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Abstract 

Genome duplication is an important source of new gene 
functions and novel physiological pathways. In the course of 
evolution, the nucleotide sequences of duplicated genes tend 
to diverge through mutation, so that one copy loses func- 
tion (and disappears from view) or develops a new function, 
encoding a distinct but similar product. Originally a dupli- 
cated genome contains two identical copies of each chromo- 
some, but through reciprocal translocation, parallel linkage 
patterns between the two copies are disrupted. Eventually, 
all that can be detected are several chromosome segments of 
greater or lesser length (blocks), each of which appears twice 
in the genome, containing many paralogous genes in paral- 
lel orders. We present an exact algorithm for reconstructing 
the ancestral pm-doubling genome in polynomial time, min- 
imizing in key cases the number of translocations required to 
derive the observed order and orientation of blocks along the 
present-day chromosomes. We apply this to the genome du- 
plication which has been described for Saccharomyces cere- 
visiae. 

1 Genome duplication 

Perhaps the most spectacular cause of gene duplication is 
tetraploidization of the genome. Normally a lethal accident 
of meiosis or other reproductive step, if this doubling of 
the genome can be resolved in the organism and eventu- 
ally fixed as a normalized diploid state in a population, it 
represents a simultaneous duplication of the entire genetic 
complement. It transcends other mechanisms for gene du- 
plication in that not only is one copy of each gene free to 
evolve its own function, but it can evolve in concert with any 
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subset of the thousands of other extra gene copies (cf [4] for 
accounts of gene family coevolution). Whole new physio- 
logical pathways may emerge, involving novel functions for 
many of these genes. Genome duplication is thus a likely 
source of rapid and far-reaching evolutionary progress. Its 
rarity does not detract from its importance. 

Evidence for its effects has shown up across the eukary- 
ote spectrum. More than two hundred million years ago 
the vertebrate genome underwent two duplications [2, 7,121. 
Although numerous chromosome rearrangements such as in- 
versions and reciprocal translocations have subsequently oc- 
curred, the number of rearrangements has been sufficiently 
modest that hundreds of conserved paralogous segments can 
be detected in the human genome since the ancient dupli- 
cations; similar observations hold for the murine genome 
[lo, 111 and for less intensively mapped vertebrate genomes. 
More recent genome duplications are known to have oc- 
curred in some vertebrate lines, such as the frogs [19], the 
salmoniform fish [12] and zebra&h [14]. 

Comparison of chromatin-eliminating Ascadae with 
other nematodes suggest that somatic cells of these worms 
have discarded a good proportion of the genes present in 
germ cells, possible because these are redundant duplicates 
arising through genomic doubling some 200 million years 
ago bl. 

Genome duplication is particularly prevalent in plants. 
Comparison of the well-studied rice [I], oats (wild and do- 
mestic), corn [l, 51 and wheat [9] genomes indicate several 
occurrences in the cereal lineage. Soybeans [17], rapeseed 
[15], and other cultivars have genome duplications in their 
ancestry. Paterson et al. have presented convincing evi- 
dence that one or more genome duplications also occurred 
much earlier in plant evolution [13]. 

Recently, following the complete sequencing of all Sac- 
charomyces cerewiaiae chromosomes, the prevalence of gene 
duplication has led to the conclusion that this yeast genome 
is also the product of an ancient doubling [18]. 

Subsequent to genome duplication, duplicated genes tend 
to diverge through mutation, so that one copy loses function 
(becomes a pseudogene) or develops a new function, encod- 
ing a distinct but similar product. Orig.inally a duplicated 
genome contains two identical copies of each chromosome, 
but through inversion or other intrachromosomal movement, 
the gene orders in each pair of chromosomes change indepen- 
dently, and through reciprocal translocation, parallel linkage 
patterns between the two copies are disrupted. Eventually, 
all that can be detected are several chromosome segments of 
greater or lesser length (blocks), each of which appears twice 
in the genome, containing many paralogous genes in parallel 
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Figure 1: Partial graph corresponding to Example 1 

orders. We previously proposed a suite of “Genome halv- 
ing” problems [3] and offered an algorithm for one of them 
involving (set-theoretical) relations of synteny only. Here we 
propose to deal with the evolution of gene order and tran- 
scriptional orientation on each chromosome. We present a 
polynomial algorithm for finding an exact solution to most 
of the interesting instances of the problem. 

2 Genome halving of signed, ordered chromosomes. 

A block string is a string of signed (+ or -) terms (blocks) 
from a set 8. A rearranged duplicated genome G is a 
collection of non-null block strings, Ci , . . . , CsN, (chromo- 
somes), such that each block in B is present exactly twice, 
i.e., once in each of two different chromosomes, or twice in 
a single chromosome. 

Example 1 Let B = {a, b, c, d, e, f,g, h} be a set of8 differ- 
ent blocks, and G a genome consisting of four chromosomes: 

1: +a +b -c +b -d; 2: -c -a +f; 
3: -e +g -f -d; 4: +h +e -g +h. 

G is a rearranged duplicated genome. Each block appears ex- 
actly twice in the set of chromosomes. E.g. block b appears 
twice in chromosome 1. Signs represent block orientation. 

For block string X = 21x2 . . . x,., denote by -X the reverse 
string -x+ - x7-1 . . . - xi. 

The problem is to calculate the minimum number of 
translocations required to transform a given rearranged du- 
plicated genome G into some perfect duplicated genome 
H (to be found), consisting of Kr , . . . , KZM chromosomes, 
where for each i E { 1, . . . ,2M}, we have Ki = Kj for exactly 
one j E {1,...,2M}\{i}. 

Let X1, X2, Yi and Yz be non-null block strings. A re- 
ciprocal translocation between two chromosomes X = 
Xix2 and Y = YiYs is of form XiXs,YiYs -+ XiYz,YiXs 
(prefix-prefix) or of form XiXs,YiYs + Xi - Yi, -YsXz 
(prefix-suffix). 

3 The Hannenhalli graph. 

GiventwogenomesHi=Ci,r,.-.,Ci,,vandHz=Cz,i,+-., 
C&N such that HI and Hz contain the same blocks, each of 
the ]f3] blocks appears exactly once in each genome, and 
the set containing the 2N initial and final blocks in all the. 
chromosomes of HI is the same as in HZ. How many recip- 
rocal translocations, as described in Section 2, does it take 
to transform HI into Hz? 

Hannenhalli [6] solved this using 612, the bicoloured cy- 
cle graph of H1 with respect to HZ. If block zi in chromo- 
some X = xi 
pair xfxb, 

. . . xk of Hi has positive sign, replace it by the 
and if it is negative, by z”xf. Then the vertices 

of& are just the zt and the xh for all x in 23. Any two ver- 
tices which are adjacent in some chromosome in HI, other 
than xi and x4 from the same x, are connected by a black 
edge, and any two adjacent in HZ, by a gray edge. Each 
vertex is incident to exactly one black and one gray edge, so 
that there is a unique decomposition of 812 into cl2 disjoint 
cycles of alternating edge colours. Note that csi = ciz = c 
is maximized when HI = HZ, in which case each cycle has 
one black edge and one gray edge, and c = ]a] - N. 

Hannenhalli showed that the minimum number of recip- 
rocal translocations necessary to transform HI into HZ is 
1231 - N - c in all but certain cases. The exceptional cases 
contain subpermutations, a number of contiguous, but dif- 
ferently ordered blocks in both HI and HZ. Note that these 
are precisely the cases where, from a biological viewpoint, 
a comparison of the genomes would seem to require inuer- 
sions (reversals) or transpositions (interchanging two adja- 
cent block strings), as well as translocations. 

4 Maximizing the number of cycles. 

4.1 Preliminaries 

To make use of the Hannenhalli graph structure for the 
genome halving problem, we first introduce, arbitrarily, a 
distinction within each pair of identical blocks in the resr- 
ranged duplicated genome G, labeling one occurrence xi and 
the other 22 for all x in B. 

Next, to each chromosome Ci, we add new initial and fi- 
nal terms +Oir and +Ois. This releases the erstwhile initial 
and final blocks on each chromosome from their constraint 
in the Hannenhalli formulation and ensures that all translo- 
cations, including those which reduce (by fusion, e.g. null 
XiYs) or augment (by fission, e.g. null X1X2) the number 
of chromosomes in the genome, can be treated as reciprocal 
translocations. Chromosomes consisting of just one initial 
and one final 0 are dummies. They allow M # N, and G to 
have an odd number of chromosomes, in the formulation of 
the problem in Section 2 while still making use of the Han- 
nenhalli graph in which HI and HZ have the same number 
of chromosomes. 

In each chromosome, each zj (except the 0,) is replaced 
by xg and xi” as in the Hannenhalli construction. Define: 

0 = {oil, 0;Z}i=1,..., ZN, v = {X;}“~$‘“‘, v = 0 u v. 
j&i72 

We use the notation i = 2, 2 = 1, T = h, x = t. For 
u = xj E V, its counterpart, denoted 8, b x;, and its 
obverse, denoted &, is x:. Note that z = G = u. 

The partial graph B(V, A) associated with G, has the 
edge set A of (black) undirected edges linking adjacent terms 
(other than obverses) in G. The partial graph associated 
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Figure 2: The natural subgraphs of O(V, A). 

with the genome in Example 1 is shown in Figure 1. To 
differentiate the two occurrences of each block z, one is sub- 
scripted I”, its counterpart “2”. 

The addition to the partial graph P(V, A) of a set D of 
gray undirected edges, corresponding to some perfect dupli- 
cated genome H, produces a completed graph B(V, A, D). 
Note that every vertex in V will then be incident to exactly 
one black edge and one gray edge. Our goal is to find a 
perfect duplicated genome H, with edge set D, which max- 
imizes the number of cycles in O(V, A, 0); we call this a 
maximal completed graph. 

Lemma 1 follows directly from the above definitions. 

Lemma 1 In a completed gmph B(V, A, D), 

1. D contains no edge of form (u,Ti), for any u E V. 

2. Suppose (‘LL,v) E D ond w E V. 

(a) Zf u E V then (?i,F) E D. 

(b) If u E 0 then B is alao linked by a gray edge to 
some element of 0. 

Let O(V,A) contain a subgraph &I(V’,A’), representing a 
set of fragments of the 2N chromosomes of G. Lemma 2 
states conditions on the vertices in V’ for it to be possible 
to add gray edges satisfying Lemma 1. 

Lemma 2 1. IfuEV’nV, then?iiV’. 

2. V’ contains an even number (possibly zero) of elements 
OfO. 

3. Let V” be the subset of V’ containing fragment end- 
points, i.e., vertices u satisfying one of: 

0 UEO. 

l IfuEV, thenZ$V’. 

Let p = IV”1 be the number of elements of V”. p must 
be a multiple of four. 

Proof: Points (1) and (2) follow from Lemma 1, points (2a) 
and (2b), respectively. 

It can be seen that p/2 is the number of chromosome 
fragments represented by B(V’, A’). In order that some se- 
quence of reciprocal translocations can transform these frag- 
ments into a set of duplicated fragments, we require that p/2 
be even. 0 

A subgraph S(V’, A’) of &I(V, A) satisfying Lemma 2 is 
called a completable subgraph. 

4.2 Decomposition into completable subgraphs 

Definition : Let e = (u, u) E A. Define A, recursively by: 

l (u,v) E A,; 

l If (z, y) E A, and z 4 0 then the edge of A adjacent 
to Z is also in A.. Similarly, if y 4 0 then the edge of 
A adjacent to v is also in A,. 

Let Ve be the subset of V made up of vertices incident to the 
edges in A,. Then G(V,, A,) is the natural subgraph (of 
size IA. I) of B(V, A) generated by e. Note that if f E A,, 
then As = A, 

Consider the genome in Example 1. The natural sub- 
graphs of G(V, A) are as in Figure 2. 

Theorem 1 A natural aubgmph is completable i,Sr it is of 
even size. 

Proof: Let Q(V,, A,) be a natural subgraph of G(V, A) of 
size n (i.e. IV,1 = 2n). By definition, G(V,,A,) satisfies 
condition (1) of Lemma 2. Moreover, by construction, it 
contains either zero or two elements of 0, and so satisfies 
condition (2). To see that it also satisfies .condition (3) iff 
n is even, let V,,r be the subgraph of V, defined as in part 
(3) of Lemma 2, and VeJz. = V, \ V,,r. Let q = lV,,~l and 
p = IV,,ll. By the defimtions of V,,i and Ve,z, p = 2n - q 
and q must be a multiple of 4. Thus, p/2 is even iff n is 
even. 0 

We then divide the set GC of natural subgraphs of G(V, A) 
into the following subsets: 

l GCE is the subset of GC containing the completable 
natural subgraphs (i.e. of even size). 

l GCO is the subset of GC containing the natural sub- 
graphs of odd size. We further subdivide GCO into 
GCO+ and GCO- according to whether the natural 
subgraphs include vertices in 0 or not. 

The set A contains 2(lBl +N) edges, and subgraphs in GCE 
contain an even number of edges. Then GCO must also 
contain an even number of edges, and thus an even number 
of subgraphs. We can then pair off all the subgraphs in GCO 
as follows, and amalgamate the two subgraphs in each pair 
in order to produce completable subgraphs of G(V, A): 

l Arbitrarily choose pairs of subgraphs in GCO+ to amal- 
gamate. The set of larger subgraphs thus formed is 
denoted CO+. 
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Figure 3: A suitable order for the edges of the subgraphs. In our notation, %= 021, 041 = 042, 012 = 032 and 022 = 031. 

For subgraphs Sl, Ss and S4, the sets of left and right vertices are made up of the vertices on the left and right, respectively, 
of all their kdges. In the case of S25 the right vertices are the vertices on the right of its edges, plus O$, and c:. The remaining 
vertices are left vertices. 

l Arbitrarily choose pairs of the remaining subgraphs 
in GCO to amalgamate. This includes subgraphs in 
GCO- plus, if applicable, the remaining one in GCO+. 
The set of subgraphs thus formed is denoted CO-. 

The subgraphs in GCE U CO+ U CU- are called supernat- 
ural subgraphs. We denote CE = GCE U CU+. 

2. If Q(V’,A’) E CO-, let Q(V’l,A;) and G(V’z,AL) be 
its two component natural subgraphs, of sizes 2nl - 1 
and 2n2 - 1, respectively. 

V’I = Ul~i~nl~l{~~,~,bi,~}U{b~l,~} and -4; = 
{el,ei,**- ;e~,-l,e~,-l,en,) where the ei and e: are -- 
defined as above, except en, = (b,, , b,,-1). 

Example 2 Consider the natural subgraphs Sl, S2, S3, S4 

and Ss of Figure 2. Note that SI, S3, S4 E GCE, s2 E 

GCO- and SS E GCO+. 
Let S25 be the supernatural subgmph in CO- obtained by 

amalgamating SZ and Ss. Then the set {SI, Szs, $3, s4) is 

a decomposition of B(V, A) into supernatural subgmphs. 

Notation : 

a In a supernatural subgraph p(V’, A’) in GCE U CU-, 
for each vertex u in V’nO, if there is one, ‘il designates 
the (only) other vertex in V’ f~ 0. 

l Let Sl(V’l, A;) and 62(V’2, Ah) be the two natural 
subgraphs in GCO+ which make up a subgraph G(V’, A’) 
of CO+. If u E V’l n0, then we arbitrarily choose one 
of the two vertices of V’2 n 0 to be Z. 

Let p(V’, A’) be a supernatural subgraph of B(V, A) of size 
2n, where n > 1. Relabeling the vertices in V’ allows US to 
define a suitable order for the edges in A’. 

1. If Q(V’, A’) E CE: V’ = V’I U V’,, where 
V’l = Ul<i<n{ai,ai} and V’, = Ul<i<,{bi,k} are -- 
the sets of left and right vertices of V’yrespectively. 

A’ = {el,e;,... , e,, e;} such that 

l el = (al, bl); e{ = (K, bz). 

l For all i, 1 < i < n, ei = (ai,bi-1) and e: = 
(Z, bi+l). 

l e, = (a,, b,-1); e; = (si;;,G). 

Similarly, VI1 = 
U nl+l<i<nl+na-l{ai,~,bi,~)U{b,,+,,,b,,+,2}and -- 
4 = {enl+l,4,+l,~~- ,enl+n2-l,e~l+n2-l,en,+n, 1 
where the ei and e: are defined as above. 

In this case V’l = Ui{ai, c} is the set of left vertices, 
and V’, = Ui{bi, G} is the set of right vertices of 
V’. Here it can be seen that there are four more right 
vertices than left vertices. 

Consider the supernatural subgraphs {Sl, S25, Ss, S4) of 
Example 2. By means of a relabeling of the vertices (a ver- 
tex ~1 could be relabeled as x2, or vice-versa), one possible 
suitable order for the edges of the subgraphs is depicted in 
Figure 3. 

In the ensuing discussion, we start with any decompo- 
sition of O(V, A) into a set SS of supernatural subgraphs. 
We then order the vertices and edges of these subgraphs as 
described above, and partition the vertices of G(V, A) into 
subsets of left and right vertices. (A vertex x is a left vertex 
in V if it is a left vertex of a subgraph in SS, otherwise it 
is a right vertex.) 

4.3 Upper bound on the number of cycles of a com- 
pleted graph 

Let O(V, A, D) be a completed graph baaed on O(V, A), and 
let C be the set of cycles of the graph. The size of a cycle 
is the number of black edges (or similarly of gray edges) 
contained in the cycle. Let C be a particular cycle of size 
r in C, with vertex set Vc and with sets of black and gray 
edges AC and DC, respectively. We define the signature SC 
of C to be the subset of Vc derived as follows: For every left 
vertex x in Vc, if z is not already in SC, then add x to SC. 

Let S be the set of signatures of all the cycles in C. 
Define the signature graph Sq(S, E), where S is the set 

157 



1 Figure 4: Example of a signature graph 

of vertices, and where the set of edges E is defined as follows: 
for all &, Sz E S, & and Sz are linked by an edge in E iff 
there is a block z such that z E Si and !iI E Sz. 

In Figure 4, a completed graph is on the left. It repre- 
sents a completed supernatural subgraph Q(V,, A,, De) of 
some graph B(V, A). B(V,, A,) is a supernatural subgraph 
in CE. 

The left vertices of the graph are the vertices on the left 
of black edges, that is the oi and the ?i& for 1 s i 5 4. 

The completed graph is made up of 5 cycles, whose sig- 
natures are as follows: 

1: {al}; 2: {Ei,az,a4}; 3:{z}; 4:{a3,ZZ}; 5:{z}. 

The graph on the right of Figure 4 is the signature graph 
derived from the graph on the left. 

For vertex Sc in S, denote by t(Sc) the number of el- 
ements in Sc and by 6(Sc) the number of edges outgoing 
from SC. 

Lemma 3 Let G(V,, Ae) E SS be a supernatural subgraph 
of G(V,A) of size 2n, where n > 0. Let g(V,,A,,D,) be 
a completed gmph and let ce be the number of cycles in it. 
Then: 

l IfQ(V,,A,)ECE, thenc, <n+l. 

l If G(V., A=) E CO-, then ce 5 n. 

Proof: Let SO(S, E) be the signature graph of Q(V,, A,, De). 
Then ce = IS]. 

For all SC E S, a(&) < t(Sc). Now c,,,, t(Sc) 2 2n, 

so that IEI = $ &es I I i xscESt(Sc) 5 7~. 
A supernatural subgraph is connected, so that 

ISl<IEl+l<n+l. 

For the case o(V,, Ae) E CU-, xScES t(Sc) 5 2n - 2. 

Indeed, the vertices G and a’,,+i belong to no signature 

Sc in S. By the same argument as above, 

ISI 5 IEl+l= i c 6(Sc)+l< f c t(&)+l 5 n. 0 
SCES SCES 

Theorem 2 Let G(V, A) be a partial graph and G(V, A, D) 
be a completed graph. Let NA = flAl and CD be the num- 
ber of cycles in g(V, A, D). Denote by c+ the number of 
supernatural subgmphs of CE. Then: 

CD Ic++NA 

Proof: Let C be the set of cycles in O(V, A, D), and SE(S, E) 
the signature graph associated with C. The set of r con- 
nected components of Sg(S, E) decomposes S(V, A, D) into 
even-sized subgraphs {Ji}r<isr, where 3 = Z(Vi, Ai, 0;). 
For each of the Ji, let ti be the sum of the sizes of the sig- 
natures of all of its Q&S, and let ni = 4 IAil. 

Let k be the number of the 3 satisfying ti < 2ni. Then 
by the same argument used to prove Lemma 3, we can show 
CD 2 NA + (r - k). Now, k’ = r - k is the number of sub- 
graphs satisfying ti = 2ni. But the maximum number of 
suchgraphsisa,. ThuscD<k’+NA<cr,,+N..t.O 

4.4 Maximal completed graph. 

Based on the decomposition of Q(V, A) into supernatural 
subgraphs, can we construct a completed graph g(V, A, D) 
having CD = or + NA cycles? By Theorem 2, this would 
necessarily be maximal. 

We will complete the supernatural subgraphs in SS one 
at a time in producing a duplicated genome H. At each step, 
we denote by F = Ul<is,{fi, fi} the set of fragments of the 
genome H resulting from the preceding steps. At the outset, 
F is made up of the unitary fragments, which include not 
only ztzh, for all x E f3, but also the 2N elements of 0. 
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Figure 5: Completed graph G(V, A, D) found by algorithm dedouble. 

As the construction proceeds, whenever a pair of gray edges 
(xh,yt) and (Zh,$) are created, the fragment containing xh 
and the one containing yt are joined together. The final 
set of fragments contains the 2N duplicated chromosomes 
of the desired genome. A long fragment is one that is not 
unitary. A terminal fragment is unitary, consisting of an 
element of 0, or is long, with an extremity in 0. Internal 
fragments contain no element of 0. 

Remark 1 : 

l If fragment f is internal, then the only vertices of f 
not adjacent to gray edges are its two endpoints. If f 
is terminal, its only vertex not linked by a gray edge 
is that endpoint in V. 

l For all z E V, z and 2 are in the same fragment. 

l If z and y are two vertices in the same fragment, then Z 
and B are also in one fragment. In discussing fragment 
membership, we may speak indifferently of z or Z. 

Suppose we have completed the k first supernatural sub- 
graphs of G(V, A) and we wish to complete the (k + 1)-st 
one, S(V’, A’). Let z, y be two distinct vertices in V’. To be 
able to construct the gray edge (2, y), we must have x # y, 
and conditions I, II below satisfied. These conditions must 
be satisfied for z or Z and for y or J. To simplify notation, 
we omit Z and y. 

Condition I. If z, y $4 0, then z and y are not in the same 
fragment. In particular, x # c. 

Condition II. If x and y are in two different terminal frag- 
ments, and if F contains an internal fragment, then F must 
contain at least two other terminal fragments. 

A pair of vertices (x, y) is said to be possible if it satisfies 
these conditions. Otherwise it is impossible. If (2, y) is 
possible, then so are (x, g), (Z, y) and (Z, 8). 

We now describe an algorithm for constructing a com- 
pleted graph G(V,A,D). We will not repeat the fact each 
time a gray edge (x, y) is created, this implies the creation 
of (?E,V). 

Algorithm dedouble 

We denote by e(x) the black edge incident to vertex x. 

Subgraphs in CC, n = 1 

For every subgraph G(V’, A’) of CE of size 2n = 2 such that 
A’ = {(al, ai), (K, &)}, add edges (al, bl) and (Zi, &) to D. 

1 Subgraphs in CC, n > 11 

Let Q(V’, A’) be a subgraph in CE of size 2n. 

If (ai, bi) and e(G) are possible, create edge (ai, bl). 
Otherwise, create edge (Ei, b,). 

For 2 < i < n: 
If bi-1 is not already incident to a gray edge, 

If e(bi+l) is possible, create edge (oi, bi-1). 
Otherwise, create edge (Z, bi+l). 

If bi-1 is already incident to a gray edge, 
If e(bi+l) is possible, create edge (Z7, bi+l). 
Otherwise, create edge (oi, bj), where bj is the remain- 
ing unlinked vertex in the path containing oi and bi-1 

Create (a,,bj), where bj is the remaining unlinked vertex 
on the path containing a,,. 

Subgraphs in CO- 1 

For 1 5 i 5 ni - 1 or ni + 1 5 i < ni + 7~3 - 2, gray edges 
are constructed as above. 

After step i = ni - 1, there remain two vertices, counter- 
parts, not yet linked. Denote these vertices b, and b,. 

i=n1+n2-1: 
If bi-1 is not already incident to a gray edge, 

If (b,, bi+l) is possible, create edge (ai, bi-1). 
Otherwise, create the edge (a, bi+l). 

If bi-1 is already incident to a gray edge, let bj be the 
remaining unlinked vertex in path containing oi and bi-1. 

If (EI, bi+l) and (b,, bj) are possible, create edge (Z, bi+l 
Otherwise, create edge (oi, bj) 

Create the edge (G, bj), where bj is the vertex not already 
linked remaining in V’Z. 
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sl : al - bl 

Figure 6: All possible completed subgraphs for n = 2. 

Lemma 4 The algorithm is correct, i.e. it produces a wm- 
pleted graph. 

Proof: 
Subgraphs in CE, n = 1 

For any supernatural subgraph G(V’, A’) of size 2n = 2 
where A’ = {(al, bl), (Ei,K)), (al, bl) is possible. 

Subgraphs in CE, n > 1 

Suppose the current subgraph is o(V’, A’) E C&, where n > 
1, and the set of fragments of H constructed to this point is 
F. Since A’ E CE, it cannot contain any edge of form (2,~). 

1. Suppose first that edge (al, bl) is impossible. We will 
show that in this case (al, b2) must be possible. 

If a1 and bl do not satisfy condition I, i.e., al, bl # 0 and 
al, b1 belong to the same fragment. Then al and b2 cannot 
contradict Condition I, otherwise al, bl and bz would be in 
the same fragment, an impossibility because these vertices 
are not on gray edges. Since bl 4 0, al is not in a terminal 
fragment. Condition II is thus satisfied. 

Suppose that al and bl do not satisfy Condition II. al 
and bl are thus in different terminal fragments. a1 and 
bz cannot contradict Condition I by the same reasoning as 
above. Condition II is also satisfied, since if b2 were in a ter- 
minal fragment, there would have to be another one, since 
the number of terminal fragments is even. In this case, al 
and bl would satis3f-y Condition II, which is a contradiction. 

Similarly, if e(bz) is impossible, then (al, bz) is possible. 

2. Let 2 < i < n. Suppose that bi-1 is not on a gray edge. 
Note first that because of how we link the vertices, if bi-1 
is not already linked, it must be that (ai, bi-1) is possible. 
Similarly as above, if e(G) is impossible, then (oi, bi+l) 
must be possible. 

Suppose now that G is already connected by a gray 
edge and that e(b;+l) = (q, bi+l) is impossible. Let bj # ai 
be the vertex on the path containing bi-1, not yet connected 
by a gray edge. We must show that (ai, bj) is possible. 

Suppose that ai and bi+l do not satisfy Condition I. In 
other words, ai, bi+l 4 0, and ai, bi+l are in the same frag- 
ment. Then since bj is not connected by a gray edge, ai and 
bj are not in the same fragment. These two vertices thus 
satisfy Condition I. On the other hand, since ai is not in a 
terminal fragment, a; and bj also satisfy Condition II. 

Suppose that ai and bi+l contradict Condition II. Then 
it is clear that a; and bj can contradict neither Condition I 
nor Condition II. 
3. By an analogous argument, (a,, bj) must be possible. 

Subgraphs in CO- 

If G(V’, A’) E CU-, then the validity of the construction 
can be proved as in steps 1 - 3 of the preceding case. 0 

Example 3 Consider genome G in Example 1, and the de- 
composition of its gmph G(V, A) into the supernatural sub- 
graphs of Figure 3. In constructing the completed graph 
O(V, A, D) by our method, we first complete subgmph Ss, 
then S1 and S4, and finally the subgmph SZs. Figure 5 de- 
picts the completed graph thus produced. 

The number of cycles in the wmpleted gmph is CD = 12. 
Now, a,, = 2 and IAl = 20, so that, according to Theorem 
2, it is a maximal completed graph. 

The corresponding duplicated genome H contains two 
identical copies of the following two chromosomes: 

1: +a +b -c +h +e -9; 2: +d + f. 

Lemma 5 The algorithm produces a duplicated genome where 
B(V, A, D) has CD = c+ + NA cycles, q, being the number 
of supernatural subgmphs of CE, and NA = IA1/2. 

Proof: Let Q(V’, A’) be a subgraph of CE of size 2n where 
n > 1, and Q(V’, A’, D’) the completed subgraph obtained 
by the construction described above. We will show, by in- 
duction on n, that Q(V’, A’, D’) contains n f 1 cycles. 

For n = 2, the only two completed subgraphs of G(V’, A’) 
that can be obtained are depicted in Figure 6. In both cases, 
there are 3 cycles in the completed subgraph. 

Suppose the induction hypothesis is true for p. The dif- 
ferent configurations possible for the cycles containing the 
last four black edges of the subgraph are depicted in Figure 
7. 

Let G(V’, A’) be a subgraph of size 2(p + l), such that 
V’ = U1<i<p+l{ai,Z,bi,~}. 

Let ?I-= V’ \ {ap+l, ap+l, bp+l, &}. The subgraph 
g(V”, A”) is of size 2p. By the induction hypothesis, the 
completed subgraph Q(V”, A”, D”) produced by the algo- 
rithm contains n + 1 cycles, and these cycles must have one 
of the configurations in Figure 7. 

For eac& configuration in Figure 7, by replacing the black 
edge (5, b,) by the three black edges (S, bp+l), (ap+lr bp) 
and (ap+l,bp+l), the various subgraphs that may be ob- 
tained always contain one more cycle than the initial sub- 
graph G(V”, A”, D”). 

If G(V’,A’) is a subgraph of CU- of size 2n, we can 
show, also by induction on n, that the algorithm produces 
a completed subgraph Q(V’, A’, D’) containing n cycles 0 

160 



Figure 7: Possible configurations of cycles containing the last four edges of a completed subgraph of G(V’, A’). 

The following theorem is a direct consequence of Theo- 
rem 2 and Lemma 5. 

Theorem 3 The number of cycles of a maximal completed 
graph based on G(V, A) is 

CD =a,+NA 

5 The centromere 

5.1 A constraint on translocations 

Normally all chromosomes contain one functional centromere. 
This constraint is not necessarily satisfied within the frame- 
work of the preceding sections, so that a translocation may 
well result in one chromosome with two centromeres and the 
other with zero. In this section, we will consider formal ways 
avoiding such violations of the centromere constraint in the 
process of finding the ancestral duplicated genome. 

Can we reduce the problem with the centromere con- 
straint to a version of the unconstrained formulation? To 
do this, we define a new representation of genome G and 
its N chromosomes (C;)~<;<N. For each i, we write C; = 
Ci,lUiCi,2, where C;J represents the part of the chromo- 
some C; situated to the left of the centromere, Ci,2 rep- 
resents the part to the right, and ci represents the cen- 
tromere itself. We term the divided genome of G, the set 
GP = (Ci.1, -Ci,2 for 1 5 i < N}, a set formed of the left 
arms and the inverted right arms of the chromosomes de G. 
We will seek the minimum number of translocations neces- 
sary to transform GP into a set of duplicated arms HP. 
Note that this is not a complete solution to our problem, 
since additional translocations may be necessary to make 
sure that the duplicates of the right arm and the left arm of a 
chromosome are also found on a single chromosome. Seoighe 
and Wolfe [16] also considered this partial solution to recon- 
structing the pre-doubling genome satisfying the centromere 
constraint. 

As in the case of genomes without considering centromeres, 
we differentiate between the two occurrences of a block in 
B, and replace each block x by the pair xt and a?‘. Further- 
more, for each arm Bi in GP, we add Oi to its left end, and 
Xi, representing the centromere, to its right end. 

In this formulation, we prohibit prefix-s&x transloca- 
tions in order to satisfy the centromere constraint. Note that 
it is biologically coherent to permit translocations which act 
on the two arms of the same chromosome, so-called pericen- 
tric inversions. 

In the rest of this section, we will call the arms in a di- 
vided genome “chromosomes”, and “translocation” will sig- 
nify a prefix-prefix translocation or a pericentric inversion. 

We will designate by G a divided genome with 2N chromo- 
somes (N being the number of “true” chromosomes in the 
undivided genome) made up of chromosomes (Ci)l<i<2N. 
We define as before the partial graph G(V,A) ass&&ed 
with G. 

Since we are confined to prefix-prefix translocations, Han- 
nenhalli’s result does not necessarily pertain. Nevertheless, 
it does hold under certain general conditions. 

Theorem 4 Suppose that G(V, A, D) is a maximal com- 
pleted gmph of G(V, A), and that H, the perfect duplicated 
genome induced by Q(V, A, D) has no subpermutations. If 
for all x in G, blocks x and Z; have the same orientation, 
i.e., xt precedes or follows xh in a chromosome according to 
whether Et precedes or follows fh, then Hannenhalli’s algo- 
rithm uses only prefix-prefi translocations. 

In the present context, Theorem 4 requires that in the 
undivided genome (with N chromosomes) any two corre- 
sponding blocks have the same orientation with respect to 
the centromere. We will assume this in adapting the theory 
of Section 4 to the case of the centromere constraint. 

5.2 Subdividing a graph into supernatural subgraphs 

We must first distinguish the two ends of our chromosome 
arms, i.e. the centromere from the telomere. Thus, in addi- 
tion to 0 and V we introduce the set X = {Xi for 1 5 i < 
2iV}.The set of edges of G(V, A) is now V = V U 0 U X. 

Lemma 6 The set of gray edges of a completed graph 
B(V, A, D) must satisfy Conditions 1 and 2a of Lemma 1. 
For (u,v) an edge of D, Condition 26 becomes: 

l If u E 0 and v E V, then V is also linked to an element 
of0 inD. 

. If v E X and u E V, then E is also linked to an element 
ofX inD. 

. If u E 0 and v E X, then there is another element of 
X linked to another elements of 0. 

Lemma 7 Let B(V’, A’) be a subgmph of B(V, A). TO be 
able to complete this graph with gray edges so as to satisfy 
the Conditions 1, 2a and 26 cited in Lemma 6, the conditions 
of Lemma 2 must be replaced by: 

1. IfuEV’nV, thenFEV’. 

2. V’ contains an even number of elements of 0, or none. 
It contains an ezlen number of elements of X, or none. 
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3. Let V” be the subset of V’ containing the vertices u 
satisfying one of the following properties: 

0 UEOEX. 

l If u E If, then G$ V’. 

The number of elements in V” is a multiple of four. 

A completable subgraph becomes one that meets Con- 
ditions (l), (2) and (3) of Lemma 7. 

We must also extend the definition of a natural sub- 
graph G(V,, AL) generated by e = (u, v) as follows: 

. (u,v) E 4; 

l For any edge (x, 9) E A,, if x $! 0 U X, then the edge 
linking ?F is also in A,. 

Let Q(V,, Ae) be a natural subgraph of G(V, A) of size 
n (i.e. IV,1 = 27a). Analogously to the case without cen- 
tromeres, G(V,, A=) satisfies Condition 1 of Lemma 7, and 
B(V,, A,) satisfies Condition 3 of Lemma 7 ifI n is even. 
Moreover, a natural subgraph contains exactly two elements 
of 0 U X, or none. 

Lemma 8 Consider a natural subgraph B(V,, A=) of size 
n. Under the orientation hypothesis of Theorem 4, V, con- 
tains either two elements of 0, two elements of X, or no 
elements at all from 0 u X, if n is even. Then B(V,,A,) 
meets Condition 2 of Lemma 7. For n odd, V, contains one 
element of 0 and one of X. 

We conclude that a natural subgraph is completable iff 
it is of even size. 

Let GC be the set of coherent subgraphs of G(V, A). We 
divide GC into the following subsets: 

l GCE consists of the completable natural subgraphs 
(i.e. those of even size). 

l GCO contains coherent subgraphs of odd size. 

A decomposition of B(V, A) into completable subgraphs 
can be found by pairing off the subgraphs of GCO in an 
arbitrary way. We denote by CO the subset thus obtained. 
The supernatural subgraphs are then the subgraphs in 
GCE U CU. Completion of each of these supernatural sub- 
graphs can then be carried out in the same way as in the 
case without centromeres. 

6 Analysing the yeast genome 

Wolfe and Shields [18] proposed that yeast is a degenerate 
tetraploid resulting from a genome duplication 10s years 
ago. They identified 55 duplicated regions, representing 50% 
of the genome. 

6.1 Without centromeres 

Applying our algorithm to the yeast genome data [18] in Ta- 
ble 1, we obtain the perfect duplicated genome H in Table 2. 
The number of cycles of the corresponding completed graph 
G(V, A, D) is c = 81. Since G (yeast) and Gd do not give rise 
to subpermutations (in the sense of Hannenhalli [6]), we can 
deduce that the minimal number of translocations required 
to transform G into H is 

t=2181+101-2N-c=l42-16-81=45. 

I : +2.-1 
II : +4* -3-7+8-5+6 
III : +9 l -10 - 11 
IV : +20 +12 +12 +54 +15 +21 0 -3 -13 

-16+17 -24 -22 - 14 -23 -19 +18 -9 
V : +28 l -25 -27 -4 -26 -13 
VI : +55 l -36 
VII : +36 +25 +26 +32+6 -33 +5 l -30 

-34 -31 -29 
VIII : +35 0 -14 -37 -29 -1 
IX : +38 +39 +27. 
X : +lO +40 +41 l -28 -42 
XI : +42 +40 +43 +35 l -41 -52 -38 
XII : +53 0 -53 -31 -55 -16-18 -17 -45 

-30 -15 -44 
XIII : +46 +44 +19. -43 -54 -48 -47 -46 
XIV : +49 +20 +37 +50 +39 0 -11 
xv : +49 + 21 . -22 - 52 - 50 - 23 - 45 - 51 

-47 -2 
XVI : +48 +32 +33 +51 +8 +24 l -7- 34 

Table 1: Order of blocks on each of the 16 chromosomes of 
the yeast genome. Signs indicate transcriptional orientation. 
In each chromosome, the l indicates centromere position. 

Moreover, since c maximizes the number of cycles of any 
completed graph and as the number of subpermutations ob- 
tained is minimal (equal to zero), t is also the minimal num- 
ber of translocations that transforms G into any perfectly 
duplicated genome. 

1 : +2-1 
2 : +46 +47 +48 +54 +43 +35 -41 -40 -42 
3 : +9 -10 - 11 
4 : +44 +15 +21 -22 -14 -23 - 19 +18 +16 

=y++326_;32 +33 +51 +45 +17 -24 -8 

5 : +55 -36 
6 : +38 +39 +27 +25 -28 
7 : +29 +37 +50 +52 -53 
8 : +49 +20 +12 +31 +34 +30 -5 +6 

Table 2: A solution for the ancestral genome. The present- 
day yeast genome can be obtained from this one by genome 
doubling followed by 45 translocations. 

6.2 With centromeres 

Applying the methodology of Section 5 to the yeast genome, 
we produce pairs of identical chromosome arms where orien- 
tations are conserved with respect to the centromere for all 
except blocks 6, 8, 17, 18 and 33 (see boldface in Table 1). 
Three inversions are required to correct these orientations. 

Seoighe and Wolfe [16] also considered the problem of 
producing pairs of duplicated chromosome arms. After the 
three initial inversions needed to correct orientation, the 
best solution obtained by their heuristic algorithm is 40 
translocations. When applying our method, we find that the 
minimal number of prefix-prefix translocations that produce 
16 pairs of identical chromosome arms is only 38 transloca- 
tions. 

Of course, after producing pairs of identical chromosome 
arms, there remains the task of ensuring that arms are cor- 
rectly paired to form duplicated chromosomes. 
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Discussion 

The construction presented in this paper is essentially linear- 
time in the number of blocks. This gives the ancestral 
genome, and the number of translocations necessary to de- 
rive the modern one from it. Of course, if the actual translo- 
cations are needed explicitly, Hannenhalli’s cubic algorithm 
must be utilized. 

In maximizing the number of cycles, the minimization 
of translocations is valid only if the given genome G and 
the solution genome Gd determine no subpermutations. As 
mentioned in Section 3, however, the existence of subper- 
mutations is suggestive of the inadequacy of a pure translo- 
cational analysis of genomic differences. 

Thus, rather than extend our method to take subpermu- 
tations into account, which is not only unmotivated but also 
seems quite difficult analytically, it would be more impor- 
tant to study a combined inversion and translocation version 
of our problem. This also seems difficult, however. 

Another important open problem would see a correct 
pairing constraint imposed on the duplicate arms constructed 
in the analysis with centromeres. 
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