Ri k>  equals adult survival s; this assumption is 

not strictly necessary for juveniles, but in practice, this or a similar constraint 

provides more realistic survival estimates; 

 

(2) Model separate pre-breeder and adult survival rates to account for annual 

emigration during pre-breeder stages, and assume that the difference is the 

emigration rate, so P Ps s ε= −  and ( )| | 1
i jA

i j i j Pl l ε
−

= − ; 

 

(3) In Equation 5.8, calculate ( )B

iπ  using the estimated adult survival rate in 

place of the pre-breeder survival rate to avoid the bias due to emigration (i.e. 

( )| |
ˆ ˆ ˆ1

i jA

i j i j Pl l ε
−

= −  where ˆ ˆ ˆ
P Ps sε = − ); 
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(4) Use the values from (3) and Equation 5.2 to estimate ( )BE α . 

 

5.3 Simple example 

The bias of the naive estimator depends on survival and capture probabilities, 

emigration, and the study duration, as well as the age-specific probability of breeding 

for the first time.  For purposes of illustration, consider a simple example where 

observation of breeding birds is perfect, no birds breed prior to age β , all surviving 

and non-emigrating birds return prior to age β , survival ( s ) is constant from age β , 

and the probability that a surviving, non-breeding bird age a β≥  breeds for the first 

time ( Bψ ) is constant.  Further, assume that the probability that a juvenile emigrates is 

Jε , while pre-breeders have yearly emigration rate Pε .  The assumption that Bψ  is 

constant is chosen for mathematical simplicity and implies that the mode of the 

distribution of age at first breeding equals β ; in the analysis of real data a more 

complex function is probably warranted.  With these model assumptions, for i β≥ , 

Equation 5.8 reduces to 

( )( ) 1
ii i

B B Bl s
ββ

βπ ψ ψ
−−= −  

The mean age at first breeding may be simplified to 

( )
1B

r
E

r
α β= +

−
         (5.9) 

by using geometric series, noting that ( ) ( )
2( )

1
1 1i

B Bi
i l r r rβπ ψ β

∞

=
 = − + −
 ∑ , and 

( )( )

1
1i

B Bi
l rβπ ψ

∞

=
= −∑ , where ( )1 Br s ψ= − .   
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5.3.1 Bias due to the limited study period 

If the naive estimator is used instead, with the population followed for 0T ≥  years 

beyond age β , then  

( ) ( )
1( ) 1 11 1

1 1
N T T

B

r r
E r r T

r r
α β β

−+ +  
= − + − + + +  

− −  
  (5.10) 

noting that  

( ) ( ) ( ) ( ) ( ){ }2 2( ) 1

1
1 1 1 1 1

T i T

B Bi
i l r r r r r r T r

β

βπ ψ β β
+ +

=
 = − + − − − + + + −
 ∑  and 

( ) ( )( ) 1

1
1 1

T i T

B Bi
l r r

β

βπ ψ
+ +

=
= − ⋅ −∑ .  The bias of the naive estimator for this simple 

example may be calculated by combining Equations 5.9 and 5.10, or by a graphical 

display as in Figure 5.1.  Depending on the underlying population structure, 

substantial bias can remain even for birds followed for many years after initial 

breeding. 

 

5.3.2 Bias due to emigration 

It was assumed that there are two sources of emigration, that juvenile emigration is a 

fixed value Jε  (so apparent survival to age β  is ( )1A

Jl lβ β ε= − ), and that pre-breeder 

emigration occurs at yearly rate Pε .  As noted in Section 5.2.2, this form of juvenile 

emigration will not effect the estimated age at first return or breeding.  However, if 

the existence of pre-breeder emigration is ignored, then survival will be negatively 

biased, with the amount of bias depending on how many breeding adults are included 

when estimating s .  In order to account for emigration during the pre-breeding phase, 

a reasonable approach to modelling this data would be to estimate separate pre-

breeder and breeder survival rates.  If the estimate of pre-breeder survival 

( P Ps s ε= − ) is used as the survival estimate in Equation 5.9, then the mean age at 
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first breeding that incorporates emigration ( ( ) ( )B
E

ε α ) will be a negatively biased 

estimate of ( )BE α , i.e., 

( ) ( )
( )( )

( )( )
( )

1

1 1
P B

B B

P B

s
E E

s

ε ε ψ
α β α

ε ψ

− −
= + <

− − −
   (5.11) 
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Figure 5.1.  Estimated age at first reproduction (black line) using the naive estimator 

(Equation 5.6) for birds followed T  years beyond the first age at which some birds 

reproduce ( 7β = ).  Observation of breeding birds was assumed to be perfect, no birds 

breed prior to age β , survival ( 0.95s = ) is constant from age a β≥ , and the 

probability that a surviving, non-breeding bird age a β≥  breeds for the first time was 

0.2Bψ = .  The true age at first reproduction is given by the blue line, while the points 

are based on simulations of 1000 living birds aged 1β − . 
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5.4 Modelling approach using capture-recapture data 

The estimated mean age at first breeding (
Bα ) will be biased if the naive estimator 

( ( )N

Bα ) is used.  Instead, a model-based approach that accounts for the limited study 

duration, emigration, and the imperfect observation process should be used to estimate 

the age at first breeding.  However, in many practical cases, limited data may be 

available to select an appropriate population model, and the model used may have a 

substantial effect on Bα  and the distribution of Bα .  In these circumstances, it is 

important to determine the sensitivity of the estimated age at first breeding to different 

models. 

 

Data for these species generally comprises two types of information: capture data 

(was a previously banded bird observed in a given year or not) and state data (i.e. was 

the bird observed breeding or in some other state) for each banded bird, each year.  In 

some cases, other data may also be available, such as recovery of dead birds or 

knowledge of breeding success (b).  Since birds are not always re-sighted (for 

example, at-sea juveniles have a re-sighting probability of 0, while obligate non-

breeders often have very low re-sighting probabilities), in many years the state is 

unknown and must be estimated.   

 

Multi-state capture-recapture methods (Brownie et al. 1993) may be employed for this 

data.  These methods allow the estimation of survival probabilities (s; these may also 

depend on other covariates, such as year or gender), transition probabilities (ψ ) 

between different states given survival, and re-sighting probabilities (p).  One 

approach to analysing this data is to treat unobserved states (as well as other latent 
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variables) as missing values that require estimation, which naturally lends itself to a 

Markov-chain Monte Carlo (MCMC) approach (Dupuis 1995).  

 

For these analyses, birds are classified as belonging to one of five possible states 

(breeder (1), obligate non-breeder (2), other non-breeder/pre-breeder (3), juvenile (4), 

or dead (5)).  Other non-breeders and pre-breeders are combined into one observable 

state (i.e. they are indistinguishable to an observer), separated by an unobserved latent 

variable ( 1I =  if the bird has ever bred, 0 otherwise).  The probability of moving 

from one state to another is described by a transition probability matrix (TPM), where 

transition probabilities may depend on covariates such as age, gender, or year.  The i, 

jth entry of the TPM represents the probability of moving from state i in year t to state 

j in year t + 1. 

 

When there are competing models, various information criterion exist (AIC, BIC, 

QAIC, DIC) exist that require calculation of the deviance for model comparison or 

calculation of model weights.  State and capture data can be used to calculate the 

deviance, 2 logD L= − , where the likelihood, conditional on the initial states, is 

calculated as  

( )( )( ), 1 , , ,

1

, , ,
1

1 1
i t i t i t i t

i

B T

S S S i t S i t

i t

L p C p Cψ
−

+=

= + − −∏∏  

where  

B  is the number of birds in the study, 

T  is the length of the study, 

it  is the year the ith bird was banded, 

,i tS  is the state of the ith bird in the tth year (observed or unobserved),  

, 1 ,,i t i tS S
ψ

−
is the probability of transitioning from , 1i tS −  to ,i tS , 
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,i tS
p  is the probability of observing state ,i tS , 

,i tC  is an indicator variable equal to 1 if the ith bird is observed in the tth year, 

and 0 otherwise. 

 

5.5 Simulated data 

Capture-recapture data for albatrosses was simulated and a Bayesian capture-

recapture model was fitted to measure any bias in the estimated mean age at first 

breeding or other model parameters due to emigration and study duration, when the 

generating and estimating model agree.  This simulation study reflects the type of data 

that may be available for a study of albatrosses, although simplified to some extent for 

illustrative purposes.  An important aspect of the simulated data is that capture 

probabilities of breeding birds was high (0.95), reflecting a situation where the naive 

estimate of age at first breeding could be expected to perform reasonably well. 

 

Data were simulated for 500 birds banded as chicks and 500 birds banded as breeding 

adults, with the study duration equal to 12 years.  Simulations were computer 

intensive, limiting the practical number of replicates that could be used to estimate the 

bias for the kth parameter (
k

Bζ ).  The number of simulations ( 25R = ) was designed 

to achieve a standard error in ˆ
B

Bα of approximately 0.1, based on a standard error of 

approximately 0.5 from one initial simulation, with estimates from each simulation 

combined to estimate 

25

,
1

1 ˆˆ
25k k r k

r

Bζ ζ ζ
=

= −∑      (5.12) 

where kζ  is the kth parameter and ,
ˆ

k rζ  is its estimate from the rth simulation; t-based 

confidence intervals were constructed.  Bias in the estimated mean age at first 
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breeding was of primary interest, but other parameters were monitored as well.  

Analyses were run using the OpenBUGS variant (Thomas et al. 2006, version 3.0.3) 

of BUGS (Bayesian analysis using Gibbs sampling, Lunn et al. 2000), with additional 

analyses performed in R (R Development Core Team 2008, version 2.7.0) using the 

R2WinBUGS library (Sturtz et al. 2005). 

 

Parameter values were similar to those obtained in the analyses of Gibson’s 

albatrosses and Antipodean albatrosses (Diomedea antipodensis) (Fletcher et al. 

2008), except in those analyses the estimated survival rates for juveniles and pre-

breeders were confounded with emigration, and a different model was used for 

recruitment to breeding.  For the simulated data, survival from banding to age 2 was 

2 0.90s = , assuming banding occurred near age 1 prior to leaving the colony 

(otherwise, this would be 2 0.90l = ).  Although banding may occur earlier, it is 

assumed that banded chicks who die prior to leaving the colony would be recorded as 

a failed breeding attempt, so the chicks will have effectively reached age 1.  Survival 

from age 2 was 0.95s = .  The probability that a bird banded as a chick would 

emigrate prior to returning to the colony (given survival) was 0.2Jε = , so apparent 

survival from banding to returning to the colony at age i was 

( )2 2
2 21A A i i

i Jl l s s sε− −= = − .  Pre-breeders had an annual emigration rate of 0.05Pε = , 

so apparent pre-breeder survival was 0.90P Ps s ε= − = .  Age-specific recruitment 

probability to the colony was given by a logistic function, ( )( )
0 1logit a

R
aψ β β= +  with 

0 2.5β = −  and 1 1β =  for birds aged 3a ≥ , with ( ) 0a

Rψ =  otherwise.  The probability 

that a living pre-breeder aged 8a ≥  breeds for the first time was assumed to be a 
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constant value; the age-specific probability of breeding for the first time was 

( ) 0.1a

Bψ =  for 8a ≥  and ( ) 0a

Bψ =  otherwise.   

Adult birds (i.e. those that have already bred) had parameter values 0.6b = ,  0.6v = , 

2,1 0.8ψ = , and ( )
3,1 0.5Aψ = , where, given survival, 

b  is breeding success (the probability of a surviving adult successfully raising 

a chick to age 1), 

v  is the probability that a failed breeder attempts to breed the following year, 

2,1ψ  is the probability an obligate non-breeder attempts to breed the following 

year, and 

( )
3,1

Aψ  is the probability an adult other non-breeder attempts to breed the 

following year. 

 

It was assumed that at-sea juveniles, obligate non-breeders, dead birds, and birds that 

have emigrated could not be re-sighted.  Among living birds that have not emigrated, 

breeding adults had re-sighting probability 1 0.95p = , non-breeding adults had re-

sighting probability ( )1
3 0.6I

p
=

= , and pre-breeders had re-sighting probability 

( )0
3 0.2I

p
=

= .  Further, it was assumed that an observer could not distinguish between a 

pre-breeder and an adult non-breeder, but that adult breeders could be correctly 

identified.  Thus, the breeding status of a bird (which is unknown) determines 

transition probabilities, and this latent variable must also be estimated during the 

modelling process.   

 

Observations of birds depend on emigration in addition to their actual states.  For 

example, in order for a bird to have any chance of being observed in state (1), it must 

be breeding and not have emigrated.  The ‘local survival’ TPM then depends on 

breeding status and age with apparent survival rates adjusted for emigration, so 
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( ) ( )( )
( )

( )

( )

2,1 2,1

( 1, ) ( ) ( 1, ) ( ) ( )( , )
3,1 3 3,1 3 3

( 1) ( 1) ( 1) ( 1) ( 1)

1 1 1 0 1

0 1 0 1

0 1 0 1

0 0 1 1

0 0 0 0 1

a I I a I I Ia I

a a a a a

R J R J J

b v s b s b v s s

s s s

s s sTPM

s s s

ψ ψ

ψ ψ

ψ ψ

+ +

+ + + + +

 − − − −
 

− − 
 

− −=  
 

− − 
 
 

  (5.13)  

where  

I  is a breeding status indicator variable, equal to 1 for adults, 0 otherwise, 

( 1)
3

I
s s

= =  and ( 0)
3

I

Ps s ε= = − ,  

( )(2)
2 1J Js s ε= −  and ( )a

Js s=  for 2a > ; and 

( , 1) ( )
3,1 3,1

a I Aψ ψ= =  for all a, and ( , 0) ( )
3,1

a I a

Bψ ψ= = . 

 

Although the TPM is based on local survival (and 2s  and 
Jε  are confounded), 

emigration is suitably well-behaved and good estimates of ( )RE α  and ( )BE α  should 

still be obtainable.  After each set of state and capture data was simulated, a Bayesian 

capture-recapture model was fitted based on the TPM in Equation 5.13.  Hence, for 

the ith bird, the state of the bird in the tth year ( tS ) follows a categorical distribution 

with probabilities given by the row corresponding to the prior year’s state, breeding 

status, and age, i.e. 

( )( )1 1

1

,
,.~ Categorical t t

t

a I

t SS TPM − −

−
 

while the capture data ( tC ) follows a Bernoulli distribution with the probability 

determined by the current year’s state and breeding status, i.e. 

( )( )~ Bernoulli t

t

I

t SC p  

  

Uniform(0,1) priors were used for all transition parameters and non-zero capture 

probabilities, except the following: 
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 ( )~ Uniform 0,P sε , 

 ( )0 ~ Normal 0, 10β σ = , and 

 ( )1 1~ Normal 0, 10 | 0β σ β= >  (i.e. from a truncated-Normal distribution) 

 

5.5.1 Population projections from simplified models 

In addition to estimating age at first breeding, the TPM can be modified for matrix 

model population projections and estimations of asymptotic growth rates and other 

derived parameters (Caswell 2001). The projection matrix �  is formed by combining 

age- and state-specific fecundity with the transpose of TPM , with entries 

corresponding to the death state removed (Lebreton 2005).  Entries in TPM may also 

be modified to adjust for emigration or immigration.  Combined with the number of 

living birds of age a in state i during the tth year ( ( )
,
a

i tx ) and the overall age-by-state 

vector for year t ( ( ) ( ) ( ) ( ) ( )
1, 2, 3, 4,

T
a a a a a

t t t t tx x x x =  x ), the expected number of birds of 

age 1a +  in each state the following year is ( 1) ( )
1

a a

t t

+
+ =x �x .   Further, the full projection 

matrix may be used to estimate a simpler, age-based projection matrix, 
a

� . 

 

Given survival and transition estimates, it is straightforward to calculate the 

proportion of birds of each age class in each state, and therefore the proportion 

breeding, and ultimately the age-specific fecundity rate ( ( )a
f ).  In this context, age-

specific fecundity is the expected number of chicks surviving to age 1 per bird age of 

a.  Assuming a stable population structure, it may be calculated from an initial 

number of juveniles, (1)
4x .  This is projected forwards where the number of 2-year-old 

juveniles the next year is, 

 (2) (1)
4 2 4x s x= , 
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while, for older age classes, the number of juveniles is based on those surviving and 

not returning to the colony, i.e. 

 ( )( ) ( 1) ( )
4 4 1a a a

R
x sx ψ−= − . 

 

The number of pre-breeders is comprised of recently returned juveniles and pre-

breeders that do not become breeders, so 

 ( )( )( , 0) ( 1) ( ) ( 1, 0) ( )
3 4 3 1a I a a a I a

R Bx s x xψ ψ= − − == + − . 

 

For adults, the number of breeders is composed of new breeders, last year’s failed 

breeders attempting to breed again, last year’s obligate non-breeders returning to 

breed, and other non-breeders returning to breed, so 

 ( )( )( ) ( ) ( 1, 0) ( 1) ( 1) ( 1, 1) ( )
1 3 1 2 2,1 3 3,11a a a I a a a I A

B
x s x x b v x xψ ψ ψ− = − − − == + − + + . 

 

Similarly, the number of obligate non-breeders is 

 ( ) ( 1)
2 1
a a

x sx b
−= , 

and the number of other non-breeders is 

 ( )( ) ( ) ( )( )( ) ( 1) ( 1) ( 1, 1) ( )
3 1 2 2,1 3 3,11 1 1 1a a a a I A

x s x b v x xψ ψ− − − == − − + − + − . 

 

The proportion of birds of each age-class that are breeding is ( ) ( ) ( )
1

a a a
k x x=  and age-

specific fecundity is ( )( ) ( ) ( )
1 2a a a

f bx x= , where ( ) ( )a a
x = x .  Emigration- and 

immigration-adjusted survival rates are needed in order to make projections for an 

entire population.  If ( ) ( 1)a a
k k a n

+≈ ∀ ≥ , and 10n =  (say), the age-adjusted 

projection matrix is 
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(8) (9) (10 )

2

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

a

f f f

l

s

s

s

s s

+ 
 
 
 
 

=  
 
 
 
 
 

� ⋯

⋱

⋱

⋱

⋱

⋱

⋯

 

 

One difficulty with this simplification is the need for an emigration-adjusted estimate 

of juvenile survival.  When this is unavailable, fecundity rates may still be estimated 

by starting the population projection at age 2, or, if nearly all birds are pre-breeders by 

age 7, the population projection may be started at age 8, with (8) (8) (8)
1 Bx xψ= , 

( )(8, 0) (8) (8)
3 1I

B
x xψ= = −  and all other states set to 0. 

 

The growth rate λ  is then estimated by the dominant eigenvalue of 
a

� , while the 

associated eigenvector is used to calculate the stable age-distribution ( ( )a
w ).  Together 

with ( )a
k , the population size may then be calculated from the number of breeding 

pairs, 

( ) ( )

8

2
n a a

a

B
N

w k
=

=
∑

 

 

Uncertainty may be incorporated in these estimates using numerous methods: 

sampling from the posterior distribution, sampling from normal approximations to the 

posterior, or using the delta method (Rice 1995).  Due to assumptions required about 

emigration, and the small differences expected between the different methods, the 

simplest approach is justified. 
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5.6 Analyses of Gibson’s albatrosses 

Gibson’s albatrosses are biennial breeders, with approximately 5,800 breeding pairs 

per annum (Walker and Elliott 1999).  Earlier studies suggested survival rates of 

approximately 0.97 for males and 0.95 for females, breeding begins at 10-12 years of 

age, and breeding success ranges between 0.5 and 0.7 (Walker and Elliott 1999, 

Elliott and Walker 2005, Fletcher et al. 2008).  The total population was roughly 

estimated at 40,000 (Gales 1998). However, given the stable population (Elliott and 

Walker 2005), the methods described in Chapter 3 suggest that 40,000 individuals 

would be at the lower end of reasonable estimates, and that 60,000 individuals is a 

better estimate of the total population size.  They breed in the Auckland Islands, 

primarily on Adams Island where the study area is located (Walker and Elliot 2002).  

This species is currently listed as vulnerable due to limited breeding locations 

(BirdLife International 2009).  

 

Data was available for 1258 birds observed as breeders (1212 banded as adults and 42 

as chicks).  Banding of adults began in 1991 and banding of chicks began in 1993 

(with increased banding effort from 1995), and data was available through 2006. After 

banding, birds were recorded as being observed or not in a given year; if observed, 

their reproductive state was assessed (i.e. breeding, not breeding, etc.).  Further, for 

breeding birds, their reproductive success was also assessed, and gender data was 

available for most birds banded as adults (see Walker and Elliott 1999 for details).  Of 

the birds banded as chicks, 1094 were included in the analysis, as the remainder were 

assumed to be too young to return to the colony.  Of these, 402 were observed to have 

returned to the colony, and 42 were observed breeding (Table 5.1).  The youngest 

observed pre-breeder was 3 years old, while the youngest observed breeder was eight.   
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Due to the high nest-fidelity of the albatrosses studied (Walker and Elliott 1999), 

birds observed breeding in the study area are unlikely to emigrate, and observed 

survival of birds banded as adults should represent a value close to true survival, 

although a few birds at the edge of the study area are known to have moved their nest 

to outside of the study area (Elliott and Walker 2005).  For birds banded as chicks, 

emigration out of the study area may happen either at the juvenile stage or during the 

pre-breeder prospecting phase, and survival is confounded with emigration.  While the 

reproductive state of a bird was assessed when re-sighted, the stage of the bird was 

not.  In particular, a bird observed in the study area prior to being observed breeding 

may be a pre-breeder, a skipping breeder, or a long-term non-breeder.  This suggests 

that a TPM similar to Equation 5.13 would be appropriate for this data, with 

modifications as described below.   

 

Table 5.1.  Number of chicks banded ( N ) for each cohort in the study area, the 

number observed to have returned to the study area ( RN ), the cohort minimum age of 

first observed return ( minR ), the number observed to have bred in the study area 

( BN ), the cohort minimum age of first observed breeding ( minB ), and the number 

first observed breeding by age. 

Year N N R
 (%) minR N B

 (%) minB
8 9 10 11 12 13 14

1993 2 0  (0) na 0  (0) na 0 0 0 0 0 0 0
1994 2 2  (100) 7 1  (50) 13 0 0 0 0 0 1
1995 38 20  (53) 4 8  (21) 9 0 2 4 1 1
1996 121 70  (58) 5 23  (19) 8 3 12 7 1
1997 121 64  (53) 4 7  (6) 8 2 5 0
1998 144 80  (56) 5 3  (2) 8 3 0
1999 135 68  (50) 4 0  (0) na 0
2000 122 71  (58) 3 0  (0) na
2001 58 14  (24) 4 0  (0) na
2002 133 13  (10) 3 0  (0) na
2003 107 0  (0) na 0  (0) na
2004 111 0  (0) na 0  (0) na

Age of first observed breedingObserved in study area Observed breedingCohort
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5.6.1 Capture probabilities 

Capture probabilities were treated as year-, state-, and gender-specific.  It was 

assumed that juveniles, dead birds, and those that have emigrated could not be 

observed, so their capture probability was set to 0.  Adult birds were first banded in 

1991, and the study area was not visited in 1992 (Walker and Elliott 1999), so the first 

year that adult birds could be observed was 1993.  Banding of chicks began in 1993, 

and the age of first observed return was ˆ 3Rk = .  It was therefore assumed that no 

birds return prior to age 3, so the first year that pre-breeders could be observed was 

1995.  It was also assumed that prospecting birds and skipping adults (other non-

breeders) could have different capture probabilities which incorporate short-term, 

temporary emigration.  In studies where long-term temporary emigration may be a 

factor, it should be explicitly accounted for in the population model (Jenouvrier et al. 

2008).  Uniform priors were assigned for the observable states for each gender and 

year (and breeding status for birds in state (3)), as 

 ( )( , , , ) ~ Uniform 0,1s g I yp  

for { }1, 2,3s ∈ , { }0,1g ∈ , { }0,1| 3I s∈ =  and 1I =  otherwise, and y from 1993 to 

2006 for adults ( 1I = ), and y from 1996 to 2006 for pre-breeders ( 0I = , 3s = ).   

 

5.6.2 Adult survival and transition parameters 

In Fletcher et al. (2008), year-, state-, and gender-specific parameter estimates were 

calculated for adult survival, transition, and capture probabilities; state and temporal 

differences in those estimates were of interest.  Generally, the amount of year-, state-, 

and gender-variation was limited (Fletcher et al. 2008).  The limited numbers of 

chicks that had returned to breed, combined with the unobservable nature of the 

juvenile stage, make it unlikely that temporal variation in recruitment patterns could 
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be adequately explored.  This suggests that little insight into recruitment would be 

gained by including temporal differences in adult transition parameters or survival 

rates.  Further, differences in survival rates amongst adults in different states were 

relatively small (Fletcher et al. 2008), suggesting that the use of a constant survival 

rate would not be unreasonable.  However, there were substantial differences in 

capture probabilities over time, state, and gender, so they were not simplified.   

 

All nesting birds in the study area were banded if possible (Walker and Elliott 1999), 

which means that data was generally collected for both birds in a pair.  Because of 

this, reproductive success data is essentially recorded twice.  Similarly, because 

albatrosses have high mate fidelity, pairs will generally make the same state 

transitions, so estimates of gender-specific transition parameters will also be 

correlated.  Treating the data as independent and pooling it together would result in 

overly precise parameter estimates.  In order to avoid this problem, gender-specific 

estimates for breeding success and other adult transition parameters were estimated.  

Survival for birds in a pair was treated as independent, so adult survival was treated as 

a constant value for all birds. 

 

These model simplifications are not meant to suggest that state and time effects are 

not important.  Rather, they are designed to simplify the model in areas where 

simplification is deemed to have little impact on parameters of interest (i.e. age at first 

return and breeding), and they also reflect the available data.  In particular, the 

assumption that all adults, regardless of gender, year, state or individual quality, have 

the same underlying survival rate is patently false; however, it is a useful anchor for 
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estimating emigration rates and then adjusting the estimated age at first breeding for 

emigration. 

 

The prior distribution for adult survival incorporated knowledge about other 

Procellariiformes (Appendix A), and was assumed to be at least 0.8, so,  

 ( )~ Uniform 0.8,1s  

 

Little was known in advance about gender-specific transition probabilities, and so 

non-informative priors were used for the probabilities of gender-specific breeding 

success, that a failed breeder would attempt to breed the following year, that an 

obligate non-breeder would attempt to breed the following year, and that an adult 

other non-breeder would attempt to breed the following year, so 

 ( ) ~ Uniform(0,1)g
b , 

 ( ) ~ Uniform(0,1)g
v , 

 ( )
2,1 ~ Uniform(0,1)gψ , and 

 ( , )
3,1 ~ Uniform(0,1)g Aψ . 

 

5.6.3 Juvenile survival and transition probabilities 

Gender 

For birds banded as chicks, gender was unknown.  However, because adult transition 

probabilities depend on gender, gender needed to be estimated.  An even gender 

distribution for chicks was assumed, and the gender of the ith bird was given a prior 

distribution of 

 ( )( ) ~ Bernoulli 0.5i
g  

where ( ) 1i
g =  indicates a female bird. 
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Juvenile and pre-breeder survival and emigration 

Juveniles were assumed to have survival rate 2s  from banding to age 2, and that this 

rate was less than adult survival.  After age 2, it was assumed that all birds have the 

same survival rate ( s ); this combined survival rate was used as a means of adjusting 

for emigration when calculating mean age at first breeding.  While juveniles may have 

lower (or different) survival rates than older birds, it is difficult to measure this with 

any accuracy due to the combination of emigration and the unobservable nature of at-

sea juveniles.  Given the assumption of constant survival from age 2, apparent 

survival from banding to age 2 ( ( )2 2 1A

Jl s ε= − ) may be estimated with reasonable 

precision.  Also, due to the limited study period and the inability to observe at-sea 

juveniles, apparent survival to age 2 was also fixed across time.  Hence, the prior 

distribution assigned to apparent survival from banding to age 2 (survival less 

emigration) was, 

 ( )2 ~ Uniform 0,A
s s  

 

When juveniles returned to the colony as pre-breeders, it was impossible to 

distinguish between them and adult other non-breeders without a modelling approach 

or an ad-hoc decision rule.  This distinction is important because, although it was 

assumed that there are no differences in baseline survival, pre-breeders may still be 

involved in emigration, which is confounded with estimates of survival.  Hence, it is 

likely that apparent pre-breeder survival would be lower than adult survival. 

 

In general, a modelling approach that treats breeding status (i.e. has the bird ever bred 

or not) as an unknown but estimable variable allows pre-breeders to be distinguished 
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from adult other non-breeders.   Thus, apparent survival ( ( )
3

I
s ) for birds identified as 

‘other non-breeders’ was defined as 

( )
3

0

1
PI

s I
s

s I

=
= 

=
 

Again, because skills relevant to survival are likely to have been learned by the age a 

bird returns to the colony, the difference between adult survival and Ps  is likely due to 

emigration out of the study area, and it was assumed that P Ps s ε= − .  Since 

0 Ps s≤ ≤ , the prior distribution for pre-breeder emigration was,  

( )~ Uniform 0,P sε  

 

Age at first return 

After a period of several years away from the colony, birds may return to the colony 

as pre-breeders.  The minimum age of first return is Rk , and is estimated as the 

earliest age at which a bird in the data was observed to return.  Thus, the age at first 

return to the colony was a function of age (a) and ˆ 3Rk = .  Assuming that all birds will 

eventually return to a colony, the probability that a living bird returns at age a ( ( )a

Rψ ) 

is modelled as 

( ) ( )( )
0 1

( )

logit 3  if 3

0 if 3

a

R

a

R

a a

a

ψ β β

ψ

= + − ≥

= <
         (5.14) 

 

That is, the probability a bird returns to a colony that has not yet returned and is age a 

is modelled as a simple logistic function, provided the bird has reached the minimum 

age at first return.  As in Sec. (5.5), ( )0 ~ Normal 0, 10β σ = , and 

( )1 1~ Normal 0, 10 | 0β σ β= >  priors were assigned, noting that these are non-
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informative on the logit scale, but with the constraint that 1 0β > , forcing all living, 

non-emigrating birds to eventually return to the colony as pre-breeders.  

 

5.6.4 Models for recruitment to breeding 

With limited numbers of birds observed breeding, the recruitment to breeding model 

potentially will have a large influence on the estimated age at first breeding.  Three 

different parametric models are used to highlight this.  Parametric models were 

chosen because the limited study duration requires projection of recruitment 

probabilities to age classes beyond those observed.  Because of this, the biological 

plausibility of models for future age classes must be considered.  The first model 

assumes a constant probability of recruitment for all surviving pre-breeders that have 

not yet bred.  This model has the benefit of simplicity, but may be too simple.  The 

second model assumes a logistic function, where the probability that a bird breeds for 

the first time increases with age to age 10, and then remains constant, so that all birds 

will become breeders if they live long enough.  The third model also assumes a 

logistic function, but the probability of breeding only increases with age until age 10 

and then decreases, so that birds which do not begin breeding by a certain age become 

long-term non-breeders.  Thus, for pre-breeders ( 3s = , 0I = ) transitioning to 

breeding ( 1s = , 1I = ), the probability of that transition ( ( )a

Bψ ) will be one of three 

different functions of age. 

 

The effect of the functional form of ( )a

Bψ  on the estimated age at first breeding will be 

assessed.  In particular, because of the limited study duration, the ability to select an 

appropriate functional form is limited.  The deviance can be used to assess different 

models for the observed state and capture data, but not for projected age classes.  It is 
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therefore important to understand what impact the selected form will have on the 

estimated age at first breeding.   

 

Model 1: Constant recruitment probability 

In this model, it was assumed that the probability that a pre-breeders breeds for the 

first time is constant beyond minimum age at first reproduction ( Bk ), estimated as the 

minimum age a bird banded as a chick was observed to breed in the data, ˆ 8Bk = , so 

( )
(8 )

0       if 8

 if 8
a

B

B

a

a
ψ

ψ +

<
= 

≥
                      (5.15) 

A ( )Uniform 0,1  prior was used for (8 )
Bψ + . 

 

Model 2: Recruitment probability increases with age 

In this model, it was assumed that pre-breeders have an increasing probability of 

breeding as they increase in age, eventually reaching an maximum rate, assumed to 

occur at age 10.  Hence, transition rates for younger birds ( ( )a

Bψ ) that also depended 

on age (a) and a minimum age at first reproduction ( ˆ 8Bk = ), were modelled as, 

( )( )
( )

( ) 1
0 1

(10 ) 1
0 1

0                                        if 8

logit 8        if 8 10

logit 2    if 10

a

B

B

a

a a

a

ψ θ θ

ψ θ θ

−

+ −

 <


= + − ≤ <


= + ≥

  (5.16) 

As with age at first return, non-informative (on the logit scale) priors were assigned, 

with the restriction that 1 0θ > , so ( )0 ~ Normal 0, 10θ σ = , and 

( )1 1~ Normal 0, 10 | 0θ σ θ= > . 
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Model 3: Recruitment probability increases with age for several years, then decreases 

An alternative assumption to increasing transition probabilities with age is that ( )a

Bψ   

increases for some number of years, but then begins to decrease as high-quality 

individuals have already entered the breeding population.  In this model, some living 

birds enter a perpetual ‘pre-breeder’ or long-term non-breeder state, which can be 

thought of as an adult which has failed to find a mate, i.e. a bachelor or spinster.  With 

limited data, several assumptions were made for this model.  It was assumed that ( )a

Bψ  

increased to age 10, and then decreased in symmetric fashion.  The age and the 

symmetry were chosen to simplify the model; age 10 was chosen for consistency with 

estimates of mean age at first breeding for other albatross species (Appendix A).  As 

in Model (2), ( )a

Bψ  was modelled using a logistic function as 

( )( )
( )( )

( ) 1
0 1

1
0 1 1

0                                              if 8

logit 8              if 8 10

logit 2 10   if 10

a

B

a

a a

a a

ψ θ θ

θ θ θ

−

−

 <


= + − ≤ ≤


+ − − >

   (5.17) 

Priors for this model were ( )0 ~ Normal 0, 10θ σ = , and 

( )1 1~ Normal 0, 10 | 0θ σ θ= > . 

 

The three models can yield substantially different distributions of Bα  and estimates of 

( )BE α , and the ability to distinguish between them is limited by the number of birds 

observed breeding and the study length.  The fit of Model (1) versus Models (2 or 3) 

may be determined by a relatively short study, due to substantial differences in the 

distribution of Bα  for early age classes.  Selecting between Models (2 & 3) is more 

difficult, as they are identical until age 10, and therefore require a longer study.  For 

example, suppose for Model (1) that (8 ) 0.15Bψ + = , and for Models (2 & 3) that 
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0 2.5θ = − , and 1 0.5θ = ; further, suppose that all but a negligible proportion of 

juveniles have returned by age 7, and that survival is 0.95s = .   The mean ages at first 

breeding for Models (1 & 2) would be similar (12.2 versus 12.3), while the mean age 

at first breeding for Model (3) would be 10.2.  However, the distributions of the age at 

first breeding are quite different (Figure 5.2 (a,c,e)) due to the different functional 

forms of ( )a

Bψ  (Figure 5.2 (b, d, f)).  In particular, Models (1 & 2) project that >5% of 

birds will first breed at ages 20+ with these assumed parameters, while Model (3) 

forces older non-breeders into a perpetual bachelor or spinster state until death.  The 

absence of older first-time breeders then results in a lower mean age at first breeding 

for Model (3), with approximate agreement between the mean and the mode of the 

distribution.   
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Figure 5.2.  ( )Pr B iα =  from age 8i =  for three models of ( )a

Bψ .  Plots (a, b) refer to 

Model (1) with (8 ) 0.15Bψ + = .  Plots (c, d) refer to Model (2), and plots (e, f) refer to 

Model (3), with 0 2.5θ = − , and 1 0.5θ = .  Survival was assumed to be 0.95s = . ( )a

Bψ  

was drawn as a continuous function for visual ease, but is only evaluated at integer 

values. 
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5.6.5 Transition probability matrix for Gibson’s albatrosses 

The analysis approach in Section 5.5 forms the basis for this analysis, but with some 

modifications.  Gender must be included because of its importance to the adult 

analysis, and a gender-, age-, and breeding status-specific TPM was estimated in an 

analogous fashion to Equation 5.13, as 

( ) ( )( )

( )

( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( )
2,1 2,1

( , , ) ( , 1, ) ( ) ( , 1, ) ( ) ( )
3,1 3 3,1 3 3

( 1) ( 1) ( 1) ( 1) ( 1)

1 1 1 0 1

0 1 0 1

0 1 0 1

0 0 1 1

0 0 0 0 1

g g g g g

g g

g a I g a I I g a I I I

a a a a a

R J R J J

b v s b s b v s s

s s s

TPM s s s

s s s

ψ ψ

ψ ψ

ψ ψ

+ +

+ + + + +

 − − − −
 
 − −
 
 = − −
 
 − −
 
 
 

 

(5.18) 

where, as in Equation 5.14, 

I  is a breeding status indicator variable, equal to 1 for adults, 0 otherwise, 

g  in a gender indicator variable, equal to 1 for females, 0 for males,  

( 1)
3

I
s s

= =  and ( 0)
3

I

Ps s ε= = − ,  

( )(2)
2 1J Js s ε= −  and ( )a

Js s=  for 2a > ; and 

( , , 0) ( )
3,1

g a I a

Bψ ψ= =  and, ( , , 1) ( , )
3,1 3,1, g a I g A

a ψ ψ=∀ = . 

  

The primary difference between Equation 5.13 and Equation 5.18, aside from the 

nuisance gender parameter, is that the probability that a bird aged a breeds for the first 

time can be one of three functions of age, and the variability due to the model used 

can be assessed.   

 

An extension to these models is to allow time-varying parameters, for both adult and 

juvenile/pre-breeder parameters.  Indeed, a cursory examination of the raw data 

suggests that this may improve model fit.  However, the purpose of this analysis is to 



 

 141 

show the effect of different functional forms for ( )a

Bψ  on the estimate of mean age at 

first breeding when the study period is of limited duration.  For that reason, the 

simplicity of time-constant models is preferred. 

 

5.7 Results 

5.7.1 Naive estimates 

Naive estimates of age at first return and breeding are biased due to emigration and 

study duration, as exemplified by the simple population model described in Section 

5.3.  The example presented in Figure 5.1 is based on parameter values that are 

reasonable for an albatross, albeit for a simplified population model.  For this 

example, the mean age at first breeding (from Equation 5.9) is ( ) 10.17BE α =  years.  

If the pre-breeder emigration rate is 0.05Pε =  and not accounted for, 

then ( ) ( ) 9.57BE
ε α =  years (from Equation 5.11), resulting in a non-negligible bias of 

0.6−  years.  For the same example in a 15-year study, the naive estimate with 

emigration and data truncation is ( )( ) 9.08N

B
E α =  years (from Equations 5.10 & 5.11), 

more than one year in error.  In general, the magnitude of the negative bias increases 

for shorter studies and for populations with large emigration rates, but a bias of more 

than one year can easily occur even for relatively long studies with low emigration 

rates, as in this example. 

 

5.7.2 Simulation study results 

A simulation study was described in Section 5.5, where the simulated capture-

recapture data was designed to be similar in nature to the Gibson’s albatross data or to 

data that might be collected for other albatrosses.  In particular, it incorporated 
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juvenile and pre-breeder emigration, a distinct survival probability to age 2 that is 

inherently confounded with juvenile emigration, the inability to distinguish pre-

breeders from adult non-breeders, and a high capture probability for breeders.   

 

For any individual dataset, variability in parameter estimates will be influenced by 

study length, the number of birds in the study, capture and transition probabilities, and 

emigration rates; there may also be bias from the estimation procedure.  While use of 

Bayesian methods introduces some bias through the priors, the simulation was 

designed to show that, by having an appropriate generating model with well-behaved 

emigration, it is possible to get reliable estimates of age at first return and age at first 

breeding even though estimates of ( )i
Rπ  and ( )i

Bπ  are known to be biased by emigration.   

 

Age at first return 

The mean age at first return for the simulation study was ( ) 5.28BE α =  years, while 

the mean estimate from 25 simulations was 5.29 years, with an estimated bias of 

ˆ 0.01
R

Bα =  years ( ( )ˆse 0.05
R

Bα = ; 95% CI: 0.11−  to 0.12  years).  Although age-

specific probabilities of returning ( ( )i
Rπ ) are biased by the juvenile emigration rate of 

20%, the estimated conditional probability of returning given survival ( ( )i
Rψ ) has 

minimal bias; the worst observed age-specific bias in ( )i
Rψ  was (6)

ˆ 0.035
R

B
ψ

= −  

( ( )(6)
ˆse 0.016

R

B
ψ

= ) at age 6.  Bias in the parameters used to estimate ( )i
Rψ  were also 

small, with 
0

ˆ 0.07Bβ = −  ( ( )
0

ˆse 0.07Bβ = ) and 
1

ˆ 0.09Bβ =  ( ( )
1

ˆse 0.06Bβ = ). 
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Age at first breeding 

The mean age at first breeding for this population model was ( ) 13.7BE α =  years.  

The number of simulations ( 25R = ) was designed so that the standard error for the 

bias of age at first breeding would be approximately 0.1.  After 25 simulations, the 

estimated bias in mean age at first breeding was ˆ 0.04
B

Bα = −  years ( ( )ˆse 0.11
B

Bα = ; 

95% CI: 0.27−  to 0.19  years).  As expected, the level of bias in the mean age at first 

breeding is small when using the correct model, even though its components are 

known to be biased.  The mean estimated probability that a bird aged 8 or older bred 

for the first time was (8 )ˆ 0.105Bψ + = , compared to the actual value of 0.1, giving an 

estimated bias of (8 )
ˆ 0.005

B

B
ψ + =  ( ( )(8 )

ˆse 0.003
B

B
ψ + = ). 

 

The mean naive estimate of mean age at first breeding for these 12 year studies (5 

years beyond the age at which the first birds began to breed) was 9.6 years, with an 

estimated bias of ( )
ˆ 4.12N

B

B
α

= −  years (95% CI: 4.17−  to 4.07−  years).  Clearly, for 

this particular population model and a 12-year study, the naive estimate of mean age 

at first breeding would be unacceptable. 

 

Bias in other parameters 

Estimated bias for survival, pre-breeder emigration, and adult transition parameters 

were all negligible (Table 5.2).  Combined with the results from age at first return and 

age at first breeding, this modelling approach – where transition probabilities are a 

function of a latent variable that must also be estimated, where emigration plays a 

confounding role, and where pre-breeders and adult other non-breeders can not be 
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distinguished from each other – is able to successfully estimate the parameters that 

generated the data. 

 

Table 5.2.  Mean parameter estimate (ζ̂ ) from 25 simulations, actual parameter value 

(ζ ), estimated bias ( B̂ζ ), and standard error of the estimated bias ( ( )ˆse Bζ ). 

Parameter

   b 0.60 0.60 0.001 0.003

   v 0.61 0.60 0.007 0.004

0.80 0.80 0.000 0.003

0.50 0.50 0.003 0.004

   s 0.95 0.95 0.001 0.001

0.73 0.72 0.013 0.014

   εP 0.06 0.05 0.005 0.006

0.95 0.95 -0.004 0.002

0.60 0.60 0.005 0.006

0.20 0.20 0.000 0.003

ζ̂ ζ B̂ζ

( )
3,1

Aψ

2,1ψ

(2)
Js

1p

( 1)
3

I
p

=

( 0)
3

I
p

=

( )ˆse Bζ

 

 

5.7.3 Results for the study of Gibson’s albatrosses 

The delayed maturity of Gibson’s albatrosses and the study length make it difficult to 

accurately estimate Bα  without strong model assumptions.  While there were 563 

birds that had the potential to reach age 8 by 2006, 284 that could reach age 10, and 

164 that could reach age 11, there were only four that had the potential to reach age 

13.  Thus, the estimated minimum age at first breeding ( ˆ 8Bk = ) is based on a 

reasonable sample size, but it is unlikely that the full distribution of age of first 

breeding has been observed.  That is, it is quite likely that many birds will not begin 

breeding until later ages, but this study was not able to observe them.  Instead, three 

different population models that extrapolated estimates to older age classes were used 
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to estimate the mean age at first breeding; of these three, Model (3) had the smallest 

deviance (29040 versus 29090 (Model (1)) and 29110 (Model (2))).  However, it is 

unclear how the different models would behave if data were available for the 

extrapolated age classes.  While Model (3) may be the preferred model of these three, 

because of the extrapolation, all were used to qualitatively assess variability in 

parameter estimates. 

 

A TPM that incorporated well-behaved emigration was assumed for the analysis 

(Equation 5.18), along with simplifications of adult parameters compared to other 

analyses of the data (e.g. Walker and Elliott 2005, Fletcher et al. 2008).  In particular, 

an average adult survival estimate was calculated; this value was used as a means of 

estimating pre-breeder emigration. 

 

Using OpenBUGS (Thomas et al. 2006), three Markov chains were run for 30,000 

iterations, with the first 15,000 iterations discarded as burn-in.  Monte Carlo error for 

all parameters was at least one order of magnitude less than the standard deviation of 

the parameter estimate.  Graphical displays of histories for each chain, and of the 

Gelman-Rubin diagnostic (Brooks and Gelman 1998), suggested good Monte Carlo 

convergence for all parameters. 

 

Age at first return 

The probability a juvenile bird aged a that has not yet returned will return (given 

survival) is estimated by ( ) ( )( )ˆlogit 2.7 1.1 3a

R
aψ = − + −  for 3a ≥  (from Model (3), 

estimates for 0β  and 1β  from the other models were within 0.1±  of these).  This 

suggests that nearly 97% of birds return as pre-breeders prior to the age 8 (Figure 5.3), 
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when the first birds begin to breed, with mean age at first return of 5.3 (95% CI: 5.0 – 

5.6) years; estimates from the other models were similar (Table 5.3).  Combined with 

survival estimates, this suggests that 63% (95% CI: 58 – 68%) of birds banded as 

chicks will return to the study area, consistent with observed rates above 50% for the 

1995 through 2000 cohorts (Table 5.1). 

 

 

Table 5.3.  Estimated mean age at first return, ( )RE α , and first breeding, ( )BE α , for 

Gibson’s albatrosses by recruitment to breeding model. 

Parameter Model (1) Model (2) Model (3)

5.3   (5.1 -   5.6) 5.3   (5.1 -   5.6) 5.3 (5.0 -   5.6)

15.0 (13.7 - 16.3) 13.7 (12.4 - 15.2) 10.3 (9.9 - 11.5)

Estimate (95% CI)

( )RE α

( )BE α  
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Figure 5.3.  The distribution of age at first return ( Rα ) amongst Gibson’s albatrosses.  

Values presented are based on Model (3); estimates of ( )Pr R aα =  from the other 

models were similar.  Error bars represent the limits of the 95% CI. 
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Age at first breeding 

The estimated mean and distribution of age at first breeding was highly model-

dependent (Figures 5.4 – 5.6, Table 5.3).  Estimates of ( )BE α  ranged from 10.3 years 

(Model (3)) to 15.0 years (Model (1)).  For Model (1), the assumption of constant 

recruitment rates for birds from the age of 8 onwards creates a distribution of 
Bα  with 

a mode at age 8, as mortality reduces the size of later age classes.  Since the estimated 

constant was low ( ( )8 0.08Bψ +
= ; 95% CI: 0.06 – 0.11), the distribution has a long tail, 

with >20% of birds predicted to breed from the age of 20 (Figure 5.4), leading to the 

large estimate of ( )BE α .  However, the mode at age 8 is inconsistent with the 

observed age at first breeding.  While emigration will cause a discrepancy between 

the observed and actual age at first breeding for older age classes (even for long-term 

studies with perfect observation), it will have minimal effect on early age classes.  

This, combined with the long tail, suggests that Model (1) could be improved upon. 

 

In Model (2), ( )a

Bψ  increases to age 10 before remaining constant, and the mode of the 

distribution of Bα  changes to a more realistic age 10 (Figure 5.5).  However, 

(10 ) 0.14Bψ + =  (95% CI: 0.09 – 0.20) is still low, again leading to a long tail, with 

approximately 12% of birds breeding for the first time from the age of 20.  From 

Model (2), the mean age at first breeding, influenced by the long tail, is estimated as 

13.7 (95% CI: 12.4 – 15.2) years.  
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Figure 5.4.  Estimated distribution of Bα  for Model (1) showing the large proportion 

of birds predicted not to bred until age 20+.  Error bars represent the limits of the 95% 

CI. 
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Figure 5.5.  Estimated distribution of Rα  for Model (2) showing a more realistic 

shape for early age classes compared to Model (1), but still with a large proportion of 

birds predicted not to bred until age 20+.   
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Figure 5.6.  Estimated distribution of 
Rα  for Model (3) showing a more realistic 

shape for early age classes compared to Model (1), and with few birds breeding 

beyond the age of 16. 

 

Model (3) produces a relatively short-tailed distribution with a reasonable shape for 

early age classes (Figure 5.6), and fits the observed data better than the other models.  

However, model fit obviously can not be compared for later age classes.  The shorter-

tail of the third model is due to the assumption that some birds enter a perpetual non-

breeding state until death rather than eventually breeding at an older age.  Model (3) 

then results in the lowest estimated mean age at first breeding, 10.3 (95% CI: 9.9 – 

11.5) years.   

 

Other parameter estimates 

Parameter estimates for adult survival and transition probabilities were similar those 

in Walker and Elliott (2005) and Fletcher et al. (2008), although in those analyses, 

year-specific values were estimated.  The different recruitment models had negligible 

effects on survival, emigration, breeding success, and transition parameters (Table 
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5.4).  Average breeding success was approximately 60%, the probabilities that a bird 

would attempt to breed the following year (given survival) were 65% for a failed 

breeder, 75-80% for an obligate non-breeder, and 50% for an other non-breeder 

(Table 5.4).  The low level of variation between estimates for males and females 

could be expected given the high partner fidelity of Gibson’s albatrosses.  Annual 

survival from age 2 was estimated as 0.95.  Apparent survival from banding to age 2 

(e.g. survival confounded with juvenile emigration) was 0.74, and the annual pre-

breeder emigration rate was 0.05.   

 

Capture probabilities for pre-breeders prior to 1997 were based on only 4 marked 

birds; estimated capture rates from 1997 to 2006 are given in Table 5.5.  There was 

substantial temporal variation in capture rates, with a large increase from 2003 – 

2005, which could represent increased capture effort.  Alternatively, capture rates 

could also incorporate lack of model fit due to temporal variation in the recruitment 

process or through temporary emigration.  Capture probabilities for adult birds are 

provided in Table 5.6, showing high capture rates for breeding birds (often close to 1), 

low capture rates for obligate non-breeders (the long breeding cycle means that some 

obligate non-breeders do not leave the colony until the next field season begins), and 

variable capture rates for other non-breeders. 

 

Population projections 

The population growth rate and size may also be estimated from this data.  However, 

the limited number of birds banded as chicks observed breeding, and the resulting 

uncertainty in the recruitment to breeding process, means that these estimates may 

have substantial bias from use of an incorrect model.  Noting that nearly all birds 
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recruited prior to age 8, fecundity rates were based on the assumption that all living 

birds were pre-breeders at age 7.  Parameter estimates were assumed to follow 

approximate normality, and sampled 9,999N =  times from Model (3), which fit the 

observed data best.  All estimates were assumed to be independent except 0θ  and 1θ , 

which were negatively correlated with each other ( 0.8r = − ), and so were sampled 

from a multivariate normal distribution.  For transitions with gender-specific values, 

the estimates for females were used. 

 

Age-specific fecundity rates reached 0.06 (95% CI: 0.04 – 0.10) for older age classes 

(with a

�  based on 20 age classes, where the last age class included birds aged 20 or 

greater); around 20% of older age birds were estimated to breed each year.  Fecundity 

rates were reasonably stable from age 10 onwards, while 8 and 9 year old birds had 

approximately 0.25 and 0.5 the fecundity of birds aged 10 or greater.  Assuming that 

true survival from banding to age 2 was between the lower bound (0.67) and adult 

survival (i.e. ( )2 ~ 0.67,s U s , the estimated population growth rate was ˆ 0.99λ =  

(95% CI: 0.98 – 1.00), consistent with the estimated stable population (Elliott and 

Walker 2005).   

 

Walker and Elliott (1999) estimated the number of breeding pairs of Gibson’s 

albatrosses at 5,831 pairs per annum, based on five years of surveys and a small 

amount of extrapolation.  In 1997, the survey began earlier than in other years and 

more birds were observed (7,417 pairs); the difference could be due to failed breeders 

who abandoned their nests (Walker and Elliott 1999).  This suggests that there may be 

some negative bias in the estimate of B.  Ignoring any temporal trends, and assuming 

the counts followed a log-normal distribution, the coefficient of variation of B was 
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ˆ 0.1
B

CV ≈ .  Sampling from this distribution, and combining the results with the 

sampled matrix models, provides a population estimate of ˆ 80,000N =  (95% CI: 

60,000 – 110,000) birds, with 20th percentile estimate min 70,000N = ; values were 

rounded to the nearest 5,000.  Of these, 24,000 (95% CI: 20,000 – 29,000) birds were 

estimated to have bred at least once; this estimate was similar for all three models. 

 

Projections may also be made from the other two models, although poorer model fit 

suggests that these estimates should be down weighted.  Using Model (1), fecundity 

reached 0.12, but took nearly 30 years to stabilise; this was due to the skewed 

distribution of Bα , and the large proportion of breeders that did not begin breeding 

until later age classes.  This model predicts ˆ 1.01λ =  (95% CI: 1.00 – 1.02), while the 

estimated population size was ˆ 55,000N =  (95% CI: 45,000 – 70,000; min 50,000N = ) 

birds.  From Model (2), fecundity eventually reached 0.14, but took nearly 25 years to 

stabilise.  The projected growth rate from Model (2) was ˆ 1.01λ =  (95% CI: 1.00 – 

1.02), while the estimated population size was ˆ 50,000N =  (95% CI: 40,000 – 60,000; 

min 45,000N = ) birds. 

 

The estimated growth rates differed by 0.02 between Model (3) and Models (1 & 2), 

and the estimated population size differed by 25,000 to 30,000 birds.   Confidence 

intervals that are conditional on the recruitment to breeding model are overly precise 

when model-to-model variation is considered.  Model (3) fit the observed data best, 

and should therefore be ranked more highly than the other models.  However, the 

limited amount of data and the unobserved age classes suggest that more observations 

are necessary before selecting a preferred model or calculating model weights. 
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Table 5.4.  Model-specific transition and survival probabilities showing negligible 

difference in these parameters due to choice of recruitment function. 

   b males 0.615 (0.595, 0.635) 0.614 (0.595, 0.634) 0.615 (0.595, 0.634)

females 0.603 (0.583, 0.623) 0.603 (0.583, 0.623) 0.603 (0.583, 0.624)

   v males 0.628 (0.594, 0.661) 0.628 (0.595, 0.662) 0.628 (0.594, 0.661)

females 0.666 (0.632, 0.699) 0.666 (0.632, 0.699) 0.666 (0.632, 0.699)

males 0.750 (0.727, 0.773) 0.751 (0.727, 0.774) 0.750 (0.726, 0.774)

females 0.800 (0.776, 0.823) 0.800 (0.776, 0.823) 0.800 (0.776, 0.823)

males 0.509 (0.475, 0.544) 0.509 (0.475, 0.544) 0.509 (0.475, 0.543)

females 0.489 (0.451, 0.528) 0.489 (0.451, 0.528) 0.490 (0.451, 0.529)

   s 0.954 (0.950, 0.959) 0.954 (0.950, 0.959) 0.954 (0.950, 0.959)

   s P 0.906 (0.869, 0.942) 0.907 (0.872, 0.939) 0.906 (0.873, 0.938)

   ε P 0.048 (0.012, 0.086) 0.048 (0.015, 0.082) 0.048 (0.016, 0.082)

0.743 (0.678, 0.812) 0.742 (0.679, 0.808) 0.738 (0.674, 0.803)

Parameter Model (1) Model (2) Model (3)
Estimate (95% CI)

( )
3,1

Aψ

2,1ψ

(2)
Js  

 

 

Table 5.5.  Model-specific capture probabilities for pre-breeders from 1997 – 2006.  

Prior to 1997, only 4 birds could have been observed in the study area, and only 2 

birds were observed to return prior to 2000. 

Year
1997 0.30 (0.01, 0.92) 0.24 (0.01, 0.76) 0.43 (0.02, 0.95)
1998 0.15 (0.02, 0.35) 0.10 (0.02, 0.24) 0.42 (0.03, 0.97)
1999 0.05 (0.01, 0.16) 0.05 (0.01, 0.13) 0.05 (0.01, 0.14)
2000 0.06 (0.02, 0.12) 0.06 (0.02, 0.11) 0.06 (0.02, 0.12)
2001 0.08 (0.04, 0.13) 0.08 (0.04, 0.12) 0.08 (0.04, 0.13)
2002 0.18 (0.14, 0.24) 0.18 (0.14, 0.24) 0.19 (0.13, 0.24)
2003 0.80 (0.74, 0.87) 0.81 (0.75, 0.87) 0.81 (0.75, 0.87)
2004 0.81 (0.74, 0.87) 0.81 (0.75, 0.86) 0.81 (0.75, 0.86)
2005 0.68 (0.61, 0.76) 0.68 (0.60, 0.75) 0.68 (0.61, 0.75)
2006 0.16 (0.12, 0.20) 0.16 (0.12, 0.20) 0.16 (0.12, 0.20)

Model (1) Model (2) Model (3)
Estimate (95% CI)
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5.8 Discussion 

Age at first breeding is one of two key parameters required for using the PBR method, 

and an underestimate of ( )BE α  leads to an overestimate of the maximum annual 

growth rate; in turn, this could lead to an overharvest of the population (Chapter 2).  

When capture probabilities of breeding birds is high, as with albatrosses, use of the 

naive estimator ( )N

Bα  may be tempting.  However, ignoring the study duration and 

emigration can cause substantial negative bias (>1 year in magnitude) even in a 15-

year study with a 5% annual emigration rate (as in the simplified example of Section 

5.3).  In the simulation studies of Section 5.4, based on a somewhat more realistic 

population model and a 12-year study, the mean bias from using ( )N

Bα  was 4.12−  

years.  Because the magnitude of the bias can be substantial, and the potential impact 

of negative bias in ( )BE α  is overharvest of the species, the naive estimate of age at 

first breeding should not be used in conjunction with the PBR method for 

management of albatrosses or similar Procellariiformes.  

 

If the only available estimate of age at first breeding is a naive estimate, and it is also 

used to estimate the population size (see Chapter 3), the underestimate in the 

population size and the over-estimate of maxλ  will, to some degree, cancel each other 

in the PBR calculation.  Rather than having off-setting bias in two parameters, if 

estimates of study duration, pre-breeder survival, and adult survival are available, a 

better approach would be to assume a simple population model as in Section 5.3, and 

use Equations 5.10 and 5.11 to adjust the estimate.  Alternatively, an ad hoc 

adjustment such as adding 1 year to the naive estimate may be reasonable when no 

additional information is available. 
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For situations where capture-recapture data is available, it is possible to get minimally 

biased estimates even though survival and emigration are inherently confounded, as 

long as emigration and survival assumptions are not too distant from the true 

population structure.  However, in practical situations where the study duration is 

limited, un-testable assumptions must be made about the functional form of 

recruitment to breeding.  In these situations, prudence dictates that variability in  

( )BE α  due to the functional form should be considered as well.   

 

Fundamental assumptions about survival and emigration were made.  In particular, it 

was assumed that the longer time a pre-breeder went without successfully breeding, 

the more likely it was to emigrate.  This means that, of the birds banded as chicks in 

the study area, birds that breed at a younger age are more likely to be observed than 

birds that breed at an older age (i.e. birds that begin breeding later are more likely to 

have emigrated prior to breeding, supported by Frederiksen and Bregnballe 2001).  If 

capture probabilities of breeding birds are near 1, this means that there is an inherent 

assumption that the distribution of the observed age at first breeding of birds banded 

as chicks is skewed to the left compared to the actual age at first breeding due to 

emigration at the pre-breeder stage.  Unfortunately, this assumption can not be tested 

without auxiliary data. 

 

The recruitment process of seabirds may depend on environmental covariates 

(Crespin et al. 2006).  In the study of Gibson’s albatrosses, the estimates of age at first 

return and breeding were based on a small cross-section of the data over a limited 

period of time.  With the limited data, no attempt was made to incorporate temporal 

variations.  Further, in order to keep the focus on recruitment to breeding, only one 
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model for age at first return was considered.  In order to fully examine age at first 

return, alternatives to Equation 5.14 could be considered.  For example, a quadratic 

logistic model for ( )a

Rψ  would allow for birds not returning to any colony.  An obvious 

future direction for this work – should the data continue to be collected – is to 

estimate temporal variation in the recruitment process and consider additional models.  

This could help determine whether recruitment processes were stable over time, or if 

environmental covariates or other population effects played a substantial role.  In this 

analysis, the only time-varying parameters were capture probabilities, meaning that 

they are the only parameters that can absorb temporally-related lack of model fit.  

Additionally, several more years of data could provide an ability to distinguish 

between different functional forms for the recruitment to breeding process.  In 

addition to improving estimates of Bα , this could lead to more robust estimates of λ  

and N  from matrix model projections. 

 

In summary, the estimated mean age at first breeding can be severely negatively 

biased if the naive estimator is used and birds are not followed for a sufficient period 

of time (Figure 5.1).  Instead, modelling approaches based on capture-recapture data 

can alleviate this bias if assumptions about emigration are met.  However, even for 

lengthy studies, relatively few birds banded as chicks may be observed breeding, and 

the full distribution of age at first breeding is unlikely to be observed.  This means that 

model assumptions – which may be fundamentally un-testable – can have a large 

effect on the estimated mean age at first breeding. 
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Table 5.6.  Year- and gender-specific capture probabilities (95% CI) for adult 

breeders, obligate non-breeders, and other non-breeders based on Model (3).  

Estimates from Models (1 & 2) were within 0.01 of Model (3) estimates. 

Year Breeders Obl. non-breeders Other non-breeders
1993 0.98 (0.92 - 1.00) 0.50 (0.02 - 0.97) 0.28 (0.14 - 0.44)
1994 0.95 (0.82 - 1.00) 0.01 (0.00 - 0.04) 0.10 (0.02 - 0.23)
1995 0.99 (0.96 - 1.00) 0.15 (0.08 - 0.23) 0.58 (0.42 - 0.74)
1996 0.99 (0.97 - 1.00) 0.19 (0.12 - 0.26) 0.70 (0.53 - 0.84)
1997 0.99 (0.97 - 1.00) 0.07 (0.04 - 0.12) 0.28 (0.16 - 0.40)
1998 0.99 (0.98 - 1.00) 0.01 (0.00 - 0.03) 0.46 (0.29 - 0.65)
1999 0.99 (0.98 - 1.00) 0.08 (0.04 - 0.13) 0.70 (0.57 - 0.80)
2000 0.97 (0.90 - 1.00) 0.12 (0.08 - 0.18) 0.81 (0.73 - 0.88)
2001 0.99 (0.97 - 1.00) 0.08 (0.03 - 0.15) 0.72 (0.64 - 0.80)
2002 0.99 (0.97 - 1.00) 0.12 (0.08 - 0.18) 0.80 (0.70 - 0.89)
2003 0.99 (0.98 - 1.00) 0.15 (0.09 - 0.22) 0.89 (0.80 - 0.96)
2004 0.99 (0.97 - 1.00) 0.23 (0.16 - 0.31) 0.90 (0.82 - 0.95)
2005 0.97 (0.90 - 1.00) 0.18 (0.12 - 0.25) 0.92 (0.86 - 0.97)
2006 0.49 (0.41 - 0.58) 0.10 (0.04 - 0.18) 0.99 (0.97 - 1.00)

Breeders Obl. non-breeders Other non-breeders
1993 0.98 (0.92 - 1.00) 0.50 (0.02 - 0.97) 0.15 (0.05 - 0.32)
1994 0.92 (0.77 - 1.00) 0.01 (0.00 - 0.04) 0.04 (0.00 - 0.14)
1995 0.99 (0.96 - 1.00) 0.14 (0.08 - 0.23) 0.37 (0.21 - 0.55)
1996 0.99 (0.97 - 1.00) 0.12 (0.07 - 0.18) 0.60 (0.44 - 0.75)
1997 0.99 (0.96 - 1.00) 0.05 (0.02 - 0.09) 0.31 (0.19 - 0.45)
1998 0.99 (0.98 - 1.00) 0.01 (0.00 - 0.04) 0.33 (0.19 - 0.47)
1999 0.99 (0.97 - 1.00) 0.07 (0.03 - 0.11) 0.56 (0.44 - 0.68)
2000 0.90 (0.80 - 0.99) 0.10 (0.05 - 0.15) 0.65 (0.54 - 0.75)
2001 0.99 (0.97 - 1.00) 0.11 (0.05 - 0.20) 0.46 (0.36 - 0.54)
2002 0.99 (0.96 - 1.00) 0.09 (0.05 - 0.14) 0.62 (0.52 - 0.72)
2003 0.99 (0.98 - 1.00) 0.14 (0.08 - 0.20) 0.55 (0.43 - 0.67)
2004 0.99 (0.98 - 1.00) 0.16 (0.10 - 0.23) 0.59 (0.46 - 0.71)
2005 0.95 (0.85 - 1.00) 0.11 (0.06 - 0.17) 0.61 (0.51 - 0.71)
2006 0.39 (0.33 - 0.47) 0.07 (0.02 - 0.14) 0.76 (0.63 - 0.92)

Males

Females
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Chapter 6.  Summary and discussion   

 

Albatrosses and petrels are killed at alarming rates, and it is unclear how many 

mortalities they can sustain.  Population modelling tools were developed to help 

determine the level of sustainable mortalities based on the minimal amount of 

demographic data available for most species: an estimate of the number of breeding 

pairs ( B ), adult survival ( s ), and age at first breeding (α ).  In Chapter 2, a method 

was described to estimate the potential biological removal (PBR) for bird populations 

that requires knowledge of the population size ( N ), and the maximum growth rate of 

the population, maxλ .  Niel and Lebreton (2005) showed how maxλ  could be 

determined by s  and α .  Since B , rather than N , is known for most seabirds, a 

method was developed in Chapter 3 that estimates N  from B , s , and α .   

 

The delayed recruitment process of Procellariiformes such as albatrosses and petrels 

means that fecundity increases with age, contrary to an assumption used in the 

calculation of maxλ .  In Chapter 4, a modification of the calculation of generation time 

was developed for populations where fecundity increases with age; this allows an 

adjustment in the calculation of maxλ  for birds through its relationship with generation 

time (T ).  Importantly, an ad hoc adjustment works well when fecundity rates are 

unknown. 

 

Detailed studies of Procellariiformes are usually based on capture-recapture data.  

High nest-fidelity means that estimates of s  for breeding birds are minimally affected 

by emigration.  Estimates of α  based on observed ages of first breeding may be 
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biased by emigration, study length, and capture probabilities.  In Chapter 5, a model-

based approach is described for capture-recapture data that can achieve reliable 

estimates for the mean age at first breeding and its distribution.   

 

6.1  The PBR method    

The PBR method was developed for marine mammals (Wade 1998) as a means of 

making management decisions with minimal demographic data; this is exactly the 

situation for albatrosses and petrels.  It calculates the number of allowable human-

caused mortalities based on the maximum excess growth ( max max 1R λ= − ), an estimate 

of the population size that accounts for uncertainty ( minN , suggested to be the 20th 

percentile estimate), and a recovery factor f, which incorporates management goals 

and also protects against bias in the estimate of N or maxR .  The calculation is given by 

max min

1

2
PBR R N f=  

Niel and Lebreton (2005) suggested extending this method to birds, and showed how 

to calculate maxλ  given s and α, assuming a simple population model.  While the PBR 

method can be applied to a variety of species (Milner-Gulland and Akçakaya 2001), it 

is especially relevant to Procellariiformes and other long-lived birds, as they share a 

similar life-history to marine mammals, characterised by high adult survival and 

delayed maturity.  It may be used to set bycatch limits when more detailed data is 

unavailable, and it may also be used to quickly assess whether estimates of human-

caused mortalities are likely to be sustainable, possibly be of concern, or likely to be 

of concern.   
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Estimated mortality or harvest rates ( ĥ ) can be compared to allowable harvest rates 

(
ah ) and maximum harvest rates ( maxh ), where maxh  is the PBR estimate for a healthy 

and perfectly measured population.  If ˆ
ah h< , and ĥ  represents the mortality rate 

from all human-related sources, then the harvest is likely sustainable.  If max
ˆ

ah h h< < , 

harvest rates may be unsustainable, and further investigation is warranted.  If maxĥ h> , 

it is likely that harvest rate are unsustainable.  Finally, if ˆ
ah h<  represents only one 

source of human-related mortalities, and the population is known to be in decline, this 

suggests that there may be other substantial sources of mortality that need to be 

quantified. 

 

The PBR method is a rule-of-thumb that is very useful when there is limited data 

available.  It is not meant as a replacement for more sophisticated analyses or as an 

excuse to avoid the expensive task of data collection.  Rather, its best use may be as a 

filter, assigning research money and effort where it is most needed.  More 

sophisticated studies of the greater snow goose (Anser caerulescens atlanticus, 

Gauthier and Brault 1998, Gauthier et al. 2001, Gauthier and Lebreton 2004) and the 

magpie goose (Anseranas semipalmata, Brook and Whitehead 2005) yielded similar 

estimates to the PBR method.  However, the arbitrariness of the recovery factor f and 

other uncertainties mean that the range between ah  and maxh  may be large when using 

the PBR method, while the other methods yielded more precise estimates of allowable 

harvest.   The minimal demographic data available for New Zealand Procellariiformes 

suggests that, at present, the PBR method could be a valuable management tool. 
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6.2  Calculating the population size of albatrosses and petrels 

Estimating the total population size of albatrosses and petrels is difficult because, 

typically, only birds involved in the breeding process appear at colonies (Baker et al. 

2002).  Because of this, the stated population size of petrels and albatrosses is often 

given as the number of breeding pairs, or a proxy such as the number of nests.  This 

leads to imprecise estimates of the total population size, which are based on the 

number of breeding pairs times a rule-of-thumb multiplier (Gales 1998, Taylor 2000, 

Brooke 2004a, Brooke 2004b), with limited information available on how the rule-of-

thumb multipliers were derived.  

 

The PBR method requires more than this: if the suggestions of Wade (1998) are 

followed, a 20th percentile estimate of the population size is required ( minN ).  In 

Chapter 3, rather than selecting an example population model and calculating the rule-

of-thumb multiplier (as in Brooke 2004b), a larger set of possible population models 

were considered.  By placing constraints on the growth rate λ, it is possible to 

determine the proportion of the population that must be breeding, given adult ( s ) and 

juvenile ( Js ) survival, breeding success (b ), and age at first breeding (α ).  With this, 

all possible rule-of-thumb multipliers may be calculated, and their variability 

incorporated into estimates of N . 

 

This methodology can be used given knowledge of individual parameters.  

Alternatively, bounds on survival and other parameters are automatically created by 

constraints on λ.  Survival of younger birds may be difficult to assess, and so two 

population models were considered.  In the first, it was assumed that yearly survival 

was Js  until age α .  In the second, all ages had survival s .  These two models 
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represent bounds on the plausible relationship between juvenile and adult survival; 

reality is probably in between these two models.  In both models, it was assumed that 

a constant proportion of birds began breeding at age α , which is an over-

simplification of reality, where some birds begin breeding at a younger age than 

others.  The estimated rule-of-thumb multipliers did not differ much by population 

model, suggesting that the relationship between juvenile and adult survival is 

adequately constrained by λ .  Further, they were relatively insensitive to α , and use 

of the mean age at first breeding should suffice.  The most important parameter in 

determining population size is s , along with the bounds placed on λ . 

 

The suggested rule-of-thumb multiplier generally varies depending on λ ; this is 

especially true for albatrosses.  In near-optimal conditions, the population size of 

albatrosses is 8 to 10 times the number of breeding pairs (Table 3.5).  In stable 

conditions, very few breeding birds are necessary if survival is high, and the rule-of-

thumb multiplier could be greater than 12.  However, a range of 10 to 12 is more 

realistic for most stable populations (Table 3.4).  High survival and stable growth can 

only be achieved if there is a large proportion of non-breeding adults or very poor 

breeding success; this could potentially occur in a very high-density setting, but would 

be unlikely otherwise.  Estimates of minN  are less variable, which is of great benefit 

for PBR calculations, as population trajectories for Procellariiformes are often 

unknown.  A good rule-of-thumb for most albatross species is min 8N B= × , and 

variability in the estimate of B can easily be incorporated (Tables 3.4 and 3.5).  

 

For petrels, the rule-of-thumb multiplier of 5 suggested by Brook (2004b) is 

reasonable for species that begin breeding near age 5 with survival near 0.90, but 
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would be closer to 6 for petrels that begin breeding later ( 8α ≈ ) and have higher 

survival ( 0.94s ≈ ).  For use with PBR calculations, min 4N B= ×  when B  is known 

performs well for most petrels, reducing to min
ˆ3N B= ×  when incorporating 

variability and ˆ 0.5
B

CV =  (Tables 3.1 – 3.3).   

 

If the Niel and Lebreton estimate of maxλ  is calculated based on s  and α , and minN  is 

calculated using the methods from Chapter 3, then the PBR calculation may be re-

written as ˆPBR f Bτ=  (Equation  3.11), where τ  is a coefficient that incorporates the 

maximum growth rate, and a species-appropriate population multiplier that 

incorporates uncertainty in the estimate of the number of breeding pairs.  For stable 

populations, the values for τ  range from 0.1 for a petrel with 8α ≈ , 0.94s ≈ , and 

ˆ 0.5
B

CV = , to 0.2 for a typical albatross species ( 10α ≈ , 0.95s ≈ ) with a perfectly 

measured population (Table 3.6).  That is, the maximum number of mortalities that 

these populations can sustain ( 1f = ) is less than 0.1 to 0.2 times the number of 

breeding pairs, and could be as low ( 0.1f = ) as 0.01 to 0.02 times the number of 

breeding pairs for a management approach that aimed to rebuild a depleted 

population. 

 

6.3  Estimating generation time when juvenile survival is unknown and fecundity 

varies with age 

The mean generation length can be calculated with knowledge of the population 

growth rate, and age-specific survival and fecundity rates (Leslie 1966, Gaillard et al. 

2005, Niel and Lebreton 2005).  Unfortunately, survival rates for juveniles and pre-

breeders for many species are difficult to estimate (Schwarz and Arnason 2000).  By 
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assuming a population model where fecundity and survival are constant from α , the 

mean generation length simplifies to ( )T s sα λ= + −  (Equation 4.2), Gaillard et al. 

2005, Niel and Lebreton 2005), eliminating the need for fecundity and early age-class 

survival rates.  Niel and Lebreton (2005) used this in their calculation of maxλ  for 

birds. 

 

Albatrosses, petrels, and many other species are better described by population 

models where fecundity increases with age.  In these situations, if Equation 4.2 is 

used, setting α  to the age that some animals first breed (the naive approach) can 

result in substantial negative bias (Table 4.2).  If this estimate is then used in 

calculations of maxλ  and PBR, high levels of overharvest could occur (Table 4.3).  For 

the six species studied by Niel and Lebreton (2005) where the constant-fecundity 

assumption did not hold, ad hoc additions to α  were used to avoid bias in maxλ .   

 

In Chapter 4, a method was developed to modify Equation 4.2 to correctly calculate 

mean generation length for a population model where some animals begin breeding at 

age β , fecundity is constant from γ β≥ , and survival is constant from β .  While 

knowledge of fecundity rates for early age classes relative to fecundity at age γ  

(relative fecundities) is required, knowledge of absolute fecundity rates is not.  More 

importantly, knowledge of survival rates prior to age β  is not required. 

 

The modified formula for generation length (Equation 4.9), while lacking the elegance 

of Equation 4.2, is straightforward to calculate.  It can readily be used with numerical 

methods to calculate maxλ  (Equation 4.10), and substantially reduces bias in PBR 
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calculations compared to the naive approach (Table 4.3).  Importantly, if the constant-

fecundity model is assumed when the variable-fecundity model is more appropriate, 

an ad hoc adjustment to α  in the Niel and Lebreton estimate (Equation 2.2) performs 

nearly as well in calculations of maxλ  as the estimate based on the varying-fecundity 

model (Equation 4.10), presumably due to inherent variability and the approximations 

used developing Equation 2.2.  Thus, when data on adult survival, population growth 

rate, and relative fecundities are available, an exact calculation of generation time can 

be made and used to estimate maxλ , but when relative fecundities are unknown, an ad 

hoc adjustment performs well, too. 

 

6.4  Use of capture-recapture data to estimate the age at first breeding 

Age at first breeding is an important population parameter, necessary for PBR 

calculations.  For albatrosses and petrels, the long and complex recruitment process 

means that estimates of age at first breeding can be substantially affected by study 

length and emigration.  Because of this, relying on direct observations can lead to 

substantial bias in the estimated mean and distribution of the age at first breeding.  In 

Chapter 5, population models were combined with Bayesian methods to analyse 

simulated and actual capture-recapture data.   

 

Focus was placed on estimating the mean age at first breeding ( ( )BE α , denoted in 

Chapter 5 with the subscript B to distinguish between recruitment to breeding and the 

age when returning to the colony, Rα ).  The mean age at first breeding is biologically 

interesting, and a logical choice to use in ad hoc adjustments.  Simulation studies 

show that estimates based only on observed data (the naive estimate, ( )N

Bα ) could 
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have bias in excess of -4 years.  Since an underestimate of ( )BE α  leads to an 

overestimate of maxλ  and PBR, ( )N

Bα  should not be used for these purposes. 

 

An alternative approach is to combine a population model with capture-recapture 

data.  Reliable estimates of ( )BE α  and the distribution of Bα  can be achieved if 

necessary assumptions about emigration are met.  However, this requires a reasonable 

model for the recruitment process.  Due to the delayed fecundity of albatrosses and 

petrels, there may be important age classes with little or no data available.  In these 

cases, it is difficult to determine which recruitment model is best, and the chosen 

recruitment model can have a large influence on estimates of ( )BE α . 

 

6.5  Case study: Gibson’s albatross 

The methods described in Chapters 2 – 5 can be used to estimate the PBR and 

population parameters for Gibson’s albatross (Diomedea gibsoni); the estimation 

process changes based on available data.  These estimates can be compared to those 

easily available in the literature.  From the methods of Chapter 2, estimates of 

survival, age at first breeding, the population size, and its coefficient of variation are 

need to calculate the PBR.  Using survival and age at first breeding rates typical for 

albatrosses (Table A.2; 0.96s = , 10α = ), with ˆ 40,000N =  (Gales 1998) and 

assuming 0.5NCV = , the maximum growth rate is max 1.05λ =  (Equation 2.2), and the 

allowable harvest rate is 0.016ah f=  (Equation 2.8).  Setting 0.1f =  because the 

species is listed as vulnerable suggests an initial PBR of 60 birds. 
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The estimate of the population size may be modified using the methods of Chapter 3.  

Five years of survey data were available (Walker and Elliott 1999), with the estimated 

mean number of breeding pairs per annum equal to 5,831.  Assuming the five 

estimates follow a log-normal distribution, ˆ 0.1
B

CV ≈ .  Noting that the population 

trajectory is thought to be stable (Elliott and Walker 2005) suggests that ˆ 70,000N =  

(90% CI: 30,000 – 130,000), and min 45,000N = .  Using this estimate increases the 

PBR to 100 birds, a result of both the increased rule-of-thumb multiplier compared to 

Gales (1998), and the low coefficient of variation of B . 

 

Further refinement is possible by using the methods from Chapters 4 and 5.  Capture-

recapture data was used to estimate the age at first breeding and relative fecundities.  

Using Model (3), which fit the observed data best, the mean generation length was 

30T =  years (Equation 4.9) when 1λ = ; this estimate is sensitive to λ .  For 

example, 24T =  years when 1.02λ = , and 46T =  years when 0.98λ = .  Assuming 

that the current survival rate (0.95) is close to survival in optimal conditions, the 

maximum growth rate would be max 1.055λ =  (Equation 4.10).  If the current survival 

rate is not optimal, and optimal survival is 0.97s = , then max 1.047λ = .   

 

The estimated population size from Model (3) was ˆ 80,000N =  (90% CI: 60,000 – 

110,000).  Using min 70,000N = , combined with the optimistic estimate of maxλ , 

increases the PBR to 190 birds.  However, noting that there was not enough data to 

select an appropriate recruitment model, the variability in minN  between models 

suggests a slightly more conservative approach, and setting min 50,000N =  seems 
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reasonable.  Further, the current survival estimate is unlikely to be optimal given the 

stable population trajectory; using max 1.047λ =  leads to a PBR of 120 birds.   

 

In this example, there was a factor of 2 difference across PBR estimates.  Compared to 

the somewhat arbitrary nature of selecting f , this difference is probably acceptable, 

but still not desirable.  In this example, the largest difference came from different 

estimates of population size.  For many species, estimates of the total population size 

available in literature are not remarkably different from the estimates based on the 

methods in Chapter 3 (Appendix A), and all estimates are approximate.  The largest 

differences were for biennially-breeding albatrosses, including Gibson’s albatrosses.  

For most other species, differences in PBR estimates would likely be less. 

 

With Chapter 2 methods, care must be used in selecting an appropriate values for s  

and α , as underestimates (especially of survival) lead to an overestimate of PBR.  

Using Chapter 3 methods, s  and α  are used to estimate maxλ  and N , and the effect 

of incorrect values on the PBR  are not as severe, as errors in maxλ  and N  are in the 

opposite direction.  Hence, while more accuracy is always desirable, PBR calculations 

based on Chapter 3 methods are reasonably robust.  Using methods from Chapters 4 

and 5 allows improved estimation of generation time, age at first breeding, and 

population size, and additional improvement in PBR calculations. 

 

6.6  Summary 

Albatrosses and petrels are threatened by fisheries related-mortalities, as well as by 

threats from alien species; most species of albatrosses are threatened with extinction 

(BirdLife International 2009).  This is combined with little demographic information 



 

 171 

for many species, making informed management decisions difficult to make.  What is 

known is that numerous birds are killed each year, and their ability to sustain 

additional mortalities is limited. 

 

A primary goal of this work was to help determine the number of albatrosses and 

petrels that could be killed each year without threatening their populations.  This 

question was addressed using population modelling tools; these tools were developed 

to use available demographic information.  In combination with the rule-of-thumb 

PBR calculation, management decisions can be made using only estimates of s , α , 

B̂ , and BCV .  Estimates may be refined to reflect increased knowledge of the 

population structure.   

 

The focus of this research was applied: how to make decisions with minimal 

information.  However, tools of broader interest were also created.  For example, a 

rule-of-thumb multiplier was created to estimate the total population size of 

albatrosses and petrels from s , α , B̂ , and BCV , while Niel and Lebreton’s (2005) 

estimate of T  for all animals and maxλ  for birds was adjusted for the varying-

fecundity model. 

 

When making management decisions with minimal information, it is important to 

illuminate and account for uncertainty, and then determine those species where more 

knowledge is required.  The approaches described in this thesis attempt to do that.  

Ultimately, it is important to recognise that the tools created here are of most use 

when minimal information is available; decisions based on minimal information 
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should not be treated as endpoints, but as intermediate steps in the process of good 

decision making. 
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Appendix A. Potential biological removal of New Zealand 

albatrosses and petrels 

 

The PBR for 22 species and sub-species of New Zealand seabirds is presented using 

methods from this thesis.  Estimates are presented for eleven albatrosses and eleven 

petrels.  In some cases these values are compared to estimates of bycatch.  It should 

be noted that the latter necessarily have limitations in terms of data-quality, 

assumptions used in the analyses, and pertain to certain areas and years/seasons, and 

do not equate to the total number of human-caused mortalities worldwide from all 

possible sources.  Further, fisheries employing mitigation techniques catch many 

fewer seabirds than in past years (SC-CAMLR 2006), so current bycatch levels may 

be lower.  The work in this appendix provides PBR estimates assuming minimal 

information; for some species, it would also be possible to do more sophisticated 

analyses.   

 

A.1 Methods 

Various secondary sources were used to obtain estimates of survival ( s ), age at first 

breeding (α ), and the number of per annum breeding pairs ( B ), both in New Zealand 

and worldwide (Gales 1998, Taylor 2000, Schreiber and Burger 2001, Brooke 2004, 

BirdLife International 2009).  Brooke (2004) was used when possible: it is thorough 

and recent, incorporates estimates from Taylor (2000), and is cited by the other recent 

sources.  Methodology between the various primary sources differs, and estimates 

were not always available for s  and α .  Because of this, estimates for similar species 

(i.e. those in the same genus, or those with similar mass) were grouped; for example, 

all biennially breeding albatrosses were assumed to have 0.96s =  and 10α = .   
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The PBR was calculated using Equation 3.11 ( 3.11
ˆPBR f Bτ= ).  In this case, the PBR 

is calculated using only s , α , B̂ , and 
B̂

CV  (τ  incorporates s , α , and 
B̂

CV , as well 

as λ ).  Population trends for many species are unknown, but are assumed to be close 

to 1.  The IUCN conservation status for each species was obtained from Brooke 

(2004) and BirdLife International (2009), and f  set according to guidelines in 

Chapter 2. 

 

Many species have not had a census performed for many years, and census methods 

have varied (Taylor 2000, Brooke 2004).  Unless stated otherwise, I will assume that 

ˆ 0.5
B

CV = .  The choice of 0.5 for the coefficients of variation is based on the 

expectation that they will be at least 0.1, and at most 1; 0.5 was used simply because it 

lies between these two bounds.  It would be preferable to have a clearer idea as to the 

amount of uncertainty in each of the estimates of population size.  Additionally, given 

the age of much of the census data, the potential for bias is high.  It is not clear in 

which direction nor how large such a bias might be.  This means that the use of 

0.5f =  suggested by Wade (1998) to allow for bias should not be relaxed for any of 

these species.  

 

Table A.1 shows the estimated number of breeding pairs (in New Zealand and 

worldwide), and the conservation status for each of the species.  Table A.2 shows the 

age at first reproduction and adult survival used in the corresponding estimate of maxλ  

and τ ; the value chosen for f ; the estimates of PBR for the New Zealand and 

worldwide population; and the estimated worldwide population size. The median 

population estimate ( 0.5N ) is presented based on methods from Chapter 3; the median 
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is less sensitive to λ  than the mean, which can be substantially larger than the median 

for smaller values of λ . 

 

Typically, albatross species have the lowest potential for population increase.  In 

addition, all but one of these species are listed as threatened, due to limited breeding 

ranges, risks from longline fishing, and, in some cases, risks from introduced 

predators.  Due to these factors, the allowable removal rate is less than 0.25% of the 

population for eight of the eleven albatross species or sub-species.  The petrels and 

shearwaters have somewhat greater potential for growth, and fewer (6 of 11 species) 

are listed as threatened.  Therefore, they are able to sustain higher rates of removal 

than the albatross species, although still usually less than 1%.   

 

A.2 PBR calculations for biennially breeding albatrosses  

Based on available estimates of age at first breeding and adult survival, all biennially 

breeding albatross species were assumed to have 0.96s =  and 10α = .  From this, 

max 1.05λ = , and the rule-of-thumb population multiplier (for the median) is 

0.5
ˆ10.3N B=  when ˆ 0.5

B
CV = , leading to 0.15τ = . 

 

Antipodean albatross (Diomedea antipodensis) 

Gibson’s albatross (Diomedea gibsoni) 

There is debate as to whether these are distinct species or sub-species of the same 

species (Burg and Croxall 2004, Brooke 2004), and they also appear as Diomedea 

antipodensis antipodensis and Diomedea a. gibsoni.  Biennial breeders, there are 

approximately 5,100 and 5,800 breeding pair, respectively (Tickell 2000, Walker and 

Elliott 1999).  Total population was estimated by Gales (1998) at 33,000 and 40,000, 
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substantially lower than Chapter 3-based estimates of 0.5 53,000N =  and 

0.5 60,000N = , respectively.  They are currently listed as vulnerable due to limited 

breeding locations, and may be reclassified to endangered due to a possible declines 

in adult survival and productivity (BirdLife International 2009).  Consequently, the 

appropriate recovery factor to minimize extinction risk is 0.1f = .  This results in 

PBR estimates of 80 and 90 birds for Antipodean and Gibson’s albatrosses, 

respectively.  They were frequently caught in tuna longline fisheries from 1987 to 

2003, and 58 birds were killed during a single trip in 2006 (BirdLife international 

2009).  Compared to PBR estimates, this suggests that fisheries mortalities may still 

be a concern.  Note that a more thorough examination of Gibson’s albatrosses was 

presented in Chapter 6, resulting in PBR estimates between 100 and 120 birds. 

 

Southern Royal albatross (Diomedea epomophora) 

Northern Royal albatross (Diomedea sanfordi) 

Southern royal albatrosses number approximately 7,800 breeding pairs, while there 

are 5,200 breeding pairs of northern royal albatrosses, with a total population of 

perhaps c.50,000 and c.34,000 (Gales 1998), or 0.5 80,000N =  and 0.5 54,000N = , 

respectively.  Southern royal albatrosses are listed as vulnerable due to a limited 

breeding range, while northern royal albatrosses are listed as endangered because of 

decreasing habitat quality, a predicted population decline, and small breeding range 

(BirdLife International 2009), so 0.1f =  for both species.  This leads to 120PBR =  

and 80PBR = , for southern and northern royal albatrosses, respectively.  Japanese 

longliners in Australian waters in 1989-1995 may have caused nearly four hundred 

mortalities in some years (Gales et al. 1998), far greater than suggested mortality 

limits. 
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Light-mantled sooty albatross (Phoebetria palpebrata)  

There are 6,800 breeding pairs in New Zealand, and 22,000 worldwide (Tickell 2000, 

Brooke 2004).  Brooke (2004) estimates c.140,000 birds worldwide, compared to 

0.5 230,000N = ; Brooke’s multiplier of 7N B≈  is more consistent with an annually 

breeding species than a biennially breeding one.  The species is listed as near 

threatened due to a declining population trend, risk from longline fishing and 

introduced predators (BirdLife International 2009).  The species should be able to 

sustain 310 mortalities from the New Zealand population, and up to 990 worldwide. 

 

A.3 PBR calculations for annually breeding albatrosses 

Based on available estimates of age at first breeding and adult survival, all annually 

breeding albatross species were assumed to have 0.95s =  and 8α = .  From this, 

max 1.06λ = , and the rule-of-thumb population multiplier (for the median) is 

0.5
ˆ5.2N B=  when ˆ 0.5

B
CV = , leading to 0.10τ = .  The large decrease in τ  for 

annual breeders compared to biennial breeders is due to B̂  representing per annum 

breeding pairs. 

 

Southern Buller's albatross  (Thalassarche bulleri bulleri) 

Northern Buller's albatross (Thalassarche bulleri platei) 

There are approximately 12,000 breeding pairs of race bulleri and 18,000 breeding 

pairs of race platei, with possibly 145,000 birds in total for both races (Brooke 2004), 

similar to 0.5 154,000N = .  Due to its limited breeding range, this species is listed as 

near threatened; it is also commonly caught in the tuna longline fishery (BirdLife 

International 2009).  This leads to PBR estimates of 360 and 540 birds, respectively.  
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White-capped albatross (Thalassarche steadi) 

This is not a well-studied species; there are c. 75,000 breeding pairs representing 

perhaps 350,000 birds (Gales 1998, Brooke 2004), similar to 0.5 390,000N = .  The 

species is listed as near threatened due to high bycatch rates (BirdLife International 

2009), suggesting that 0.3f =  is appropriate, leading to a PBR of 2,300.  Baker et al. 

(2007) estimated 7,000 bycatch mortalities annually, well above the PBR and possibly 

at a rate greater than maxh , suggesting an urgent need for improved mitigation 

measures and better understanding of the population.   

 

Chatham albatross (Thalassarche eremita)   

Nearly the entire population of Chatham Albatrosses breed on The Pyramid, Chatham 

Islands group, New Zealand (Brooke 2004) and are listed as critically endangered due 

to habitat degradation caused by extreme weather events there (BirdLife International 

2009).  There are 5,300 nest sites, translating into 4,600 breeding pairs (Robertson et 

al. 2003).  Brooke (2004) estimates 19,000 birds in total, similar to 0.5 24,000N = .  

Robertson et al. (2003) 0.87s = , substantially lower than other species in g. 

Thalassarche; this estimate is assumed to not represent survival in ideal conditions.  

While this population may be able to support nearly 50 additional mortalities each 

year, it is unclear if the selection of 0.1f =  is appropriate given its critically 

endangered status.  

 

Campbell albatross (Thalassarche impavida)   

The Campbell albatross has, from a 1992 census, 26,000 breeding pairs, representing 

approximately 125,000 birds (Gales 1998), similar to 0.5 140,000N = ), and this 
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population may be slowly increasing (Brooke 2004).  Breeding in only one location, 

the species is listed as vulnerable; they are commonly caught in longline and trawl 

fisheries (BirdLife International 2009).  These albatrosses should be able to sustain 

260 human-caused mortalities annually. 

 

Salvin's albatross (Thalassarche salvini)   

There are approximately 32,000 breeding pairs based on a 1998 estimate (Brooke 

2004). Gales (1998) estimated 350,000−380,000 birds in total, based primarily on a 

1978 count of 77,000 breeding pairs.  Adjusting for the difference in the number of 

breeding pairs between the 1978 and 1998 counts suggests c.150,000 birds, 

comparable to 0.5 170,000N = .  It is unclear whether the large difference in the 

number of breeding pairs is due to an actual decrease in the number of breeding pairs 

or to differences in the methods used in the two surveys (Brooke 2004).  This 

discrepancy shows the potential for substantial bias in estimates of population size.  

While the population appears to not be at risk from introduced predators, limited 

breeding habitat has lead to a vulnerable listing (Brooke 2004, BirdLife International 

2009).  Birds are killed in trawl and longline fisheries, with approximately 35 known 

deaths per year from 1996-2005 in New Zealand fisheries, with an unknown total 

number of mortalities (BirdLife International 2009).  They are able to sustain up to 

320 additional mortalities each year. 

 

A.4 PBR calculations for petrels 

Demographic data was missing for many petrel species; estimates used in the analysis 

considered birds in the same genus or of similar size.  This led to three combinations 

of α  and s :  6α =  and 0.93s =  for Pterodoma and Puffinus (<1 kg); 7α =  and 
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0.94s =  for Procellaria (about 1 kg); and 8α =  and 0.95s =  for Macronectes (4 – 5 

kg, similar to annually breeding albatrosses). 

 

Northern giant petrel (Macronectes halli) 

There are approximately 2,600 breeding pairs in New Zealand and 12,000 worldwide 

(Brooke 2004).  Brooke (2004) notes that a relatively high proportion of the 

population are non-breeding adults, and estimates 40,000−50,000 birds worldwide, 

comparable to 0.5 60,000N = .  The population is considered at risk and has suffered 

high mortality rates from longline fishing, so is listed as near threatened; apparent 

recent population increases may be due to mitigation measures, and the species could 

be downlisted in the future (BirdLife International 2009).  Annual mortalities should 

be limited to 360 worldwide, approximately 80 of which may come from the New 

Zealand population.  It has been estimated that, in 1998 alone, between 2,000 and 

4,000 were killed in illegal fishing for Patagonian toothfish (Dissostichus eleginoides) 

(SC-CCAMLR 1998), well above the global PBR, and possibly causing mortality at a 

rate greater than maxh .  

 

White-chinned petrel (Procellaria aequinoctialis)   

White-chinned petrels are discussed in detail in chapter 2; a summary follows.  White-

chinned petrels are the most commonly caught seabird species in the Southern Ocean 

(Weimerskirch et al. 1999).  During 1997 and 1998, between 80,000 and 200,000 

seabirds were killed in the unregulated Patagonian toothfish fishery, of which 

approximately 60% were white-chinned petrels (SC-CAMLR 1998); bycatch rates 

from other fisheries were also high, but have decreased in recent years (BirdLife 

International 2009).  Further, bycatch in the Patagonian toothfish fishery was heavily 
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male-skewed (>80%), with nearly all birds killed in adult plumage (Ryan and Boix-

Hinzen 1999; Nel et al. 2002).  They may also be affected by future changes in marine 

habitat in the southern oceans (Croxall 2004), and the species appears to be 

undergoing a population decline (Berrow et al. 2000).  Due to bycatch rates and the 

suspected population decline, the species is listed as vulnerable (BirdLife 

International 2009).   

 

There are 210,000 breeding pairs of white-chinned petrels in New Zealand, 2.5 

million worldwide, with a total worldwide population of c.7,000,000 birds (Brooke 

2004) to 0.5 12,000,000N = .  They may be able to sustain a worldwide PBR  of 

28,000 and 2,300 in New Zealand. Of these, no more than half should be male, and no 

more than 20% breeding males.  This is well below the levels of mortalities estimated 

for 1997-1998 for just one fishery, suggesting that they may have been unsustainable. 

 

Grey petrel (Procellaria cinerea)   

There are 50,000 breeding pairs of grey petrels in New Zealand, and perhaps 100,000 

worldwide (Brooke 2004).  The total population size is near 0.5 480,000N = , similar 

to an earlier estimate of 400,000 (Brooke 2004).  The species is also at risk from 

introduced predators, and is listed as near threatened, and may be uplisted in the 

future (BirdLife International 2009).  They are frequently caught in longline fisheries, 

with more than 2,000 killed annually in New Zealand waters from 1980-2000, and 

adult females are killed disproportionally (BirdLife International 2009).  Given 

1,700NZPBR = , fisheries-related mortalities in New Zealand waters may have been 

unsustainable during that period. 
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Black Petrel (Procellaria parkinsoni)   

Black petrel, also known as Parkinson’s petrel, number 2,600 breeding pairs, all in 

New Zealand, and have a total population on the order of 10,000 birds (Brooke 2004).  

The breeding range has been reduced to two islands, where predation, especially by 

cats, has detrimental effects, and it is listed as vulnerable (Brooke 2004, BirdLife 

International 2009).  While introduced predators are likely to be the largest threat for 

this species, very little bycatch by commercial fisheries could delay the time to 

recovery should predation levels be brought under control or increase the risk of 

extinction in the near term.   Because of this, annual human-caused mortality should 

be less than 30 birds annually.  While it is known that some birds are killed in 

longline fisheries, there is no estimate for the amount (Brooke 2004). 

 

Westland petrel (Procellaria westlandica)   

The 2,000 breeding pairs, all within New Zealand, represent up to c.20,000 birds 

(Brooke 2004), or as few as 0.5 9,600N = .  The breeding range is only 3.6 km2 

(Brooke 2004), birds are caught in the tuna longline fisheries of Australia and New 

Zealand, and the population is threatened by introduced predators, leading to a 

vulnerable listing (BirdLife International 2009).  If the impact of introduced predators 

is mitigated, this population should be able to sustain 20 human-caused mortalities 

from other sources.   

 

Grey-faced petrel (Pterodroma macroptera gouldi)  

This race of the great-winged petrel (Pterodroma macroptera) breeds at many 

locations throughout the North Island and numbers 200,000−300,000 breeding pairs 

(Brooke 2004).  The population is estimated at 0.5 1,100,000N =  (or as few as 
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600,000−900,000 birds, per Brooke 2004).  With numerous breeding locations and a 

large population not known to be in decline, this species is listed as least concern, 

leading to 15,000PBR = . 

 

Magenta petrel (Pterodroma magentae)   

The magenta petrel, or Chatham Island taiko, breeds only on the main Chatham Island 

and has a tiny population of 15-25 breeding pairs and perhaps 120 individuals, and the 

population is listed as critically endangered (BirdLife International 2009).  Due to 

these factors, a full population viability analysis (PVA) is warranted for this species 

before determining any allowable mortality.  For this species, use of the PBR value 

and its inherent simplifications is not warranted, although the value of zero is 

presented for comparison to any achieved via a PVA. 

 

Buller's shearwater (Puffinus bulleri)   

While Buller’s shearwater is listed as vulnerable due to its limited breeding range 

(BirdLife International 2009), with nearly all birds breeding on Aorangi or Tawhiti 

Rahi, the main islands of the Poor Knights Islands, New Zealand (Harper 1983).  

There were c.200,000 breeding pairs (and roughly as many non-breeding birds as 

breeding ones) at Aorangi in the early 1980s (Harper 1983).  The population increased 

rapidly at Aorangi following the extirpation of pigs in 1936, presumably via re-

colonisation from Tawhiti Rahi (Harper 1983), but there is no knowledge of the 

population trend on Tawhiti Rahi.  The high burrow density on Tawhiti Rahi makes 

census work difficult to perform without damaging burrows (Harper 1983), so the 

population size is unknown; a 1943 expedition estimated at least 100,000 birds, and 

likely 500,000 (Wilson 1959).  Assuming 700,000 breeding pairs, recognising that 
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estimates may not be accurate due to the limited census data and its age, there may be 

0.5 3,200,000N =  birds in total.  This population should be able to sustain 8,400 

additional mortalities. 

 

Flesh-footed shearwater (Puffinus carneipes)   

There are 38,000 breeding pairs in New Zealand and 220,000 pairs worldwide 

(Brooke 2004).  The estimated population size of 0.5 990,000N =  is considerably 

greater than the 650,000 birds estimated by Brooke (2004).  Due to the large breeding 

range and population, this species is listed as least concern (BirdLife International 

2009), with a worldwide 13,000WPBR = .  Up to 5,000 to 6,000 may have been killed 

annually in the tuna fishery (BirdLife International 2009); if this represents birds from 

either the New Zealand or Australian population (similar in size to the New Zealand 

population), it would be greater than 2,300NZPBR = , and harvested at a rate greater 

than maxh .  Despite the least concern listing, high bycatch rates warrant further 

attention and study. 

 

Sooty shearwater (Puffinus griseus)   

There are approximately 5 million breeding pairs in New Zealand and 7 million 

worldwide, with perhaps over 20 million birds worldwide (Brooke 2004), or as many 

as 0.5 32,000,000N = .  It is thought that the population is declining, possibly due to 

climate change, and the species is listed as near threatened (BirdLife International 

2009).  Under the assumption of no selection bias in the bycatch, they should be able 

to sustain 250,000 additional mortalities, of which no more than 180,000 should come 

from the New Zealand population.  However, while driftnet fisheries killed up to 
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350,000 birds per annum in the past, chick harvest (‘muttonbirding’) in New Zealand 

is the primary source of mortality currently, with chick harvests of up to 250,000 

annually (Brooke 2004, Hunter and Caswell 2005).  While this rate is greater than the 

PBR for the New Zealand population, chick mortalities are not as detrimental as adult 

mortalities, so it is not immediately clear if this level of harvest is sustainable or not.  

Hunter and Caswell (2005) detail a matrix model approach that analyzes the 

differential effect of chick versus adult harvest for sooty shearwaters, and are also 

unable to conclude if current harvest rates are sustainable or not. 

 

Hutton's shearwater (Puffinus huttoni)   

There are c.110,000 breeding pairs of Hutton’s shearwaters (Brooke 2004), where 

habitat change in the extremely limited breeding range is the reason for their 

endangered listing (BirdLife International 2009).  The population size may be as low 

as 300,000 (Brooke 2004), or up to 0.5 480,000N = .  This species should be able to 

sustain nearly 1,300 additional mortalities.  
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Table A.1. The estimated number of breeding pairs, and the IUCN conservation 

status, for each of 22 New Zealand albatrosses and petrels; the number breeding in 

New Zealand ( NZB ) and worldwide ( WB ) are given. 

Common name Scientific name Conservation status

Albatrosses Diomedeidae

  Biennial breeders

  Antipodean Albatross   Diomedea antipodensis 5,100 5,100 Vulnerable

  Gibson's Albatross   Diomedea gibsoni 5,800 5,800 Vulnerable

  Southern Royal Albatross   Diomedea epomophora 7,800 7,800 Vulnerable

  Northern Royal Albatross   Diomedea sanfordi 5,200 5,200 Endangered

  Light-mantled Sooty Albatross   Phoebetria palpebrata 6,800 22,000 Near threatened

  Annual breeders

  Southern Buller's Albatross   Thalassarche bulleri bulleri 12,000 12,000 Near threatened

  Northern Buller's Albatross   Thalassarche bulleri platei 18,000 18,000 Near threatened

  White-capped Albatross   Thalassarche steadi 75,000 75,000 Near threatened

  Chatham Albatross   Thalassarche eremita 4,600 4,600 Crit. Endangered

  Campbell Albatross   Thalassarche impavida 26,000 26,000 Vulnerable

  Salvin's Albatross   Thalassarche salvini 32,000 32,000 Vulnerable

Petrels Procellariidae

  Northern Giant Petrel   Macronectes halli 2,600 12,000 Near threatened

  White-chinned Petrel   Procellaria aequinoctialis 210,000 2,500,000 Vulnerable

  Grey Petrel   Procellaria cinerea 50,000 100,000 Near threatened

  Black (Parkinson's) Petrel   Procellaria parkinsoni 2,600 2,600 Vulnerable

  Westland Petrel   Procellaria westlandica 2,000 2,000 Vulnerable

  Grey-faced Petrel   Pterodroma macroptera gouldi 250,000 250,000 Least concern

  Magenta Petrel   Pterodroma magentae 20 20 Crit. Endangered

  Buller's Shearwater   Puffinus bulleri 700,000 700,000 Vulnerable

  Flesh-footed Shearwater   Puffinus carneipes 38,000 220,000 Least concern

  Sooty Shearwater   Puffinus griseus 5,000,000 7,000,000 Near threatened

  Hutton's Shearwater   Puffinus huttoni 110,000 110,000 Endangered

NZ
B

W
B
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Table A.2. Potential biological removal of New Zealand albatrosses and petrels.  The 

age at first breeding (α ), adult survival ( s ), maximum annual growth rate ( maxλ ), 

coefficient for use in Equation 3.11 (τ ), recovery factor ( f ), number of additional 

mortalities that the New Zealand-based (
NZ

PBR ) and worldwide (
W

PBR ) breeding 

population may sustain, and a median population estimate ( 0.5N ) using methods from 

Chapter 3. 

Common name τ 

Albatrosses

  Biennial breeders

  Antipodean Albatross 10 0.96 1.05 0.15 0.1 80 80 53,000

  Gibson's Albatross 10 0.96 1.05 0.15 0.1 90 90 60,000

  Southern Royal Albatross 10 0.96 1.05 0.15 0.1 120 120 80,000

  Northern Royal Albatross 10 0.96 1.05 0.15 0.1 80 80 54,000

  Light-mantled Sooty Albatross 10 0.96 1.05 0.15 0.3 310 990 230,000

  Annual breeders

  Southern Buller's Albatross 8 0.95 1.06 0.10 0.3 360 360 60,000

  Northern Buller's Albatross 8 0.95 1.06 0.10 0.3 540 540 94,000

  White-capped Albatross 8 0.95 1.06 0.10 0.3 2,300 2,300 390,000

  Chatham Albatross 8 0.95 1.06 0.10 0.1 50 50 24,000

  Campbell Albatross 8 0.95 1.06 0.10 0.1 260 260 140,000

  Salvin's Albatross 8 0.95 1.06 0.10 0.1 320 320 170,000

Petrels

  Northern Giant Petrel 8 0.95 1.06 0.10 0.3 80 360 60,000

  White-chinned Petrel 7 0.94 1.07 0.11 0.1 2,300 28,000 12,000,000

  Grey Petrel 7 0.94 1.07 0.11 0.3 1,700 3,300 480,000

  Black (Parkinson's) Petrel 7 0.94 1.07 0.11 0.1 30 30 12,000

  Westland Petrel 7 0.94 1.07 0.11 0.1 20 20 9,600

  Grey-faced Petrel 6 0.93 1.09 0.12 0.5 15,000 15,000 1,100,000

  Magenta Petrel 6 0.93 1.09 0.12 0.1 0 0 90

  Buller's Shearwater 6 0.93 1.09 0.12 0.1 8,400 8,400 3,200,000

  Flesh-footed Shearwater 6 0.93 1.09 0.12 0.5 2,300 13,000 990,000

  Sooty Shearwater 6 0.93 1.09 0.12 0.3 180,000 250,000 32,000,000

  Hutton's Shearwater 6 0.93 1.09 0.12 0.1 1,300 1,300 480,000

f 0.5Nα s maxλ
NZ

PBR
W

PBR
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