
147

Fast algorithms for constructing optimal trees from quartets

David Bryant" and Mike Steel*

A b s t r a c t

The reconstruction of phylogenetic trees from small sub-
trees on overlapping leaf sets is an important contemporary
problem in computational biology. Here we investigate the
problem of constructing optimal phylogenetic trees from a
weighted set of quartets (resolved trees on four leaves). This
problem is faced by a general class of phylogenetic recon-
struction techniques where small subsets of the taxon set
are analysed first and these small phylogenies are reassem-
bled into a complete phylogeny. The problem of construct-
ing a phylogeny that agrees with the maximum number, or
maximum weight set, of quartets is NP-hard.

We consider two constrained versions. In the first we
specify that T has bounded degree and that the splits of T
must come from some given set, for example from the set
of characters in the sequence data. We give a polynomial
time algorithm that determines an optimal weight tree, or
shows that no such tree exists. In the second we assume that
the selection procedure for the small phylogenies returns at
most two of the three possible resolved quartets for every
set of four leaves. We give an O(n s) algorithm that finds
an optimal weight binary tree, if it exists, with quartets
exclusively from the input set.

1 Introduction.

The reconstruction of large evolutionary (phylogenetic)
trees from smaller subtrees is currently receiving con-
siderable attention in the computational biology com-
munity [6, 7, 18, 22, 23, 27, 28].

Such methods are based on the principle t h a t small
is easier, and often more reliable. Small sets of t a x a
(species) allow for far more intensive analysis and the
application of complex models to reconstruct t rees f rom
the corresponding sequences that these taxa are being
compared by. Tree criteria like maximum likelihood,
which are computationally horrendous on larger t rees ,
can be solved exactly on four-taxa trees (quartets) and
there are just four possible trees to consider.

The re are also biological and statistical advantages
to considering only small subsets of sequences a t a

"--~'C.K.M. Universitd de Montrdal, C.P. 6128, Succ. centre-ville,
Montr~.al, (Quebec) H3C 3J7. E-mail bryan~Q~Rbi.UMon'~real.ca

tBiomathematics Research Centre, University of Can-
terbury, Private Bag 4800, Christchurch, NZ. E-mail:
m. s t e e l C m a t h , can l : erbury , a c . nz

time. In many cases the actual da ta limit the number
of sequences that can be analysed at one time. The
number of sites tha t can be aligned across four sequences
is generally much more than the number of sites tha t
can be aligned across the full set of n sequences, so
aligning over the complete set of sequences can result in
lost information. Secondly, a recognized source of error
in s tandard tree building methods like neighbor joining
is tha t distantly related sequences can distort the tree
shape [22]. If only small sets of sequences are considered
at one time then those sets containing distantly related
sequences can be down-weighted (or even given a zero
weighting, as in [18], [22]).

The main di~cul ty with quartet based methods
is the question of how best to build large trees out
of small ones. The general problem--determining a
phylogenetic t ree tha t agrees with the largest number
of quartets, or maximum weight set of quar te t s - -
is NP-hard, by a simple reduction from QUARTET
COMPATIBILITY [26]. Exhaust ive search is generally

infeasible: there are (, -s) :2--s binary trees on n leaves
to choose from. When the number of sequences is
limited, and the computat ional time is not, the exact
algorithm of [6] can be used: it runs in time O(n43 '~)
on n sequences and O(n 4) quartets. We turn instead
to imposing biologically reasonable constraints under
which the reconstruction problem becomes tractable.

In particular we give exact, polynomial time algo-
rithm~ for two constrained versions of the optimal tree
construction from quartets problem. In both cases the
degree bound of the output t ree is constrained--we will
only construct trees when there is sufficient phylogenetic
signal to determine moderate ly well resolved trees. In
the first problem we add the constraint that each edge
in the tree is supported by at least one binary character
in an input set. In the second problem we require tha t
the t ree is constructed only from quartets in a given set,
and this set conta{n~ at most two out of three of the pos-
sible quartets on each subset of four leaves. The choice
of two out of three quartets could be made according
to some phylogenetic ranking criterion like maximum
likelihood or parsimony.

I t might be asked whether all of these constraints
are necessary for polynomial complexity? We prove

148

that removing one of these constraints in either problem
leads to NP-hardness.

In a sense the two-out-of-three quartets problem can
be seen as an extension of the Q* technique of [7]. These
authors present a fast exact algorithm for the case when
there is at most one quartet in the input set for each four
taxa, and the output tree is constrained to have only
quartets from this set. The algorithm is exact because
there is always exactly one maximal tree satisfying these
conditions. The Q* method is employed by Kearney [23]
to construct trees from quartets selected by an ordinal
quartet method.

The alternative to exact, constrained algorithms is
heuristic tree construction algorithms, and these have
been produced by a number of computer scientists, bi-
ologists and mathematicians. The heuristics of Sat-
tath and Tversky [25], Fitch [21], Colonius and Schulze
[12], and Bandelt and Dress [1] combine clustering pro-
cedures with a pairwise similarity, or neighbourliness,
scores derived from the quartet sets. A novel varia-
tion on the scoring approach is described by Ben-Dot
et d . [6]. Instead of constructing a similarity score then
clustering, they embed the n taxa as points in ~n using
spml-definite programming, and then apply a nearest
neighbour clustering method.

.4. related, but more sophisticated approach, is the
disc-covering method of [22]. Trees are first constructed
on overlapping sets of closely related sequences, and
these trees are then combined using graph-theoretic
techniques until an entire phylogeny has been con-
structed. This technique is an extension of an earlier
'short quartets ' method [18] which sought to reconstruct
trees from quartets of closely related sequences, but
which sometimes would not return any tree. Both these
methods were shown to reconstruct trees from short
sequences when the sites evolve under simple Markov
models.

The tree building, or 'puzzling', part of the Quartet
p~,~.~1~g method of StrUmmer and yon Haeseler [27]
works by ordering the taxon set arbitrarily, constructing
a tree on the first four taxa, and then adding new taxa
one at a time, selecting the edge to attach each taxa as
the one tha t gives optimum quartet score. The same
approach is used by Willson [28] to optimise according
to a different, but related, criteria. These procedures
can be seen as an analogues of the Wagner tree method
[19].

1.1 P re l l rn i~a r i e s . An 11nrooted phylogenetic
t r ee is an acyclic connected graph with no vertices of
degree two and all leaves (degree one vertices) labelled
uniquely from some leaf set L. A phylogenetic tree is
b i n a r y or r e so lved if all internal vertices have degree

three.
A roo ted phylogenet ic tree is defined in the

same way, except that one internal vertex, which may
have degree two, is distinguished and called the root .
Given any two vertices u, v in a rooted phylogenetic tree,
if the path from u to the root passes through v then we
say that u is a descenden t of v. The descendents of
a vertex v that are also adjacent to v are called the
children of v.

Removing an internal edge e from au unrooted
phylogenetic tree T divides the tree into two connected
components and induces a split or b ipar t i t ion of the
leaf set of T. This split is called the split associated
with e, and the set of all such splits in a tree is denoted
splits(T). A split with two blocks A and B is denoted
AIB. If IAI = 1 or IBI = 1 then the split is t r iv ia l - -
trivial splits correspond to external edges in a tree. A
set of splits S is compat ib le if $ C splits(T) for some
tree T.

The rooted analogue of a split is a cluster. Given
a vertex v in a rooted tree the set of leaves that are
descendents of v is called the duster corresponding to
v. The set of all clusters associated to vertices in a
rooted tree T is denoted clus(T).

A quar t e t is a resolved phylogenetic tree on four
leaves. There are three possible quartets on a given set
of four leaves {a, b, c, d}. We use ablcd to denote the
quartet where a and b are separated from c and d by
the internal edge. A phylogenetic tree T agrees with
a quartet ablcd if a, b, c, d are all leaves of T and the
path from a to b does not share any vertices with the
path from c to d. Let q(T) be the set of quartets that
T agrees with.

The quartet set of a split AIB is defined by

q(AIB) = {aa'[bb~ : {a,a'} C A, {b,b ~} C B}.

Conversely, if Q is a set of quartets on leaf set L put

S(Q) = {AIB: q(AIB) C Q, AIB a split of L}.

Then

q(T) = U q(AIB)
A]Bespli~s(T)

and q(T) C Q if and only if splits(T) C 5(Q).
In the problems we consider, each quartet ablcd will

be assigned a weight w(ab]cd). The weight of a tree T
is equal to the sum of the weights of its quartets; thus

w(T)-- ~ w(ablcd).
ablcdeq(T)

The general quartet to tree reconstruction problem is:

149

T R E E W I T H M A X I M U M Q U A R T E T
W E I G H T
INSTANCE: A weighting w for the quartets on a leaf
set L.
PROBLEM: Determine a phylogenetic tree T for which
w(T) is maximized.

This problem is NP-hard, even when weights are all
0 or 1, by a straight-forward reduction from QUARTET
COMPATIBILITY [26]. We impose two constraints
on the problem: that the splits of the output tree
come from a given set, and the maximum degree of the
output tree is bounded. The first problem we address is:

H U N T I N G F O R T R E E S W I T H W E I G H T E D
Q U A R T E T S
INSTANCE: Weighting w for the quartets on a leaf set
L. Set `9 of splits of L. Number k.
PARAMETER: Degree bound d.
QUESTION: Is there a tree T with degree bounded by
d and splits(T) C ,9 such that w(T) _> A?

The time complexity of the algorithm we present to
solve this problem is O(nk + n4K + n2K 2 + ndKg-1),
where k is the number of splits in `9, K is the number
of distinct splits in `9 and n = ILl.

The problem is clearly NP-hard without the con-
straint that splits(T) C_ ,9; we prove that it also NP-
hard in the case when the constraint splits(T) C ,9 re-
mains and the degree bound restraint is removed (The-
orem 3.6).

We also discuss a related problem, one that turns
out to be a special case of HUNTING FOR TREES
WITH WEIGHTED QUARTETS. In order to allow a
degree of uncertainty in the quartet selection procedure
we permit a quartet set Q to contain at most two of
ab[cd, ac[bd, ad[bc for every set of four leaves a, b, c, d.
We then solve the following problem:

2/3 QUARTET PUZZLING
INSTANCE: Set Q of weighted quartets on a leaf set
L such that for every four leaves a, b, c, d of L at most
two of ab[cd, ac[bd, ad]bc are in Q. Number A.
QUESTION: Is there a binary tree T such that
q(T) C Q and w(T) > A?

Our algorithm for this problem takes O(n 5) time,
which is quite respectable, given that the input size is
O(n4). In the case that there is more than one optimal
tree, or possibly exponentially many optimal trees, we
can construct the strict consensus or majority rule
consensus tree of the optimal trees, all in polynomial
time.

2 O p t i m a l bounded degree t rees in spli ts .

Compatibility methods are perhaps the most widely un-
derstood, and least practiced, methods for construct-
ing phylogenies from characters. Though conceptu-
ally simple search for the largest set of compatible
characters in the input set--they are computationally
unattractive. Day and Sankoff [13] proved that the
MAXIMUM COMPATIBLE SUBSET OF CHARAC-
TERS is polynomially equivalent to MAX CLIQUE,
and so inherits the depressing complexity attributes
of MAX CLIQUE like W[1]-hardness [16] and non-
approximability [5].

The equivalence with MAX CLIQUE might be seen
to make the existence of a useful parameterization for
MAXIMUM COMPATIBLE SUBSET highly unlikely.
However it was shown in [10] that a bound on a
natural parameter--the maximum degree of the output
trcc leads to a useful and nontrivial restriction of
MAXIMUM COMPATIBLE SUBSET. Formally,

H U N T I N G F O R TREES IN SPLITS
INSTANCE: Set ,9 of weighted splits on L. Number A
PARAMETER: Degree bound d.
QUESTION: Is there a tree T with degree bound d and
splits in ,9 such that the sum of the weights of splits in
T exceeds A?

This problem, together with the associated opti-
mization problem, can be solved in O(nk + ndK ~-*)
time, where n is the number of leaves, k is the num-
ber of splits in `9 and K is the number of distinct splits
in `9. Unfortunately, determining the minimum d for
which there exists a tree T with degree bound d and
splits in S is NP-hard [11], and the HUNTING FOR
TREES problem is itself W[1]-hard, due to a reduction
by Fellows [20].

In the HUNTING FOR TREES WITH
WEIGHTED QUARTETS problem the score of
the tree is not determined by the sum of the weights of
its splits, but by the sum of the weights of its quartets.

2.1 Decomposition table. The first step in either
HUNTING FOR TREES method is to convert the
problem from one involving unrooted trees and splits
to one involving rooted trees and clusters [10], or in the
holistic terminology of [17], from the projective case to
the ~ffine case. Fix a leaf z £ L. We define a map Cz
from unrooted trees on L to rooted trees on L - {z},
and from splits of L to dusters of L - {z}. Given an
unrooted tree T let C=(T) be the tree on leaf set L - {z}
obtained by rooting T at the internal vertex closest to
x and then deleting the leaf z and its adjacent edge.
Given a split A[B of L let ~=(AIB) be the cluster of

150

L - given by

A i f z • B
¢~(A]B) = B if z 6 A

We see that the function ~/'z is clearly invertible and that
a set of splits ,9 equals the splits of some unrooted tree T
with degree bound d if and only if Cz(S) = {¢z(A[B) :
A]B • $} equals the set of clusters of a rooted tree
¢ , (T) with degree bound d and root with degree at
most d - 1.

The problem has now become

H U N T I N G F O R R O O T E D T R E E S IN
W E I G H T E D Q U A R T E T S .
INSTANCE: Set C of clusters of L - {x}. Weighting
function w for the quartets on L. Number A.
PARAMETER: Degree bound d.
QUESTION: Is there a rooted tree T with degree bound
d, root with degree at most d - 1, and dust(T) C C
such that w(¢~ "~ (T)) > A.

The fundamental data structure, and basis of recur-
sion, is a decomposition table D. First sort the clusters
in C into lexicographic order and remove duphcates, ob-
taining a list of clusters {C1, C2, . . . ,CK} where Ci C
Cj implies i < j . For each i = 1 , . . . , K we construct
a list of tuples D[i], with {P~,P2,... ,P~} • D[i] if and
only if 2 < r < d - 1 and C~ is the disjoint union of

, . . . ,

There are O(K d-~) tuples with fewer than d clus-
ters. Checking one tuple, and inserting it into the ap-
propriate row of D takes O(n + logK) time, which is
O(n) time since K < 2". The sorting can be per-
formed in O(nk) time using radix sort, making a total
of O(nk + nK d-~) time for the construction of D.

2.2 Counting trees. Each row D[i] in the decompo-
sition table encodes a set of rooted trees with leaf set
Ci, which we denote T(D, i). The set T(D, i) is defined
recv_sively: if Ci = {a} for some leaf a then T(D, i)
cont~n~ the single vertex tree with leaf a; if]Cil _> 2
and D[i] = ~ then T(D, i) = 0. Otherwise, T(D,i)
is the set of all possible trees that can be formed by
choosing a tuple {Pl , . . . ,pr} in D[i], choosing subtrees
T j e 7"(D,j) for each] = 1 , . . . , r , and attaching the
roots of these subtrees to a new vertex that becomes
the root of a rooted tree with leaf set Ci. Since there
may be tuples {Pl , . . . ,p~} in D[i] with 7-(D,pj) = 0
for some j , we can have D[i] ~ 0 but T(D, i) = 0.

It can be shown that for all i the set T(D,i) equals
t he set of trees with leaf set Cl, degree bound d, root
with degree d - 1, and clusters in C [10]. Hence T(D,i)
can be exponential in size (see Theorem 3.2). It is still

possible to calculate IT(D, i)[and extract indexed trees
from T(D, i) in polynomial time.

Define re[i], i = 1,.. . , K recursively by re[i] = 1 if
ICil = 1 and

= Z × mini × - . - × m[p]
{p~,p2 p.}eD[i]

when [Ci] > 1. Note that D[i] = @ implies re[i] -- O.
Then re[i] = IT(D, i)l (see [10]). We remove clusters Ci
such m[i] = 0 as welt as tuples that refer to them. The
values re[i] can be calculated in O(dK d-l) time.

To solve HUNTING FOR ROOTED TREES WITH
WEIGHTED QUARTETS we need to optimize over the
set 7-(D, K) and so we need only consider the clusters
Ci such that Ci • dus(T) for some T 6 T(D, K). We
count the number of trees T • T(D, K) contaln~ug each
cluster C~.

ALGORITHM 2.1. COUNTINCLUDETREE(D,m)

1. 0 i < K . m[g]
2. For i from _~" down to 1 do
3. For (Pl,P2,--. ,P,) i n D[i] do
4. For j from 1 zo r do
5. Add m[pl]m[p2]...rn[pr]mincl[i]/m[{] to

6. End(for)
7. End(for)
8. End(for)
end.

Then rnincl[i] -- I{T • T (D ,K) : Ci • dus(T)}].
We remove any clusters Ci such that rni,c~[i] = O, as
well as any tuples cont.~inlng them.

2.3 Recover ing trees f r o m a decomposi t ion ta-
ble. Now that all dusters C~ with m[i] = 0 have been
removed, we extract arbitrary trees in Y(D,K) using
simple recursion. The procedure could be easily exo
tended to index trees contained in D with an integer
from 1 to m [~ and extract the tree corresponding to a
particular index.

We can extract consensus information from the set
of trees contained in a decomposition table without
having to extract the entire, possibly exponential size,
set. The number of trees in the decomposition table is
given by m[K], and the number of trees containing a
particular cluster Ci is given by m~,cz [£]. Hence we can
construct the strict consensus tree and majority rule
tree [24] of the trees stored in a decomposition table in
polynomial time. Maximum agreement subtrees of the
trees in a decomposition table can also be constructed
in polynomial time [11].

1 5 1

2.4 Q u a r t e t o p t i m i z a t i o n . We need to extend the
definition of ¢E1 (T) to the case when T contains only
a subset of the leaves in L - {x}. Suppose that T is
a rooted tree with leaf set Ci. Let ¢~ i (T ,L) be the
tree obtained from T by attaching a new vertex v to
the root of T, attaching leaves {y : y E L - Ci} to the
vertex v, and unrooting the tree. Note that if T has leaf
set L -- {x} then ¢~'I(T,L) = ~/,~'I(T).

For each T 6 T(D, i) define

Q~(T) = {ab)cd 6 q(¢;1 (T, L)) :]{a, b, c, d} n Ci] _> 3}.

Put

M[i] = max i[~,bl cdeZQ, (T) w(ablcd):T6T(D' i)} "

Observe that if OK = L - { x } then M[K] = max{w(T) :
T E T(D,K)}. Note that there is not always a unique
maximum tree giving weight M[K].

The algorithm requires some pre-processing. Given
subsets

A,B 6 CU {L- X : X 6C}

and leaves u,v 6 L calculate W(A;u,v) =
~{a,a'}_CA w(aa'luv) and then

W(A;B) = Z w(aa'[bb') = ~ W(A;b,b').
a,a' EA;b,b' EB b,b' EB

These calculations take at most O(Kn 4 + K2n 2) time.
Given a tuple {pl, P~,. .- , p~} in D[i] define

= W (O , ; L - C,)
a~ {n, n. }

- w(co,c)
{~, .~}c{n~ p,.}

Each evaluation of W({pl,lo2,... ,Pr}) takes O(d 2)
time, provided that the values W(A;B) have been
stored for all A, B 6 C U {L - X : X E C}. The function
W({p l ,p2 , . . . ,p~}) enables the calculation of Qi(T) in
terms of the maximal proper subtrees of T.

LEMMA 2.1. Consider Ci : ICil _> 3 and T E T(D,i).
Let Tx,T2,... ,Tr be the maximal proper subtrees ofT.
There is a tuple {pl,P2,... ,P~} E D[i] such that subtree
Tj has leaf set Cpj for all j = 1,... , r. Furthermore

qeQ, (r) i=z qeQpy (ry)

Proof. The existence of the tuple {pl ,p2, . . • , Pr } 6 D[i]
follows from clus(T) C C.

We part i t ion the set Qi(T) into three blocks:
(i) Those quartets ablcd E Qi(T) for which I{a, b, c, d} N
Cpj I _> 3 for a unique j E 1 , 2 , . . . , r (in which case
ablcd 6 Qi(Ty)).
(ii) Those quartets ablcd 6 Qi(T) for which [{a, b, c, d}Q
Oil = 3 and there is cluster Cp# such that {a,b,c,d} N
Cpy equals {a, b} or {c, d}.
(iii) Those quartets ablcd E Qi(T) for which there are
clusters Cpk , Cp, such that a, b 6 Cp~ and c, d 6 Cp,.
We see tha t ~ = 1 ~qeQp~ (T~) W(q) is the sum of w(q) of

all quar te ts in the first block, while W({p~,p2, . . . ,p~})
is the sum of w(q) over all quartets in the second and
third blocks. O

We can now state the recursion on which our
optimization algorithm is based. It is proved from
Lemma 2.1 by induction [proof omitted].

THEOREM 2.1. If [Oil _< 2 then M[i] = O, otherwise
M[i] equals the maximum o]

f

M[pj] + W({pl, . . . ,p~})

over all {Pl,P2,... ,P~} e D[i].

We are now ready for the main optimisation algo-
rithm, MAXQWEIGHTTKEE. The algorithm returns a
new decomposition table D* containing exactly all of
the optimal weight trees.

ALGORITHM 2.2. MAXQWEIGHTTREE(C,D,m)

i. For i from 1 to K do
2. If ICi] < 2 Zhen
3. M[i] o

4. D*[i] +- O
5. else
6. Let D*[i] be the set of tuples

{p,,... ,p~} 6 D[i] that maximize

r

M[p] + W({pl,... ,p,})
j=l

aIld let M[i]
7. End(If-else)
8. End(For)
End.

be this maximum value.

The time taken by the algorithm is dominated by
the time taken to evaluate W({pi,p2,... ,p~}), that
is, O(d 2) time for every tuple in every row of D[i].

152

This makes O(d2K d + n 4 g + n2K 2) for the algorithm,
once preprocessing is included. Note that, in practice,
it would be more efficient to calculate and store the
values W(A; B) on the fly, since not every possible value
is used. We separate the calculation out here to aid
presentation and to encourage the development of a
more efficient algorithm for computing these values.

THEOREM 2.2. HUNTING FOR TREES WITH
WEIGHTED Q U A R T E T S can be solved in
O(nk + ndK d-1 + n4K + nZK 2) time, where k is
the number of splits, K is the number of distinct splits,
n is the number of taxa, and d is the degree bound (on
unrooted trees).

2.5 Extens ion to w e i g h t e d fnns. When the de-
gree bound d in the HUNTING FOR TREES WITH
WEIGHTED QUARTETS problem is greater than 3
we can obtain non-binary trees, and these trees can
contain both resolved and unresolved four-taxa trees
(called fans). So far we have only considered weighting
quartets, with fans receiving an implied zero weight.
The algorithms for HUNTING FOR TREES WITH
WEIGHTED QUARTETS can, however, be extended
to incorporate a weight on unresolved quartets, though
the time complexity increases to O(nk + ndSK '~-1 +
n4K 2 + n2K4).

3 2 /3 Quartet Puzz l ing .

As we mentioned earlier, there are two main steps
in quartet based phylogeny reconstruction. We first
analyse sequences four at a time and construct quartet
trees, and then assemble these quartets into a complete
phylogenetic tree. One problem is that there can be
a degree of uncertainty in the first step: with many
methods there might be more than one optimal quartet
tree, and specifying that at most one quartet is chosen
will result in loss of information.

Strirnmer and von Haessler [27] address this prob-
lena by randomly selecting between optimal quartets
on the same leaf set. Others [1, 21] incorporate the
uncertainty into their scoring schemes. Our approach
is to allow the quartet selection procedure to choose
not one, but two quartets for every set of four leaves,
and we will use this larger set of quartets to construct
the tree.

2 /3 Q U A R T E T P U Z Z L I N G
INSTANCE: Set Q of weighted quartets on leaf set
L such that for every a, b ,c ,d E L at most two of
ablcd, aclbd, adlbc are in Q. Number ~.
QUESTION: Is there a binary tree T with leaf set L
such that q(T) C_ Q and w(T) > ~.

We give an O(n 5) time algorithm for constructing
the optimal weight tree, if one exists.

3.1 Spli ts in qua r t e t sets A set of splits S of L is
compatible if S C splits(T) for some phylogenetic tree
T. Compatible sets of splits can be characterized by the
property that

q(8) = U q(AIB)
AIBE8

contahas at most one of able.d, aclbd, ad[bc for every four
leaves a, b, c, d E L.

In their work on split decomposition of metrics,
Bandelt and Dress [3] generalised the concept of com-
patible splits to wealdy compatible splits. A set of
splits is weakly compa t ib l e if for every three splits
A1 I B1, Az I B2, AslBs, at least one of the intersections
A1 N Az N As, A1 N B2 rl Bs, B1 N As N Bs, B1 N B2 N As
is empty. Whereas the size of a set of compatible splits
is at most O(n) the size of a set of weakly compatible
splits is size at most 0(n2). Furthermore

THEOREM 3.1. ([3, 4]). A set of splits S of L is weakly
compatible i /and only if q(S) contains at most two of
ab[ed, aclbd, adlbc for every set of four leaves a, b, c, d E
L.

Thus if Q is a set of quartets such that for every
a ,b ,c ,d E L at most two of ablcd, aclbd, adlbc are in
Q then the set of splits S(Q) is weakly compatible.
An O(n 5) time algorithm for constructing S(Q) from
Q is given in [8]. The number 'K of splits in S(Q)
is O(nZ). By Theorem 2.2 we can find a binary tree
with splits in S(Q) and maximum quartet weight in
O(nk + n K 2 + n4K + n2K 2) = O(n ~) time (or show
that no such tree exists). We will exploit the structure
of S(Q) and reduce this time complexity to 0(nS).

Note that the number of binary trees with splits
in a given set of weakly compatible splits can still
be exponential in n, When S is a set of (g) weakly
compatible splits (the maximum number possible), the
number of binary trees with splits in S can be calculated
exactly.

THEOREM 3.2. Let ~ be a weakly compatible set of (~)
splits of L, where n = ILl. The number of binary

x /2.-4~ trees T with splits(T) C ,5 equals ~:2 ~ n-2 / , a Catalan
number.

[Proof omitted].

3.2 S t r u c t u r a l p rope r t i e s of weak ly compat ible
spli ts . In order to improve the complexity of the

153

2/3 Q U A R T E T PUZZLING algorithm we prove some
structural properties of sets of weakly compatible splits.
Once again we explore a rooted or 'affine' analogue to
sets of splits: weak hierarchies. A w e a k h i e r a r c h y is
a set of clusters such that for any three clusters A, B, C
we have

A N B N C E { A N B , A N C , B n C } .

A set of clusters C forms a c h a i n ff A C B or B C A
for all A, B E C, and a set of splits S forms a chain if
Cz (S) is a chain for some x.

THEOREM 3.3. Any set S of weakly compatible set
splits L is the union of n - 1 chains.

Proof. Fix w e L and put 71 = ,¢w (S), which is a weak
hierarchy [3]. For each pair of leaves a, b

< > = i'] C = ¢ q(S)} .
GET'L:a,bEA

Then 7t C {< a ,b >: a,b E L - {x}} with equality
if and only if 7/ is closed under intersections [2]. For
each A E 7 / w e choose one pair ~r(A) = {x, y} such that
< x, y > = A.

The set 7 / c a n be partially ordered with respect to
set inclusion. We say that a subset .,4 C 71 is an an t i -
cha in of 7-/A1, A2 E .,4 and A1 ~ A2 implies At ~ A2.
Let .,4 be a maximum size anti-chain of 7-/.

Given any x E L - {w} we can show that if there are
distinct A1,A2,As E A such tha t x E 7r(Ax) N It(A2) Iq
~r(As) then AxI(L - At), A21(L - A2) and AzI(L - As)
are not weakly compatible. Hence for each x there are
at most two clusters A,A' e A such tha t x e 7r(A)
and x E ~r(A'). Furthermore if there is a dus ter A
such tha t A = {x} then there is only one A ~ E .,4 such
that x E ~r(A'). I t follows tha t .,4 contains at most
IL - {w}l = n - 1 members. By Dilworths theorem [15],
7-/can be covered by n - 1 chains. []

Note tha t the number n - 1 of chains is tight since
¢~ (S) of a maximum set of cyclic splits S [3] contains
n - 1 clusters of size 2. The proof of Theorem 3.3 gives
an efficient way to construct a chain decomposition into
O(n) chains.

LEMMA 3.1. Given a set of splits S together with the
set of quartets Q~ = {ablew : ablew e q(S) for some
w q L we decompose ,5 into O(n) chains in O(n s) time.

Proof. We first construct and sort 7-/= Cw(S) in O(n s)
t ime using radix sort. For each pair of leaves a, b E
L -- {w} construct < a,b > = {c : ablew ¢ Q~n} and
determine i f < a, b > is in 71. In this way, assign a
unique pair rr(A) to each A E 7/.

For each z e L - {w} consider the set 71z = {<
x,y >: {z,y} = 7r(< z , y >). BY the proof of Theorem
3.3 71z contains no anti-chains of size three, so can
be decomposed into two chains. This decomposition
can be performed in O(n 2) t ime by constructing an
incomparability graph for 71x (noting that < x, y > C <
x,y' > if and only if xy'lyw ~ Q~) and 2-colouring.
Repeating this process for all x e L - {w} takes O(n3) "
time. o

The next efficiency gain results from determining a
bound on the size of the decomposition table for C. First
we bound the size of a special kind of weak hierarchy.

LEMMA 3.2. Suppose that 71 is a weak hierarchy on set
L such that A E 71 implies (L - A) E 7/. Then the
number off clusters in 7t is at most O(ILD.

Proof. Fix u E L and let 71~ be the set of clusters in
7.l containing u. Let A, B, C be clusters in 71~ tha t
all have size k (where 1 < k < n). By applying
the weak hierarchies triplewise property to clusters
A, B, C, L - A, L - B, L - C three at a t ime we can
infer that two out of A, B, C are equal. Therefore there
can be at most two distinct clusters of size k in 71~,
so 71u contains a t most 2n clusters. For any cluster
A E 7-I either A E 7-/u or (L - A) e 7/~ so we get
1711 _< 21-r/=l <_ 4n. []

THEOREM 3.4. Given any cluster A in a weak hierarchy
7-l there are at most O(IA D pairs of clusters B, C such
that B N C =O and B U C = A.

Proof. Let C be the set of clusters B E 7-I such that
B C A and (A - B) e 7-/. Then C is a weak hierarchy
on ground set A with the proper ty that B E C implies
(A - B) E C. Apply Lernrna 3.2 to C to obtain
ICl e O(IAI). m

3.3 An O(n s) algorithm for 2 /3 QUARTET
P U Z Z L I N G . The O(n s) algorithm follows simi-
lar steps as the HUNTING FOR TREES W I T H
WEIGHTED Q U A RTETS algorithm. First we con-
struct the set of splits, S(Q), using the O(n s) algorithm
of [8]. This algori thm can also remove quartets from Q
that are not in q(S(Q)), set S(Q) is weakly compati-
ble, so contains O(n 2) splits. Choose arbi t rary w E L
and construct the weak hierarchy 7-I = ¢~(S(Q)) . We
then construct the decomposition table, and calculate
the tables m and mina, as in §2.2. This all takes at
most O(n s) time.

We now use Lemma 3.1 to construct O(n) chains
Ct,C2,. . . ,Ca with union containing 7-/. Order the
dusters in each chain by inclusion. For each chain Ci

154

and every pair of leaves u, v we can calculate all the
values {W(Cj;u,v) : Cj E Ci} in O(n 2) time. Hence it
takes O(n s) time to calculate W(A;u ,v) for all A E 7-/
and u, v E L. Once these values are calculated it takes
a further O(n 2) to evaluate each case of

= Z
u,vECp2 uEC1, ~ ,vEL--C~

+

uECpx ,vEL-C~

By Theorem 3.4 the number of these tuples is
O(nlCl) = O(n3).

THEOREM 3.5. 2/3 QUARTET PUZZLING can be
solved in O(n s) time.

3.4 D r o p p i n g t h e degree b o u n d Having found a
fast algorithm for 2/3 QUARTET PUZZLING with a
degree bound constraint, it might be asked whether a
fast algorithm exists when we do not apply a degree
constraint. The answer, in general, is no---assnmlng
tha t N P # P. Determining the tree with splits in S
and optimal quartet weight is NP-hard, even when S is
weakly compatible.

THEOREM 3.6. Determining the tree T with leaf set L
and q(T) C Q that maximizes w(T) is NP-hard when
Q contains at most two of abled, aclbd, adlbe for each
a,b,e, d 6 L.

Proof. In [11] it was proven tha t determining the max-
imum compatible subset of a set of a weak compatible
splits is NP-hard. Let S be an arbi t rary set of weakly
compatible splits and put Q = UAiBcsq(AIB). For ev-
ery split AilBi E S there exists a quartet aia~lb~b~ E
q(AdSd such that a lbib ¢ q(AjlS#) for an other
splits AjlB j E S [3, 4]. Choose one of these quartets for
each split and give it weight one. Give all other quartets
weight zero. Then for any tree T with leaf set L and
q(T) we have

w(ablcd) = IsNitsCT)l. []
ablcdEq(T)

3.5 Probabilistic analysis. The 2/3 QUARTET
PUZZLING method is dearly consistent: if it is given
the set of quartets of some binary tree T then it will
return T. The method has the capacity to handle more
quartets than the Q* method of Berry and Gascuel [7],
so like the Q* method the quartet hunting method has
a polynomial convergence rate under simple models of
site substitution. We show that, like the Q* method, the
2/3 QUARTET PUZZLING method is highly unlikely
to return a fully resolved tree when given random data.

Suppose for each set of four leaves in L two out
of the three possible quartets are selected randomly
and uniformly (i.e. with equal probability), and these
selections are made independently between quartets.
Let P(n) be the probability that the resulting set Q
of quartets contains q(T) for some binary tree with n
leaves.

THEOREM 3.7.

P(n) < b(n)

where b(n) = (2n - 5)!! = (2n - 5)!/(2n-3(n - 3)!).
Consequently

n m P(n) = o.
n - - b o o

Proof. We calculate the probability that Q contains the
quartets of a part icular binary tree T on n leaves and
then sum over all possible binary trees on n leaves to
obtain the upper bound. []

We note t ha t (~)(]) b(n) goes to zero very quickly.
When n = 1 0 w e have P(n) < 0.3 x 10 -3°. When
n = 20 we have P(n) < 0.16 × 10 -s32.

Acknowledgements
This work was carried out while D.Bryant held a Bioinfor-
matics Postdoctoral Fellowship from the Canadian Institute
for Advanced Research, Evolutionary Biology Program. Re-
search supported in part by the Natural Sciences and En-
gineering Research Council of Canada and the Canadian
Genome Analysis and Technology grants to D.Sankoff. The
second author thank~ the New Zealand Marsden Fund. We
also thank C. Semple for his careful proof reading.

References

[1] H-J. Bauddt and A. Dress, Reconstructing the shape
of a ~ from observed dissimilarity data, Adv. Appl.
Math., 7 (1986), pp. 309---343.

[2] H-J. Bandelt and A. Dress, Weak hierarchies associated
with similarity measures-an additive clusterin 9 tech-
n/que, Bull. Math. Biol, 51(1) (1989), pp. 133-166.

[3] H-J. Bandelt and A. Dress, A canonical decomposition
theory for metrics on a finite set, Adv. Math., 92
(1992), pp. 47-105.

[4] H-J. Bandelt and A. Dress, A relational approach to
split decomposition, tech. report, Universit£t Bielefeld,
1994.

[5] M. Bellare, O. Goldreich, and M. Sudan, Free bits,
PCPs and rwn-approzimability - towards tight results,
SIAM J. Comput. 27(3) (1998), pp. 804-915.

155

[6] A. Ben-Dor, B. Chor, D. Grout, R. Ophir, and
D. PeUeg, From four-taxon trees to phylogenies: the
case of mammalian evolution, tLECOMB (1998), pp. 9--
19.

[7] V. Berry and O. Gascuel, Inferring evolutionary trees
with strong combinatorial evidence, COCOON (1997),
pp. 111-123.

[8] V. Berry and D. Bryant, Faster reliable phylogenetic
analysis, Submitted to RECOMB, 1999.

[9] D. Bryant and M. Steel, Extension operations on sets
of leaflabelled trees, Adv. Appl. Math., 16 (1995),
pp. 425---453.

[10] D. Bryant, Hunting for trees in binary character sets:
efficient algorithms for e.xtraction, enumeration, and
optimization, 3. Comput. Biol., 3(2) (1996), pp. 275-
288.

[11] D. Bryant, Building trees, hunting for trees and com-
paring trees, Ph.D. thesis, University of Canterbury,
NZ. 1997.

[12] N. Colonius and H. H. Schulze, Tree structures for
proximity data, British J. Math. Statist. Psych., 34
(1981), pp. 167-180.

[13] W. H. E. Day and D. Sankoff, Computational complex-
ity of inferring phylogenies by compatibility, Sys. Zool.,
35(2) (1986), pp. 224-229.

[14] M. C. H. Dekker, Reconstruction methods for deriva-
tion trees, Master's thesis, Department of Mathematics
and Computer Science, Vrije Universiteit Amsterdam,
1986.

[15] l:t. P. Dilworth, A decomposition theorem for partially
ordered sets, Ann. Math., 29 (1950), pp. 1-10.

[16] R. Downey and M. Fellows, Fixed-Parameter tractabil-
ity and completeness II. On completeness for W[1],
Theoret. Comput. Sci., 141(1-2) (1996), pp. 109--131.

[17] A. Dress, Towards a theory of holistic clustering,
in Mathematical hierarchies and biology, DIMACS
Seer. Discrete Math. Theoret. Comput. Sci., 37 (1997),
pp. 271-289.

[18] P. L. ErdSs, M. Steel, L. Sz~keley, and T. Waraow,
Inferring big trees from short sequences, Automata,
Languages, and Programming (1997), pp. 827.--837.

[19] J. Farris, Estimating phylogenetie trees from distance
matrices, Amer. Naturalist, 106(951) (1972), pp. 645-
667.

[20] M. Fellows, Private commtmication. 1996.
[21] W. M. Fitch, A non-sequential method of constructing

trees and hierarchical classifications, J. Mol. Evol. 18
(1981), pp. 30-37.

[22] D. Huson, S. Nettles, T. Parida, T. Warnow, and
S. Yooseph, The disc-covering method for tree recon-
struetion~ ALEX (1998).

[23] P. Kearney, The Ordinal Quartet Methods tLECOMB
(1998), pp. 125-134.

[24] F. R. McMorris, D. B. Meronk, and D. A. Neumann,
A ~iew of some consensus methods for trees, in Nu-
merical Taxonomy, J. Felsenstein (ed), Springer Verlag,
pp. 122-125, 1983.

[25] S. Sattath and A. Tversky, Additive similarity trees.

Psychometrika, 42(3) (1997), pp. 319--345.
[26] M. Steel, The complexity of reconstructing trees from

qualitative characters and subtrees, J. Classif., 9 (1992),
pp. 91-116.

[27] K. Strimmer and A. yon Haeseler, Quartet puzzling: a
quartet maximum-likelihood method for reconstructing
tree topologies, Mol. Biol. Evol., 13(7) (1996), pp 964-
969.

[28] S. Willson, Measuring inconsistency in phylogenetic
trees, J. Theoret. Biol, 190 (1998), pp. 15-36.

