
A Polynomial Time Algorithm for

Constructing the Refined Buneman tree

David Bryant

CRM, Université de Montréal, CP 6128 Succeursale Centre-ville, Montréal,
Quebec H3C 3J7

Vincent Moulton

FMI, Mid Sweden University, Sundsvall S-851 70, Sweden

Abstract

We present a polynomial time algorithm for computing the refined Buneman tree,
thereby making it applicable for tree reconstruction on large data sets. The refined
Buneman tree retains many of the desirable properties of its predecessor, the well
known Buneman tree, but has the practical advantage that it is typically more
refined.

Key words: Phylogenetics, distance-based tree reconstruction, Buneman tree,
refined Buneman tree, weighted trees

1 Introduction

Let X be a finite set, and let D(X) denote the set of distance functions on
X, that is, the set of symmetric functions d : X2 → R that are zero on the
diagonal. An X-tree is a graph theoretical tree T = (V, E) together with a
labelling L : X → V such that all of the vertices in V − L(X) have degree
at least three [1,2]. An X-tree together with an edge weighting w : E → R>0

induces an associated distance function on X: the distance between x ∈ X

and y ∈ Y is taken to be the sum of the weights w(e) over all edges e in the
unique path in T connecting vertices L(x) and L(y). Any distance function
arising in this way is called a tree distance, and we denote the set of all tree
metrics on X by T (X).

An important problem in phylogenetic analysis is to approximate distances
(such as those arising from biomolecular data) by tree metrics, and many

Preprint submitted to Elsevier Preprint 15 May 2002

various methods have been found for attacking this (see [3,4] for surveys).
We investigate this problem by looking for a tree construction map, that is, a
map φ : D(X) → D(X), with φ(D(X)) ⊆ T (X), which satisfies the following
properties:

(R1) φ|T (X) = Id|T (X).
(R2) The map φ is continuous.
(R3) The map φ is homogeneous, i.e. φ(λd) = λφ(d), for d ∈ D(X), and λ > 0.
(R4) The map φ is equivariant, i.e. φ(dτ) = (φ◦d)τ for all τ in the permutation

group of X and d ∈ D(X), where dτ (x, y) = d(τ(x), τ(y)) for all x, y ∈ X.
(R5) If d ∈ D(X), then φ(d) can be computed in time that is polynomial in

|X|.

Requirements (R1)–(R5) are chosen since they are desirable in biological ap-
plications: for example, (R4) can be rephrased as requiring that the tree con-
struction method does not depend on the order in which the taxa set X is
processed—a property that does not hold for the popular Neighbor Joining
method, for example. (See [5–7] for more details.)

In [8], Buneman gives a method for tree construction that satisfies (R1)–(R5).
However, “the price paid for continuity,” as Buneman puts it, is that the
resulting tree is often highly unresolved. In [5] the Buneman construction is
modified in an attempt to address this problem. The resulting construction is
called the refined Buneman tree and is shown to satisfy (R1)–(R4). However it
is not shown whether (R5) holds for this construction or not 1 . In this note we
fill in this gap and present an algorithm for computing the refined Buneman
tree in polynomial time.

2 Buneman Trees

Given an X-tree T = (V, E, L), an edge e ∈ E induces a split of X (that
is, a bipartition of X into two non-empty subsets) in a natural way: we say
that x, y are in the same element of a split if the unique path in T from L(x)
to L(y) does not traverse e. Clearly, the splits associated to an X-tree are
pairwise compatible: for each pair of splits {U, V }, {U ′, V ′} at least one of the
intersections U ∩ U ′, U ∩ V ′, V ∩ U ′, V ∩ V ′ is empty. We call a set of splits
compatible if they are pairwise compatible. One can always associate a unique
X-tree to a compatible set of splits of X [8]. This X-tree can be constructed
in time linear in |X| and the number of splits [10]. From here on we will
not necessarily differentiate between a compatible set of splits and the unique

1 Note that the algorithm currently used for computing the refined Buneman tree in
the phylogenetic analysis program SplitsTree [9] has exponential time complexity.

2

X-tree associated to it.

In [8] Buneman actually presents a method for associating a tree-metric to a
distance d on X: Define the Buneman score of a quartet q = ab|cd, a, b, c, d ∈
X to be

βq = βab|cd := 1
2
(min{ac + bd, ad + bc} − (ab + cd)),

where xy := d(x, y) for x, y ∈ X, and the Buneman index of a split σ = {U, V }
of X to be

µσ = µσ(d) = min
u,u′∈U,v,v′∈V

βuu′|vv′ .

Here u and u′ need not be distinct; likewise for v and v′. Buneman shows that
the set of splits

B(d) := {σ |µσ(d) > 0}

is compatible. We define the Buneman tree to be the weighted X-tree asso-
ciated to B(d), with the edge corresponding to the split σ weighted by µσ(d)
for all σ ∈ B(d). The map which associates the Buneman tree to a distance
function satisfies (R1)–(R5) given in the introduction.

For a general distance d the cardinality of B(d) tends to be small in which
case the Buneman tree is highly unresolved. It was shown in [5] that a special
relaxation of the condition µσ > 0 also gives a set of compatible splits: Put
n := |X| and let σ = {U, V } be a split of X. We assume n ≥ 4. If σ is
non-trivial, that is |U |, |V | > 1, then define

Q(σ) := {uu′|vv′ : u, u′ ∈ U, u 6= u′, v, v′ ∈ V, v 6= v′}.

If σ is trivial then, without loss of generality, we have |U | = 1 and we define

Q(σ) := {uu|vv′ : u ∈ U, v, v′ ∈ V, v 6= v′}.

Let q1, . . . , q|Q(σ)| be an ordering of the elements in Q(σ) such that for all
1 ≤ i ≤ j ≤ |Q(σ)| we have βqi

≤ βqj
. The refined Buneman index of σ is

defined as

µσ = µσ(d) :=
1

n− 3
·

n−3
∑

i=1

βqi
.

3

The set of splits

RB(d) := {σ |µσ(d) > 0}

is shown to be compatible in [5] and the associated weighted X-tree, with the
edge corresponding to the split σ assigned weight µσ(d) for all σ ∈ RB(d),
is called the refined Buneman tree. It is clear that B(d) ⊆ RB(d), and often
B(d) is strictly contained in RB(d), in which case the refined Buneman tree
refines the Buneman tree. The map which associates the refined Buneman tree
to a distance function satisfies (R1)–(R4). To show that (R5) also holds, we
first need to introduce another variation of the Buneman tree.

3 Anchored Buneman Trees

Fix x ∈ X. Given a split σ = {U, V } with x ∈ U define

µx
σ = µx

σ(d) := min
u∈U,v,v′∈V

{βxu|vv′},

and put Bx(d) := {σ : µx
σ > 0}. Clearly µx

σ ≥ µσ for all splits σ, so that
B(d) ⊆ Bx(d).

Lemma 1 The set of splits Bx(d) is compatible.

PROOF. Choose any two non-trivial splits σ = {U, V } and σ̂ = {U ′, V ′} in
Bx(d) such that x ∈ U, U ′, and suppose that σ and σ̂ are not compatible. Then
there exist w, y, z ∈ X such that w ∈ U ∩V ′, y ∈ V ∩U ′, and z ∈ V ∩V ′. The
quartet xw|yz is in Q(σ) and so by the definition of Bx(d) we have βxw|yz > 0.
But we also have xy|wz ∈ Q(σ̂) so βxy|wz > 0, a contradiction. Hence σ and σ̂

are compatible, from which it follows that Bx(d) is compatible. 2

We call the weighted X-tree associated to Bx(d), with the edge corresponding
to the split σ weighted by µx

σ(d) for all σ ∈ Bx(d), the Buneman tree anchored

at x. The following iterative procedure, based on algorithms in [11] and [12],
constructs an anchored Buneman tree in O(n4) time. Let d be a distance on
the ordered set X = {x = x0, x1, x2, . . . , xn}.

Algorithm AnchoredBuneman(X,x,d)
1. If dxx1

> 0 then put S1 := {{{x}, {x1}}} else put S1 := ∅.
2. For k from 2 to n do
3. Put Sk := ∅.

4

4. For each split {U, V } ∈ Sk−1 with x ∈ U do
5. If βxxk|vv′ > 0 for all v, v′ ∈ V then add {U ∪ {xk}, V } to Sk.
6. If βxu|xkv > 0 for all u ∈ U and v ∈ V then

add {U, V ∪ {xk}} to Sk.
7. If βxxj |xkxk

> 0 for all j = 1, . . . , k − 1 then
add {{xk}, {x, x1, . . . , xk−1}} to Sk.

8. end (For k from 2 to n).
9. Output Bx(d) = Sn and {µx

σ : σ ∈ Sn}.
end.

The Buneman tree anchored at x satisfies (R1), (R2), (R3) and (R5). It clearly
does not satisfy (R4) because it depends on the choice of taxon x. One might
think that a possible way to avoid this problem would be to take the strict
consensus of the anchored Buneman trees for every x ∈ X (cf. [13]). However,
we now see that this brings us straight back to the Buneman tree.

Proposition 2 If d is a distance function on X, then

B(d) =
⋂

x∈X

Bx(d).

PROOF. For all x we have B(d) ⊆ Bx(d), so that B(d) ⊆ ∩x∈XBx(d).
To see the reverse inclusion, note that if {U, V } 6∈ B(d) then there is some
quartet uu′|vv′ such that u, u′ ∈ U , v, v′ ∈ V and βuu′|vv′ ≤ 0. It follows that
{U, V } 6∈ Bu(d), and so {U, V } 6∈ ∩x∈XBx(d), which completes the proof. 2

4 A Polynomial Algorithm for Constructing RB(d)

The algorithm AnchoredBuneman utilizes a useful property of the Bune-
man tree anchored at x: if {U, V } is a split in Bx(d), y ∈ X −{x} and y ∈ U ,
then {U −{y}, V } is in Bx(d|X−{y}), where d|X−{y} is the distance d restricted
to (X−{y}). The same property does not hold for the refined Buneman tree.
We therefore require a different reduction step. First note that when |X| = 4,
and d is a distance on X then, by definition, B(d) = RB(d).

Proposition 3 Suppose that |X| > 4, and fix x ∈ X. If σ = {U, V } is a

split in RB(d) with x ∈ U , and |U | > 2, then either {U, V } ∈ Bx(d) or

{U − {x}, V } ∈ RB(d|X−{x}) or both.

PROOF. Suppose that |U | > 2 and that σ is not contained in Bx(d), that
is, there exists a quartet xu|vv′ in Q(σ) such that βxu|vv′ ≤ 0. Put σ̂ = {U −
{x}, V }, so that σ̂ is a split of X − {x}. We claim that µσ < µσ̂.

5

Let q1, q2, . . . , q|Q(σ̂)| be an ordering of Q(σ̂) such that 1 ≤ i ≤ j ≤ |Q(σ̂)|
implies that βqi

≤ βqj
. Since x 6∈ X − {x} we have xu|vv′ 6∈ Q(σ̂). Let Q∗ be

the set of (n−3) quartets {q1, q2, . . . , qn−4}∪{xu|vv′}. Then, by the definition
of µσ̂, we have

(n− 4) µσ̂ =
∑

q∈Q∗−{xu|vv′}

βq

=
∑

q∈Q∗

βq − βxu|vv′

≥
∑

q∈Q∗

βq,

where the last inequality holds because βxu|vv′ ≤ 0.

As |U | > 2, we clearly have Q(σ̂) ⊆ Q(σ) and Q∗ ⊆ Q(σ). Therefore

∑

q∈Q∗

βq ≥ min
Z⊆Q(σ),|Z|=n−3

∑

q∈Z

βq

= (n− 3) µσ,

from which it follows that µσ̂ > µσ, thus proving the claim.

Since σ ∈ RB(d) we have µσ > 0 and since µσ̂ > µσ we must also have µσ̂ > 0
and therefore σ̂ ∈ RB(d|X−{x}). 2

We now present an iterative algorithm for computing the set of splits RB(d)
for a distance d, based on the reduction step obtained in the last proposition.
Assume that |X| > 4, and order X = {x1, . . . , xn}. Put Xk = {x1, . . . , xk},
k = 1, . . . , n, and let dk denote d restricted to Xk.

Algorithm RefinedBuneman(X,d)
1. Construct the list QX of all possible quartets on X, sorted

according to their Buneman score βab|cd.
2. Let S4 := B(d4)
3. For k from 5 to n do
4. Let

Sk := {{{xi, xk}, Xk − {xi, xk}} : i = 1, . . . , k − 1} ∪ {{xk}, Xk − {xk}}.

5. For every split {U, V } in Sk−1 do
6. Add the splits {U ∪ {xk}, V } and {U, V ∪ {xk}} to Sk.
7. end(For every split)
8. Construct Bxk

(dk) and add in all of these splits to Sk.

6

9. Remove from Sk all those splits σ ∈ Sk with µσ ≤ 0.
10. end (For k).
11. Output RB(d) = Sn and {µσ : σ ∈ Sn} .
end.

The correctness of this algorithm follows from Proposition 3: the splits {U, V } ∈
RB(dk) with xk ∈ U and |U | ≤ 2 are included in Step 4. We now show that
this algorithm takes polynomial time in n := |X|.

Theorem 4 If d is a distance on X and n ≥ 4, then the algorithm Refined-

Buneman constructs the refined Buneman tree in at most O(n6) time.

PROOF. Step 1 takes O(n4 log n) time, and Step 2 takes only constant time.
We now consider the steps within the loop consisting of Steps 3 to 10, for
4 < k ≤ n.

In Step 4, Sk is initialized to contain exactly k splits, taking O(k) time. Steps
5 to 7 add two splits to Sk for every split in Sk−1. Since Sk−1 is compatible,
this is at most O(k) extra splits. In Step 8 we use the algorithm Anchored-

Buneman to construct Bxk
(dk) in O(k4) time. Since Bxk

(dk) is compatible it
contains at most O(k) splits and Step 8 adds at most O(k) splits to Sk. Thus,
after Steps 4 to 8, Sk contains at most O(k) splits.

In Step 9 we have to calculate the refined Buneman indices of the O(k) splits
in Sk. This we do in O(kn4) time as follows: For each split σ ∈ Sk proceed in
ascending order through the list QX until n− 3 of the quartets in Q(σ) have
been encountered. Use these n− 3 quartets to calculate the refined Buneman
index for σ. As there are O(n4) quartets in QX , this takes O(n4) time for each
split, and since there are O(k) splits, we require O(kn4) time.

Collecting these facts together, we see that each iteration of the loop consisting
of Steps 3 to 10 takes O(k + 1 + k4 + kn4) = O(kn4) time. Thus, since we
iterate this loop n− 4 times, the algorithm takes at most O(n6) time. 2

Acknowledgement

The authors wish to thank the FSPM-Strukturbildungsprozesse for its gen-
erous support during this project. We also thank the referee for a quick and
helpful review.

7

References

[1] J. Barthélemy, From copair hypergraphs to median graphs with latent vertices,
Discrete Math. 76 (1989) 9–28.

[2] A. Dress, V. Moulton and M. Steel, Trees, taxonomy and strongly compatible
multi-state characters, Advances in Applied Mathematics 19 (1997) 1–30.

[3] M. Nei, Relative efficiencies of different tree-making methods for molecular data,
in: M. Miyamoto and J. Cracraft, eds., Phylogenetic Analysis of DNA Sequences
(Oxford University Press, 1991) 90–128.

[4] D. Swofford, G. Olsen, P. Waddell and D. Hillis, Phylogenetic Inference, in:
D. Hillis, C. Moritz and B. Mable, eds., Molecular Systematics (Sinauer,
Sunderland, Mass, 1996) 407–514.

[5] V. Moulton and M. Steel, Retractions of finite distance functions onto tree
metrics, submitted to: Discrete Applied Mathematics (1997).

[6] V. Moulton, M. Steel, C. Tuffley, Dissimilarity maps and substitution models, to
appear in: Proceedings of the DIMACS Workshop on Mathematical Hierarchies
(1997).

[7] K. Wolf and P.O. Degens, On properties of additive tree algorithms, in: O.
Opitz, ed., Conceptual and Numerical Analysis of Data (Springer-Verlag, 1989)
256–265.

[8] P. Buneman, The recovery of trees from measures of dissimilarity, in: F. Hodson,
D. Kendall, and P. Tautu, eds., Mathematics in the Archaeological and Historical
Sciences (Edinburgh University Press, Edinburgh, 1971) 387–395.

[9] D. Huson, SplitsTree - a program for analyzing and visualizing evolutionary
data, to appear in: CABIOS (1997).

[10] D. Gusfield, Efficient algorithms for inferring evolutionary trees, Networks 21
(1991) 19–28.

[11] H.-J. Bandelt and A. Dress, Weak hierarchies associated with similarity
measures— an additive clustering technique, Bulletin of Mathematical Biology
51(1) (1989) 133–166.

[12] V. Berry and O. Gascuel, Inferring evolutionary trees with strong combinatorial
evidence, in: T. Jiang, ed. Proceedings of the third international Computing and
Combinatorics Conference (COCOON) (Shanga, 1997) 111–123.

[13] F. R. McMorris, D. B. Meronk and D. A. Neumann, A view of some consensus
methods for trees, in: J. Felsenstein, ed., Numerical Taxonomy (Springer-Verlag,
1983) 122–125.

8

