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Fast algorithms for constructing optimal trees from quartets 

David Bryant" and Mike Steel* 

A b s t r a c t  

The reconstruction of phylogenetic trees from small sub- 
trees on overlapping leaf sets is an important contemporary 
problem in computational biology. Here we investigate the 
problem of constructing optimal phylogenetic trees from a 
weighted set of quartets (resolved trees on four leaves). This 
problem is faced by a general class of phylogenetic recon- 
struction techniques where small subsets of the taxon set 
are analysed first and these small phylogenies are reassem- 
bled into a complete phylogeny. The problem of construct- 
ing a phylogeny that agrees with the maximum number, or 
maximum weight set, of quartets is NP-hard. 

We consider two constrained versions. In the first we 
specify that T has bounded degree and that the splits of T 
must come from some given set, for example from the set 
of characters in the sequence data. We give a polynomial 
time algorithm that determines an optimal weight tree, or 
shows that no such tree exists. In the second we assume that  
the selection procedure for the small phylogenies returns at 
most two of the three possible resolved quartets for every 
set of four leaves. We give an O(n s) algorithm that  finds 
an optimal weight binary tree, if it exists, with quartets 
exclusively from the input set. 

1 Introduction. 

The reconstruction of large evolutionary (phylogenetic) 
trees from smaller subtrees is currently receiving con- 
siderable attention in the computational biology com- 
munity [6, 7, 18, 22, 23, 27, 28]. 

Such methods are based on the principle t h a t  small  
is easier, and often more reliable. Small sets of  t a x a  
(species) allow for far more intensive analysis and  the  
application of complex models to reconstruct t rees f rom 
the corresponding sequences that these taxa  are  being 
compared by. Tree criteria like maximum likelihood, 
which are computationally horrendous on larger t rees ,  
can be solved exactly on four-taxa trees (quartets)  and  
there are just  four possible trees to consider. 

The re  are also biological and statistical advantages  
to considering only small subsets of sequences a t  a 

"--~'C.K.M. Universitd de Montrdal, C.P. 6128, Succ. centre-ville, 
Montr~.al, (Quebec) H3C 3J7. E-mail bryan~Q~Rbi.UMon'~real.ca 

tBiomathematics Research Centre, University of Can- 
terbury, Private Bag 4800, Christchurch, NZ. E-mail: 
m. s t e e l C m a t h ,  can l : erbury ,  a c .  nz  

time. In many cases the actual  da ta  limit the number 
of sequences that  can be analysed at one time. The  
number  of sites tha t  can be aligned across four sequences 
is generally much more than  the number of sites tha t  
can be aligned across the full set of n sequences, so 
aligning over the complete set of sequences can result in 
lost information. Secondly, a recognized source of error 
in s tandard tree building methods  like neighbor joining 
is tha t  distantly related sequences can distort the tree 
shape [22]. If only small sets of sequences are considered 
at  one time then those sets containing distantly related 
sequences can be down-weighted (or even given a zero 
weighting, as in [18], [22]). 

The  main di~cul ty  with quartet  based methods 
is the question of how best to build large trees out 
of  small ones. The general problem--determining a 
phylogenetic t ree tha t  agrees with the largest number 
of quartets,  or maximum weight set of quar te t s - -  
is NP-hard,  by a simple reduction from QUARTET 
COMPATIBILITY [26]. Exhaust ive search is generally 

infeasible: there are ( , -s) :2--s  binary trees on n leaves 
to  choose from. When the number of sequences is 
limited, and the computat ional  time is not, the exact 
algorithm of [6] can be used: it runs in time O(n43 '~) 
on n sequences and O(n 4) quartets.  We turn instead 
to  imposing biologically reasonable constraints under 
which the reconstruction problem becomes tractable. 

In particular we give exact,  polynomial time algo- 
rithm~ for two constrained versions of the optimal tree 
construction from quartets problem. In both cases the 
degree bound of the output  t ree  is constrained--we will 
only construct  trees when there  is sufficient phylogenetic 
signal to determine moderate ly  well resolved trees. In 
the first problem we add the constraint that  each edge 
in the tree is supported by at  least one binary character 
in an input set. In the second problem we require tha t  
the t ree  is constructed only from quartets in a given set, 
and this set conta{n~ at most  two out of three of the pos- 
sible quartets on each subset of four leaves. The choice 
of two out of three quartets could be made according 
to  some phylogenetic ranking criterion like maximum 
likelihood or parsimony. 

I t  might be asked whether  all of these constraints 
are necessary for polynomial complexity? We prove 
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that removing one of these constraints in either problem 
leads to NP-hardness. 

In a sense the two-out-of-three quartets problem can 
be seen as an extension of the Q* technique of [7]. These 
authors present a fast exact algorithm for the case when 
there is at most one quartet in the input set for each four 
taxa, and the output tree is constrained to have only 
quartets from this set. The algorithm is exact because 
there is always exactly one maximal tree satisfying these 
conditions. The Q* method is employed by Kearney [23] 
to construct trees from quartets selected by an ordinal 
quartet method. 

The alternative to exact, constrained algorithms is 
heuristic tree construction algorithms, and these have 
been produced by a number of computer scientists, bi- 
ologists and mathematicians. The heuristics of Sat- 
tath and Tversky [25], Fitch [21], Colonius and Schulze 
[12], and Bandelt and Dress [1] combine clustering pro- 
cedures with a pairwise similarity, or neighbourliness, 
scores derived from the quartet sets. A novel varia- 
tion on the scoring approach is described by Ben-Dot 
et d .  [6]. Instead of constructing a similarity score then 
clustering, they embed the n taxa as points in ~n using 
spml-definite programming, and then apply a nearest 
neighbour clustering method. 

.4. related, but more sophisticated approach, is the 
disc-covering method of [22]. Trees are first constructed 
on overlapping sets of closely related sequences, and 
these trees are then combined using graph-theoretic 
techniques until an entire phylogeny has been con- 
structed. This technique is an extension of an earlier 
'short quartets '  method [18] which sought to reconstruct 
trees from quartets of closely related sequences, but 
which sometimes would not return any tree. Both these 
methods were shown to reconstruct trees from short 
sequences when the sites evolve under simple Markov 
models. 

The tree building, or 'puzzling', part of the Quartet 
p~,~.~1~g method of StrUmmer and yon Haeseler [27] 
works by ordering the taxon set arbitrarily, constructing 
a tree on the first four taxa, and then adding new taxa 
one at a time, selecting the edge to attach each taxa as 
the one tha t  gives optimum quartet score. The same 
approach is used by Willson [28] to optimise according 
to a different, but related, criteria. These procedures 
can be seen as an analogues of the Wagner tree method 
[19]. 

1.1 P re l l rn i~a r i e s .  An 11nrooted phylogenetic 
t r ee  is an acyclic connected graph with no vertices of 
degree two and all leaves (degree one vertices) labelled 
uniquely from some leaf set L. A phylogenetic tree is 
b i n a r y  or r e so lved  if all internal vertices have degree 

three. 
A roo ted  phylogenet ic  tree is defined in the 

same way, except that one internal vertex, which may 
have degree two, is distinguished and called the root .  
Given any two vertices u, v in a rooted phylogenetic tree, 
if the path from u to the root passes through v then we 
say that u is a descenden t  of v. The descendents of 
a vertex v that  are also adjacent to v are called the 
children of v. 

Removing an internal edge e from au unrooted 
phylogenetic tree T divides the tree into two connected 
components and induces a split or b ipar t i t ion  of the 
leaf set of T. This split is called the split associated 
with e, and the set of all such splits in a tree is denoted 
splits(T). A split with two blocks A and B is denoted 
AIB. If IAI = 1 or IBI = 1 then the split is t r iv ia l - -  
trivial splits correspond to external edges in a tree. A 
set of splits S is compat ib le  if $ C splits(T) for some 
tree T. 

The rooted analogue of a split is a cluster.  Given 
a vertex v in a rooted tree the set of leaves that are 
descendents of v is called the duster corresponding to 
v. The set of all clusters associated to vertices in a 
rooted tree T is denoted clus(T). 

A quar t e t  is a resolved phylogenetic tree on four 
leaves. There are three possible quartets on a given set 
of four leaves {a, b, c, d}. We use ablcd to denote the 
quartet where a and b are separated from c and d by 
the internal edge. A phylogenetic tree T agrees with 
a quartet ablcd if a, b, c, d are all leaves of T and the 
path from a to b does not share any vertices with the 
path from c to d. Let q(T) be the set of quartets that  
T agrees with. 

The quartet set of a split AIB is defined by 

q(AIB ) = {aa'[bb~ : {a,a'} C A, {b,b ~} C B}. 

Conversely, if Q is a set of quartets on leaf set L put 

S(Q) = {AIB: q(AIB ) C Q, AIB a split of L}. 

Then 

q(T) = U q(AIB) 
A]Bespli~s(T) 

and q(T) C Q if and only if splits(T) C 5(Q). 
In the problems we consider, each quartet ablcd will 

be assigned a weight w(ab]cd). The weight of a tree T 
is equal to the sum of the weights of its quartets; thus 

w(T)--  ~ w(ablcd ). 
ablcdeq(T) 

The general quartet to tree reconstruction problem is: 
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T R E E  W I T H  M A X I M U M  Q U A R T E T  
W E I G H T  
INSTANCE: A weighting w for the quartets on a leaf 
set L. 
PROBLEM: Determine a phylogenetic tree T for which 
w(T) is maximized. 

This problem is NP-hard, even when weights are all 
0 or 1, by a straight-forward reduction from QUARTET 
COMPATIBILITY [26]. We impose two constraints 
on the problem: that the splits of the output tree 
come from a given set, and the maximum degree of the 
output tree is bounded. The first problem we address is: 

H U N T I N G  F O R  T R E E S  W I T H  W E I G H T E D  
Q U A R T E T S  
INSTANCE: Weighting w for the quartets on a leaf set 
L. Set `9 of splits of L. Number k. 
PARAMETER: Degree bound d. 
QUESTION: Is there a tree T with degree bounded by 
d and splits(T) C ,9 such that w(T) _> A? 

The time complexity of the algorithm we present to 
solve this problem is O(nk + n4K + n2K 2 + ndKg-1), 
where k is the number of splits in `9, K is the number 
of distinct splits in `9 and n = ILl. 

The problem is clearly NP-hard without the con- 
straint that splits(T) C_ ,9; we prove that it also NP- 
hard in the case when the constraint splits(T) C ,9 re- 
mains and the degree bound restraint is removed (The- 
orem 3.6). 

We also discuss a related problem, one that turns 
out to be a special case of HUNTING FOR TREES 
WITH WEIGHTED QUARTETS. In order to allow a 
degree of uncertainty in the quartet selection procedure 
we permit a quartet set Q to contain at most two of 
ab[cd, ac[bd, ad[bc for every set of four leaves a, b, c, d. 
We then solve the following problem: 

2/3 QUARTET PUZZLING 
INSTANCE: Set Q of weighted quartets on a leaf set 
L such that for every four leaves a, b, c, d of L at most 
two of ab[cd, ac[bd, ad]bc are in Q. Number A. 
QUESTION: Is there a binary tree T such that 
q(T) C Q and w(T) > A? 

Our algorithm for this problem takes O(n 5) time, 
which is quite respectable, given that the input size is 
O(n4). In the case that there is more than one optimal 
tree, or possibly exponentially many optimal trees, we 
can construct the strict consensus or majority rule 
consensus tree of the optimal trees, all in polynomial 
time. 

2 O p t i m a l  bounded  degree t rees in spli ts .  

Compatibility methods are perhaps the most widely un- 
derstood, and least practiced, methods for construct- 
ing phylogenies from characters. Though conceptu- 
ally simple search for the largest set of compatible 
characters in the input set--they are computationally 
unattractive. Day and Sankoff [13] proved that the 
MAXIMUM COMPATIBLE SUBSET OF CHARAC- 
TERS is polynomially equivalent to MAX CLIQUE, 
and so inherits the depressing complexity attributes 
of MAX CLIQUE like W[1]-hardness [16] and non- 
approximability [5]. 

The equivalence with MAX CLIQUE might be seen 
to make the existence of a useful parameterization for 
MAXIMUM COMPATIBLE SUBSET highly unlikely. 
However it was shown in [10] that a bound on a 
natural parameter--the maximum degree of the output 
trcc leads to a useful and nontrivial restriction of 
MAXIMUM COMPATIBLE SUBSET. Formally, 

H U N T I N G  F O R  TREES IN SPLITS 
INSTANCE: Set ,9 of weighted splits on L. Number A 
PARAMETER: Degree bound d. 
QUESTION: Is there a tree T with degree bound d and 
splits in ,9 such that the sum of the weights of splits in 
T exceeds A? 

This problem, together with the associated opti- 
mization problem, can be solved in O(nk + ndK ~-*) 
time, where n is the number of leaves, k is the num- 
ber of splits in `9 and K is the number of distinct splits 
in `9. Unfortunately, determining the minimum d for 
which there exists a tree T with degree bound d and 
splits in S is NP-hard [11], and the HUNTING FOR 
TREES problem is itself W[1]-hard, due to a reduction 
by Fellows [20]. 

In the HUNTING FOR TREES WITH 
WEIGHTED QUARTETS problem the score of 
the tree is not determined by the sum of the weights of 
its splits, but by the sum of the weights of its quartets. 

2.1 Decomposition table. The first step in either 
HUNTING FOR TREES method is to convert the 
problem from one involving unrooted trees and splits 
to one involving rooted trees and clusters [10], or in the 
holistic terminology of [17], from the projective case to 
the ~ffine case. Fix a leaf z £ L. We define a map Cz 
from unrooted trees on L to rooted trees on L -  {z}, 
and from splits of L to dusters of L - {z}. Given an 
unrooted tree T let C=(T) be the tree on leaf set L -  {z} 
obtained by rooting T at the internal vertex closest to 
x and then deleting the leaf z and its adjacent edge. 
Given a split A[B of L let ~=(AIB ) be the cluster of 
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L - given by 

A i f z • B  
¢~(A]B) = B if z 6 A 

We see that the function ~/'z is clearly invertible and that 
a set of splits ,9 equals the splits of some unrooted tree T 
with degree bound d if and only if Cz(S) = {¢z(A[B) : 
A]B • $} equals the set of clusters of a rooted tree 
¢ , (T)  with degree bound d and root with degree at 
most d -  1. 

The problem has now become 

H U N T I N G  F O R  R O O T E D  T R E E S  IN 
W E I G H T E D  Q U A R T E T S .  
INSTANCE: Set C of clusters of L - {x}. Weighting 
function w for the quartets on L. Number A. 
PARAMETER: Degree bound d. 
QUESTION: Is there a rooted tree T with degree bound 
d, root with degree at most d -  1, and dust(T) C C 
such that w(¢~ "~ (T)) > A. 

The fundamental data structure, and basis of recur- 
sion, is a decomposition table D. First sort the clusters 
in C into lexicographic order and remove duphcates, ob- 
taining a list of clusters {C1, C2, . . .  ,CK} where Ci C 
Cj implies i < j .  For each i = 1 , . . . ,  K we construct 
a list of tuples D[i], with {P~,P2,... ,P~} • D[i] if and 
only if 2 < r < d - 1 and C~ is the disjoint union of 

, . . . , 

There are O(K d-~) tuples with fewer than d clus- 
ters. Checking one tuple, and inserting it into the ap- 
propriate row of D takes O(n + logK) time, which is 
O(n) time since K < 2". The sorting can be per- 
formed in O(nk) time using radix sort, making a total 
of O(nk + nK d-~) time for the construction of D. 

2.2 Counting trees. Each row D[i] in the decompo- 
sition table encodes a set of rooted trees with leaf set 
Ci, which we denote T(D, i). The set T(D, i) is defined 
recv_sively: if Ci = {a} for some leaf a then T(D, i) 
cont~n~ the single vertex tree with leaf a; if ]Cil _> 2 
and D[i] = ~ then T(D, i )  = 0. Otherwise, T(D,i)  
is the set of all possible trees that  can be formed by 
choosing a tuple {Pl , . . .  ,pr} in D[i], choosing subtrees 
T j e  7"(D,j) for each ] = 1 , . . .  , r ,  and attaching the 
roots of these subtrees to a new vertex that becomes 
the root of a rooted tree with leaf set Ci. Since there 
may be tuples {Pl , . . .  ,p~} in D[i] with 7-(D,pj) = 0 
for some j ,  we can have D[i] ~ 0 but T(D, i) = 0. 

It can be shown that  for all i the set T(D,i)  equals 
t he  set of trees with leaf set Cl, degree bound d, root 
with degree d -  1, and clusters in C [10]. Hence T(D,i)  
can be exponential in size (see Theorem 3.2). It is still 

possible to calculate IT(D, i)[ and extract indexed trees 
from T(D, i) in polynomial time. 

Define re[i], i = 1,.. .  , K recursively by re[i] = 1 if 
ICil = 1 and 

= Z × mini  × - . -  × m[p ] 
{p~,p2 ..... p.}eD[i] 

when [Ci] > 1. Note that  D[i] = @ implies re[i] -- O. 
Then re[i] = IT(D, i)l (see [10]). We remove clusters Ci 
such m[i] = 0 as welt as tuples that refer to them. The 
values re[i] can be calculated in O(dK d-l) time. 

To solve HUNTING FOR ROOTED TREES WITH 
WEIGHTED QUARTETS we need to optimize over the 
set 7-(D, K) and so we need only consider the clusters 
Ci such that  Ci • dus(T) for some T 6 T(D, K). We 
count the number of trees T • T(D, K) contaln~ug each 
cluster C~. 

ALGORITHM 2.1. COUNTINCLUDETREE(D,m) 

1. 0 i < K .  m[g]  
2. For i from _~" down to 1 do 
3. For (Pl,P2,--. ,P,) i n  D[i] do 
4. For j from 1 zo r do 
5. Add m[pl]m[p2]...rn[pr]mincl[i]/m[{] to 

6. End(for) 
7. End(for) 
8. End(for) 
end. 

Then rnincl[i] -- I{T • T (D ,K)  : Ci • dus(T)}]. 
We remove any clusters Ci such that rni,c~[i] = O, as 
well as any tuples cont.~inlng them. 

2.3 Recover ing  trees  f r o m  a decomposi t ion  ta- 
ble.  Now that  all dusters C~ with m[i] = 0 have been 
removed, we extract arbitrary trees in Y(D,K) using 
simple recursion. The procedure could be easily exo 
tended to index trees contained in D with an integer 
from 1 to m [ ~  and extract the tree corresponding to a 
particular index. 

We can extract consensus information from the set 
of trees contained in a decomposition table without 
having to extract the entire, possibly exponential size, 
set. The number of trees in the decomposition table is 
given by m[K], and the number of trees containing a 
particular cluster Ci is given by m~,cz [£]. Hence we can 
construct the strict consensus tree and majority rule 
tree [24] of the trees stored in a decomposition table in 
polynomial time. Maximum agreement subtrees of the 
trees in a decomposition table can also be constructed 
in polynomial time [11]. 
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2.4 Q u a r t e t  o p t i m i z a t i o n .  We need to extend the 
definition of ¢E1 (T) to the case when T contains only 
a subset of the leaves in L - {x}. Suppose that T is 
a rooted tree with leaf set Ci. Let ¢~ i (T ,L)  be the 
tree obtained from T by attaching a new vertex v to 
the root of T, attaching leaves {y : y E L - Ci} to the 
vertex v, and unrooting the tree. Note that if T has leaf 
set L -- {x} then ¢~'I(T,L) = ~/,~'I(T). 

For each T 6 T(D, i) define 

Q~(T) = {ab)cd 6 q(¢;1  (T, L)) : ]{a, b, c, d} n Ci] _> 3}. 

Put  

M[i] = max i[ ~,bl cdeZQ, (T) w(ablcd):T6T(D' i )}  " 

Observe that if OK = L - { x }  then M[K] = max{w(T) : 
T E T(D,K)}. Note that  there is not always a unique 
maximum tree giving weight M[K]. 

The algorithm requires some pre-processing. Given 
subsets 

A,B 6 CU {L- X : X 6C} 

and leaves u,v 6 L calculate W(A;u,v) = 
~{a,a'}_CA w(aa'luv) and then 

W(A;B) = Z w(aa'[bb') = ~ W(A;b,b'). 
a,a' EA;b,b' EB b,b' EB 

These calculations take at most O(Kn 4 + K2n 2) time. 
Given a tuple {pl, P~,. .-  , p~} in D[i] define 

= W ( O , ; L -  C,) 
a~ {n, ..... n. } 

- w(co,c ) 
{~, .~}c{n~ ..... p,.} 

Each evaluation of W({pl,lo2,... ,Pr}) takes O(d 2) 
time, provided that the values W(A;B) have been 
stored for all A, B 6 C U {L - X : X E C}. The function 
W({p l ,p2 , . . .  ,p~}) enables the calculation of Qi(T) in 
terms of the maximal proper subtrees of T. 

LEMMA 2.1. Consider Ci : ICil _> 3 and T E T(D,i). 
Let Tx,T2,... ,Tr be the maximal proper subtrees ofT. 
There is a tuple {pl,P2,... ,P~} E D[i] such that subtree 
Tj has leaf set Cpj for all j = 1,... , r. Furthermore 

qeQ, (r) i=z qeQpy (ry) 

Proof. The existence of the tuple {pl ,p2, . .  • , Pr } 6 D[i] 
follows from clus(T) C C. 

We part i t ion the set Qi(T) into three blocks: 
(i) Those quartets  ablcd E Qi(T) for which I{a, b, c, d} N 
Cpj I _> 3 for a unique j E 1 , 2 , . . . , r  (in which case 
ablcd 6 Qi(Ty)).  
(ii) Those quartets  ablcd 6 Qi(T) for which [{a, b, c, d}Q 
Oil = 3 and there is cluster Cp# such that  {a,b,c,d} N 
Cpy equals {a, b} or {c, d}. 
(iii) Those quartets  ablcd E Qi(T) for which there are 
clusters Cpk , Cp, such that  a, b 6 Cp~ and c, d 6 Cp,. 
We see tha t  ~ = 1  ~qeQp~ (T~) W(q) is the sum of w(q) of 

all quar te ts  in the first block, while W({p~,p2, . . .  ,p~}) 
is the sum of w(q) over all quartets  in the second and 
third blocks. O 

We can now state the recursion on which our 
optimization algorithm is based. It is proved from 
Lemma 2.1 by induction [proof omitted]. 

THEOREM 2.1. If [Oil _< 2 then M[i] = O, otherwise 
M[i] equals the maximum o] 

f 

M[pj] + W({pl, . . .  ,p~}) 

over all {Pl,P2,... ,P~} e D[i]. 

We are now ready for the main optimisation algo- 
rithm, MAXQWEIGHTTKEE. The algorithm returns a 
new decomposition table D* containing exactly all of 
the optimal weight trees. 

ALGORITHM 2.2. MAXQWEIGHTTREE(C,D,m) 

i. For i from 1 to K do 
2. If ICi] < 2 Zhen 
3. M[i] o 

4. D*[i] +- O 
5. else 
6. Let D*[i] be the set of tuples 

{p,,... ,p~} 6 D[i] that maximize 

r 

M[p ] + W({pl,... ,p,}) 
j=l 

aIld let M[i] 
7. End(If-else) 
8. End(For) 
End. 

be this maximum value. 

The time taken by the algorithm is dominated by 
the time taken to evaluate W({pi,p2,... ,p~}), that 
is, O(d 2) time for every tuple in every row of D[i]. 
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This makes O(d2K d + n 4 g  + n2K 2) for the algorithm, 
once preprocessing is included. Note that, in practice, 
it would be more efficient to calculate and store the 
values W(A; B) on the fly, since not every possible value 
is used. We separate the calculation out here to aid 
presentation and to encourage the development of a 
more efficient algorithm for computing these values. 

THEOREM 2.2. HUNTING FOR TREES WITH 
WEIGHTED Q U A R T E T S  can be solved in 
O(nk + ndK d-1 + n4K  + nZK 2) time, where k is 
the number of splits, K is the number of distinct splits, 
n is the number of taxa, and d is the degree bound (on 
unrooted trees). 

2.5 Extens ion  to  w e i g h t e d  fnns. When the de- 
gree bound d in the HUNTING FOR TREES WITH 
WEIGHTED QUARTETS problem is greater than 3 
we can obtain non-binary trees, and these trees can 
contain both resolved and unresolved four-taxa trees 
(called fans). So far we have only considered weighting 
quartets, with fans receiving an implied zero weight. 
The algorithms for HUNTING FOR TREES WITH 
WEIGHTED QUARTETS can, however, be extended 
to incorporate a weight on unresolved quartets, though 
the time complexity increases to O(nk + ndSK '~-1 + 
n4K 2 + n2K4). 

3 2 /3  Quartet Puzz l ing .  

As we mentioned earlier, there are two main steps 
in quartet based phylogeny reconstruction. We first 
analyse sequences four at a time and construct quartet 
trees, and then assemble these quartets into a complete 
phylogenetic tree. One problem is that there can be 
a degree of uncertainty in the first step: with many 
methods there might be more than one optimal quartet 
tree, and specifying that  at most one quartet is chosen 
will result in loss of information. 

Strirnmer and von Haessler [27] address this prob- 
lena by randomly selecting between optimal quartets 
on the same leaf set. Others [1, 21] incorporate the 
uncertainty into their scoring schemes. Our approach 
is to allow the quartet selection procedure to choose 
not one, but two quartets for every set of four leaves, 
and we will use this larger set of quartets to construct 
the tree. 

2 /3  Q U A R T E T  P U Z Z L I N G  
INSTANCE: Set Q of weighted quartets on leaf set 
L such that for every a, b ,c ,d E L at most two of 
ablcd, aclbd, adlbc are in Q. Number ~. 
QUESTION: Is there a binary tree T with leaf set L 
such that q(T) C_ Q and w(T)  > ~. 

We give an O(n 5) time algorithm for constructing 
the optimal weight tree, if one exists. 

3.1 Spli ts  in qua r t e t  sets  A set of splits S of L is 
compatible if S C splits(T) for some phylogenetic tree 
T. Compatible sets of splits can be characterized by the 
property that 

q(8) = U q(AIB) 
AIBE8 

contahas at most one of able.d, aclbd, ad[bc for every four 
leaves a, b, c, d E L. 

In their work on split decomposition of metrics, 
Bandelt and Dress [3] generalised the concept of com- 
patible splits to wealdy compatible splits. A set of 
splits is weakly  compa t ib l e  if for every three splits 
A1 I B1, Az I B2, AslBs, at least one of the intersections 
A1 N Az N As, A1 N B2 rl Bs, B1 N As N Bs, B1 N B2 N As 
is empty. Whereas the size of a set of compatible splits 
is at most O(n) the size of a set of weakly compatible 
splits is size at most 0(n2). Furthermore 

THEOREM 3.1. ([3, 4]). A set of splits S of L is weakly 
compatible i /and  only if q(S) contains at most two of 
ab[ed, aclbd, adlbc for every set of four leaves a, b, c, d E 
L. 

Thus if Q is a set of quartets such that for every 
a ,b ,c ,d  E L at most two of ablcd, aclbd, adlbc are in 
Q then the set of splits S(Q) is weakly compatible. 
An O(n 5) time algorithm for constructing S(Q) from 
Q is given in [8]. The number 'K of splits in S(Q) 
is O(nZ). By Theorem 2.2 we can find a binary tree 
with splits in S(Q) and maximum quartet weight in 
O(nk + n K  2 + n4K + n2K 2) = O(n ~) time (or show 
that no such tree exists). We will exploit the structure 
of S(Q) and reduce this time complexity to 0(nS). 

Note that the number of binary trees with splits 
in a given set of weakly compatible splits can still 
be exponential in n, When S is a set of (g) weakly 
compatible splits (the maximum number possible), the 
number of binary trees with splits in S can be calculated 
exactly. 

THEOREM 3.2. Let ~ be a weakly compatible set of (~) 
splits of L, where n = ILl. The number of binary 

x /2.-4~ trees T with splits(T) C ,5 equals ~:2 ~ n-2 / , a Catalan 
number. 

[Proof omitted]. 

3.2 S t r u c t u r a l  p rope r t i e s  of  weak ly  compat ible  
spli ts .  In order to improve the complexity of the 
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2/3 Q U A R T E T  PUZZLING algorithm we prove some 
structural  properties of sets of weakly compatible splits. 
Once again we explore a rooted or 'affine' analogue to 
sets of splits: weak hierarchies. A w e a k  h i e r a r c h y  is 
a set of clusters such that  for any three clusters A, B, C 
we have 

A N B N C  E { A N B ,  A N C ,  B n C } .  

A set of clusters C forms a c h a i n  ff A C B or B C A 
for all A, B E C, and a set of splits S forms a chain if 
Cz (S) is a chain for some x. 

THEOREM 3.3. Any set S of weakly compatible set 
splits L is the union of n -  1 chains. 

Proof. Fix w e L and put  71 = ,¢w (S), which is a weak 
hierarchy [3]. For each pair of leaves a, b 

< > =  i']  C = ¢ q(S)} .  
GET'L:a,bEA 

Then 7t C {< a ,b  >: a,b E L - {x}} with equality 
if and only if 7/ is closed under intersections [2]. For 
each A E 7 / w e  choose one pair ~r(A) = {x, y} such that  
< x, y > =  A. 

The  set 7 / c a n  be partially ordered with respect to 
set inclusion. We say that  a subset .,4 C 71 is an an t i -  
cha in  of  7-/A1, A2 E .,4 and A1 ~ A2 implies At ~ A2. 
Let .,4 be a maximum size anti-chain of 7-/. 

Given any x E L -  {w} we can show that  if there are 
distinct A1,A2,As E A such tha t  x E 7r(Ax) N It(A2) Iq 
~r(As) then  AxI(L - At),  A21(L - A2) and AzI(L - As) 
are not weakly compatible. Hence for each x there are 
at most  two clusters A,A'  e A such tha t  x e 7r(A) 
and x E ~r(A'). Furthermore if there is a dus ter  A 
such tha t  A = {x} then there is only one A ~ E .,4 such 
that  x E ~r(A'). I t  follows tha t  .,4 contains at  most 
IL - {w}l = n - 1 members. By Dilworths theorem [15], 
7-/can be covered by n - 1 chains. [] 

Note  tha t  the number n - 1 of chains is tight since 
¢~ (S) of  a maximum set of cyclic splits S [3] contains 
n - 1 clusters of size 2. The proof  of Theorem 3.3 gives 
an efficient way to  construct a chain decomposition into 
O(n) chains. 

LEMMA 3.1. Given a set of splits S together with the 
set of quartets Q~ = {ablew : ablew e q(S) for some 
w q L we decompose ,5 into O(n) chains in O(n s) time. 

Proof. We first construct  and sort 7-/= Cw(S) in O(n s) 
t ime using radix sort. For each pair of leaves a, b E 
L -- {w} construct  < a,b > =  {c : ablew ¢ Q~n} and 
determine i f  < a, b > is in 71. In this way, assign a 
unique pair  rr(A) to  each A E 7/. 

For each z e L - {w} consider the set 71z = {< 
x,y >: {z,y} = 7r(< z , y  >). BY the proof of Theorem 
3.3 71z contains no anti-chains of size three, so can 
be decomposed into two chains. This decomposition 
can be performed in O(n 2) t ime by constructing an 
incomparability graph for 71x (noting that  < x, y > C <  
x,y' > if and only if xy'lyw ~ Q~) and 2-colouring. 
Repeating this process for all x e L - {w} takes O(n3) " 
time. o 

The next efficiency gain results from determining a 
bound on the size of the decomposition table for C. First  
we bound the size of a special kind of weak hierarchy. 

LEMMA 3.2. Suppose that 71 is a weak hierarchy on set 
L such that A E 71 implies ( L - A )  E 7/. Then the 
number off clusters in 7t is at most O(ILD. 

Proof. Fix u E L and let 71~ be the set of clusters in 
7.l containing u. Let  A, B, C be clusters in 71~ tha t  
all have size k (where 1 < k < n). By applying 
the weak hierarchies triplewise property to clusters 
A, B, C, L - A, L - B,  L - C three at a t ime we can 
infer that  two out  of A, B,  C are equal. Therefore there 
can be at most two distinct clusters of size k in 71~, 
so 71u contains a t  most  2n clusters. For any cluster 
A E 7-I either A E 7-/u or ( L -  A) e 7/~ so we get 
1711 _< 21-r/=l <_ 4n. [] 

THEOREM 3.4. Given any cluster A in a weak hierarchy 
7-l there are at most O(IA D pairs of clusters B, C such 
that B N C  =O and B U C  = A. 

Proof. Let C be the set of clusters B E 7-I such that  
B C A and (A - B)  e 7-/. Then  C is a weak hierarchy 
on ground set A with the proper ty  that  B E C implies 
( A -  B) E C. Apply Lernrna 3.2 to C to obtain 
ICl e O(IAI). m 

3.3 An O(n s) algorithm for 2 /3  QUARTET 
P U Z Z L I N G .  The  O(n s) algorithm follows simi- 
lar steps as the HUNTING FOR TREES W I T H  
WEIGHTED Q U A RTETS  algorithm. First  we con- 
struct the set of splits, S(Q), using the O(n s) algorithm 
of [8]. This algori thm can also remove quartets from Q 
that are not in q(S(Q)), set S(Q) is weakly compati- 
ble, so contains O(n 2) splits. Choose arbi t rary w E L 
and construct the weak hierarchy 7-I = ¢~(S(Q)) .  We 
then construct the decomposition table, and calculate 
the tables m and mina, as in §2.2. This all takes at  
most O(n s) time. 

We now use Lemma 3.1 to  construct O(n) chains 
Ct,C2,. . .  ,Ca  with union containing 7-/. Order the  
dusters in each chain by inclusion. For each chain Ci 
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and every pair of leaves u, v we can calculate all the 
values {W(Cj;u,v) : Cj E Ci} in O(n 2) time. Hence it 
takes O(n s) time to calculate W(A;u ,v )  for all A E 7-/ 
and u, v E L. Once these values are calculated it takes 
a further O(n 2) to evaluate each case of 

= Z 
u,vECp2 uEC1, ~ ,vEL--C~ 

+ 

uECpx ,vEL-C~ 

By Theorem 3.4 the number of these tuples is 
O(nlCl) = O(n3). 

THEOREM 3.5. 2/3 QUARTET PUZZLING can be 
solved in O(n s) time. 

3.4 D r o p p i n g  t h e  degree  b o u n d  Having found a 
fast algorithm for 2/3 QUARTET PUZZLING with a 
degree bound constraint, it might be asked whether a 
fast algorithm exists when we do not  apply a degree 
constraint. The answer, in general, is no---assnmlng 
tha t  N P  # P. Determining the tree with splits in S 
and optimal quartet weight is NP-hard,  even when S is 
weakly compatible. 

THEOREM 3.6. Determining the tree T with leaf set L 
and q(T) C Q that maximizes w(T) is NP-hard when 
Q contains at most two of abled, aclbd, adlbe for each 
a,b,e, d 6 L. 

Proof. In [11] it was proven tha t  determining the max- 
imum compatible subset of a set of a weak compatible 
splits is NP-hard. Let S be an arbi t rary set of weakly 
compatible splits and put Q = UAiBcsq(AIB). For ev- 
ery split AilBi E S there exists a quartet  aia~lb~b~ E 
q(AdSd such that  a lbib  ¢ q(AjlS#) for an other 
splits AjlB j E S [3, 4]. Choose one of these quartets for 
each split and give it weight one. Give all other quartets 
weight zero. Then for any tree T with leaf set L and 
q(T) we have 

w(ablcd) = IsNitsCT)l. [] 
ablcdEq(T) 

3.5 Probabilistic analysis. The 2/3 QUARTET 
PUZZLING method is dearly consistent: if it is given 
the set of quartets of some binary tree T then it will 
return T. The method has the capacity to handle more 
quartets than the Q* method of Berry and Gascuel [7], 
so like the Q* method the quartet hunting method has 
a polynomial convergence rate under simple models of 
site substitution. We show that, like the Q* method, the 
2/3 QUARTET PUZZLING method is highly unlikely 
to return a fully resolved tree when given random data. 

Suppose for each set of four leaves in L two out 
of the three possible quartets are selected randomly 
and uniformly (i.e. with equal probability), and these 
selections are made  independently between quartets. 
Let P(n) be the probability that  the  resulting set Q 
of quartets contains q(T) for some binary tree with n 
leaves. 

THEOREM 3.7. 

P(n)  < b(n) 

where b(n) = (2n - 5)!! = (2n - 5)!/(2n-3(n - 3)!). 
Consequently 

n m  P(n )  = o. 
n - - b o o  

Proof. We calculate the probability that  Q contains the 
quartets of a part icular  binary tree T on n leaves and 
then sum over all possible binary trees on n leaves to 
obtain the upper bound.  [] 

We note t ha t  (~)(])  b(n) goes to zero very quickly. 
When n = 1 0 w e  have P(n) < 0.3 x 10 -3°. When 
n = 20 we have P(n) < 0.16 × 10 -s32. 
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