
Faster reliable phylogenetic analysis

Vincent Berry∗ David Bryant†

Abstract

We present fast new algorithms for phylogenetic reconstruction from dissimilarity data or weighted
quartets. The methods are conservative—they will only return edges that are well supported by the
input data. This approach is not only philosophically attractive; the conservative tree estimate can be
used as a basis for further tree refinement or divide and conquer algorithms. The capability to process
quartet data allows these algorithms to be used in tandem with ordinal and qualitative phylogenetic
analysis methods.

We provide algorithms for three standard conservative phylogenetic constructions: the Buneman tree,
the Refined Buneman tree, and split decomposition. We introduce and exploit combinatorial formalisms
involving trees, quartets, and splits, and make particular use of an attractive duality between unrooted
trees, splits, and dissimilarities on one hand, and rooted trees, clusters, and similarity measures on
the other. Using these techniques, we achieve O(n) improvements in the time complexity of the best
previously published algorithms (where n is the number of studied species). Our algorithms will be
included in the next edition of the popular SplitsTree software package.

Keywords: computational biology, phylogeny reconstruction, combinatorially reliable edges, distance
based methods, quartets based methods, single linkage tree, polynomial time algorithms.

∗EURISE, Département de Mathématiques, Université de Saint-Etienne, 23, Rue du Docteur Paul Michelon, 42023 Saint-
Etienne Cedex 2, France. E-mail vberry@univ-st-etienne.fr

†C.R.M. Université de Montréal, C.P. 6128, Succ. centre-ville, Montréal, (Québec) H3C 3J7. E-mail
bryant@CRM.UMontreal.ca

1

1 Introduction

Inferring evolutionary trees, or phylogenies, is
a well-known problem in computational biology,
which aims at reconstructing the history of a set of
sequences or, more generally, species. A fundamen-
tal drawback of many phylogenetic reconstruction
methods is that they will always try to return a
fully resolved (binary) tree, even when the data set
is completely random. While a fully resolved tree
might seem more informative, in reality many of
the internal edges could be artifacts of the method,
rather than present in the data [8].

Several studies have investigated distance-based
methods proposing evolutionary trees whose edges
are supported by a significant number of combina-
torial constraints [10, 12, 27]. These constraints are
expressed on quartets of species, a basic structural
unit to describe trees, which can be efficiently in-
ferred from biological data [3, 7, 33, 34] and which
have received much attention recently in phyloge-
netic reconstruction [9, 10, 11, 16, 23, 33].

One example is the Q∗ method [3, 10] which re-
turns a tree with edges are supported by Ω(n2) to
O(n4) quartets. This method relies on the construc-
tion introduced by Buneman [14] and leads to a tree
containing only combinatorially safe edges. Unfor-
tunately it is often a case that only a few edges in
the historical phylogeny are combinatorially safe.

Moulton and Steel [27] investigated a related
method, called the Refined Buneman tree, that pro-
vides a refinement of the tree obtained by the Bune-
man construction (i.e., a tree containing at least
the edges inferred by the Buneman method). The
edges of the Refined Buneman tree still satisfy be-
tween Ω(n) and O(n3) quartets inferred from the
data.

The interest in these methods is twofold: first,
they provide conservative but reliable estimates of
the species history (e.g., the Q∗ method was ex-
perimentally shown to induce less than 1% incor-
rect edges [9, 29]); more importantly, because of
the important constraints they impose on inferred
edges, the corresponding tree can be computed in
polynomial time, whereas most other methods are
NP-hard. This motivates a new and promising ap-
proach to phylogeny reconstruction [9, 10, 29, 30]:
first compute a tree containing only safe edges
through one of the above methods and then use this
tree as a starting point for more refined, and com-
putationally intensive, reconstruction procedures

[9, 29]. Alternatively, one can divide the data set
into loosely grouped clusters and then apply these
conservative tree methods to the resulting subprob-
lems, an approach taken by the disc-cover method
[22].

There are times when the data simply does not
support a tree and forcing a tree structure onto the
data can result in lost information. This occurs, for
example, when there has been hybridization or hor-
izontal gene transfer. With this problem in mind,
Bandelt and Dress introduced split decomposition,
which constructs a network instead of a simple phy-
logeny. We will see that split decomposition is an
exact analogue of the Buneman tree construction,
and this relationship proves useful when develop-
ing fast algorithms. Split decomposition has been
implemented in the package SplitsTree [21] and has
been successfully applied to the analysis of virus
data [15].

In this paper, we present algorithms achieving
an O(n) improvement in the time complexity of the
best previously published algorithms for comput-
ing the Buneman tree, the Refined Buneman tree
and splitgraph on an n species dataset. Our algo-
rithms apply to dissilimilarity matrices or to sets
of weighted quartets, as can be obtained by usual
quartet inference methods [3, 18, 24]. The structure
of the paper is as follows:

• In the next section we define the fundamental
phylogenetic objects on which our algorithms
are based, as well as introducing connections
and dualities between them.

• In section 3 we exploit links between the
Buneman tree and strong clusters, and be-
tween strong clusters and the single linkage
tree, to develop an O(n2) algorithm for com-
puting strong clusters and an O(n3) for con-
structing the Buneman tree from a dissimilar-
ity measure.

• In section 4 we employ a new path covering
technique to give an O(n5) algorithm for the
Refined Buneman tree.

• In section 5 we use similar techniques to those
developed in section 3 to give an O(n5) algo-
rithm for split decomposition.

2

2 Preliminaries

Rooted and unrooted trees

An unrooted (phylogenetic) tree is a connected
acyclic graph with all vertices of degree less than
three (and possibly some higher degree vertices) la-
beled injectively from some label set. We will gen-
erally assume that the tree has no vertices of degree
two and only leaves are labeled uniquely from the
label set, as we need only add trivial external edges
to achieve this. An unrooted tree is binary if every
internal vertex has degree three.

Given any three leaves a, b, c let mid(a, b, c) de-
note the internal vertex on the path from a to b that
is closest to c. Hence mid(a, b, c) = mid(a, c, b) =
mid(b, c, a).

The dual of an unrooted tree is a rooted tree,
which is defined in the same way except that one
internal vertex is distinguished and called the root,
and this vertex can have degree two. A rooted tree
is binary if all internal vertices except the root have
degree three and the root has degree two. We can
transform an unrooted tree into a rooted tree by fix-
ing a leaf, making its adjacent internal vertex the
root, and removing the leaf. Conversely, we can
convert a rooted tree into an unrooted tree by at-
taching a new leaf to the root and unrooting the
tree.

2.1 Splits and clusters

A split of a finite set is a partition of the set into
two non-empty blocks. Removing an edge e from
an unrooted phylogenetic tree T partitions the leaf
set of the tree into two parts—this is the split of
T associated with e. The complete set of splits ob-
tained this way is denoted splits(T). The splits
A|B where |A| = 1 or |B| = 1 are called trivial.
Any unrooted tree T can be reconstructed from its
set of splits in linear time [20].

A set of splits S is compatible if S ⊆ splits(T)
for some tree T . It was shown in [14] that two splits
A|B and C|D are compatible if and only if one of
A∩C, A∩D, B∩C, B∩D is empty and that a set
of splits is compatible if and only if it is pairwise
compatible.

A set of splits S is weakly compatible if for
all A1|B1, A2|B2, A3|B3 at least one of A1∩A2∩A3,
A1∩B2∩B3, B1∩A2∩B3, or B1∩B2∩A3 is empty.
Every compatible set of splits is weakly compati-
ble, so systems of weakly compatible splits can be

seen as a generalization of unrooted trees. Sets of
weakly compatible splits can be represented as a
splits graph where every split corresponds to a set
of parallel edges that form a cut set of the graph.

The dual of a split is a cluster, which is simply
a subset of the finite set. If we fix a leaf x then the
cluster corresponding to split A|B with x ∈ B is
the set A. Conversely the split corresponding to a
cluster A of X − {x} is the split A|X − A. Given
any collection C of clusters we say that one cluster
A ∈ C covers another cluster B (A if A (C ⊆ B

and C ∈ C implies C = B.
Removing an edge e in a rooted tree partitions

the tree into two parts. The set of leaves in the
part not containing the root is called the cluster
corresponding to v, where v is the endpoint of
e furthest away from the root. A set of clusters
obtained this way is said to be compatible. Com-
patible sets of clusters (also called strong hierar-
chies or just hierarchies) are characterized by the
property that for any two clusters A and B in the
set, if A ∩ B 6= ∅ then A ⊆ B or B ⊆ A.

A set of clusters C forms a weak hierarchy if
for all A,B,C ∈ C at least one of (A ∪ B) − C,
(A∪C)−B, (B ∪C)−A is empty. Any strong hi-
erarchy is also a weak hierarchy. Weak hierarchies
are normally presented as a Hasse diagram of their
clusters [4].

Given any collection of clusters C of a finite set
X with X ∈ C, and a subset Y ⊆ X the closure of
Y is given by

〈Y 〉 =
⋂

A∈C:Y ⊆A

A

If C is closed under intersections then 〈Y 〉 is con-
tained in C for all Y ⊆ X. It is shown in [4] that if A

is any cluster in a weak hierarchy then there is a, a′

such that 〈a, a′〉 = A. In strong hierarchies (rooted
trees), A = 〈a, a′〉 if and only if A is the cluster cor-
responding to the least common ancestor of a and
a′.

2.2 Quartets

To every set of four species a, b, c, d ∈ X there are
three ways to associate a leaf-labeled binary un-
rooted tree. The three possible resolutions are de-
noted ab|cd, ac|bd and ad|bc, indicating how the
central edge of the tree bipartitions the four species.
Each of these trees on four species is also called a
resolved quartet, or simply a quartet [10, 12, 16, 27].

3

An unrooted tree T induces a quartet ab|cd if
we can remove leaves and contract edges of T to ob-
tain ab|cd. Intuitively, T induces ab|cd if the path
from a to b in T does not intersect the path from
c to d. Note that an unrooted tree T is uniquely
characterized by the set q(T) of quartets it induces,
from which it can be reconstructed in O(|q(T)|+n2)
time [3].

The set of quartets q(A|B) corresponding to a
split A|B is defined

q(A|B) = {aa′|bb′ : a, a′ ∈ A, b, b′ ∈ B}.

It follows that q(T) = ∪A|B∈splits(T)q(A|B) and a
set of splits S is compatible if and only if q(S) =
∪A|B∈Sq(A|B) contains at most one quartet on each
set of four leaves. Similarly, a set of splits S is
weakly compatible if and only if q(S) contains at
most two quartets on each subset of four leaves [6].

2.3 Dissimilarity measures and trees

Let T be any unrooted tree and suppose that the
edges of T are weighted. The weighting induces a
dissimilarity measure on the leaf set of the tree: the
distance between two leaves is taken to be the sum
of the weights along the unique path connecting
them. Dissimilarity measures arising in this way
are called additive and can be easily characterized
[14].

Given a split A|B we define the split metric
of A|B by

δA|B(a, b) =

{

0 if {a, b} ⊆ A or {a, b} ⊆ B

1 otherwise

}

In a weighted unrooted tree, if λA|B is the weight
of the edge associated with split A|B then the dis-
similarity measure d(T) corresponding to the tree
is given by

d(T) =
∑

A|B∈splits(T)

δA|B .

In all of the three standard methods below the out-
put is a set of splits together with a set of split
weights.

2.4 Conservative phylogenetic recon-

struction methods

Phylogenetic reconstruction methods fall roughly
into two categories: those applied to discrete qual-
itative data (as molecular sites) and those applied

to distance data. Our algorithms can handle both
types.

Distance based methods of phylogeny recon-
struction are presently the default methods for the
analysis of many data sets. A set of sequences is
usually turned into a set of distances, which are
then used to construct the tree - the distances
are viewed as estimates of the dissimilarity mea-
sure induced by the correct phylogeny. Some types
of data, like DNA hybridization data, come only
as distances. The main attractions of distance
based analyses is that they are generally faster than
their qualitative counterparts and that they can be
proven consistent under usual models of evolution.
Algorithms like Neighbour Joining [31] can be used
to construct a fully resolved tree, with a greater or
lesser degree of support, in a few seconds.

Sets of weighted quartets are also proving to be
a valuable intermediary step in phylogenetic tree re-
construction [3, 9, 10, 13, 16, 23, 34, 36]. Suppose
that you have an optimization criterion, like Max-
imum Likelihood [18], that requires a prohibitive
amount of computational time on large or moder-
ately sized data sets. One promising approach is to
restrict analysis to four taxa at a time, score each
possible quartet, and construct trees incorporating
a selection of the quartets according to a recon-
struction principle [9, 10, 13, 16, 23, 34, 36].

An example of the output provided by the fol-
lowing methods is shown on a mammal dataset (ex-
amined in [28]) in Figure 1. The dataset consists
of DNA sequences for 11 mammals containing 188
nucleotides, obtained from several genes (α- and β-
hemoglobins, fibrinopeptides A and B, cytochrome
c, myoglobins, α-chrystallin).

2.4.1 The Buneman Tree

Buneman showed how to construct a weighted un-
rooted tree from a dissimilarity measure d on X by
considering quartets [14]. The Buneman score of a
quartet q=wx|yz, w, x, y, z ∈ X, is defined as:

βq = βwx|yz := 1
2 (min{wy+xz,wz+xy}−(wx+yz)),

where d(x, y) is written xy for all x, y ∈ X. The
Buneman index of a split U |V of X is

µU|V = µU|V (d) = min
u,u′∈U,v,v′∈V

βuu′|vv′ .

Here u and u′ need not be distinct; likewise for
v and v′. Buneman showed that the set of splits

4

B(d) = {U |V : µU|V (d) > 0} is compatible. We de-
fine the Buneman tree to be the weighted unrooted
tree associated to B(d), whose edges correspond to
the splits U |V ∈ B(d) and are weighted according
to µU|V (d).

Figure 1 (i) shows the Buneman tree calculated
for the mammalian data set of [28]. There is enough
structure in this data for the Buneman tree to in-
fer several splits, corresponding to expected groups,
e.g., primates (ape, human, monkey), ungulates
(cow, sheep, pig, horse). However, the Buneman
method does not take any decision relative to the
dog, kanga, rabbit and rodent species whose posi-
tion is still uncertain [28].

Buneman’s method can be generalized to the
case when quartets are not necessarily weighted by
their Buneman scores [3]. Given any set of quar-
tets Q and a weighting function w for Q such that
at most one quartet has positive weight for each
subset of four species, the set of splits

S(w) = {U |V : ∀q ∈ q(U |V), w(q) > 0}

is compatible, giving a tree which can be ob-
tained in O(n4) time, through the Q∗ method
[10]. Moreover, weighting each split U |V of S(w)
by minuu′|vv′∈q(U |V) w(uu′|vv′) produces a weighted
unrooted tree that is an analogue to the Buneman
tree.

2.4.2 Anchored Buneman tree

One relaxation of the condition that µA|B > 0 is to
only look at quartets containing a certain leaf. Fix
x ∈ X. For each split U |V with x ∈ U define

µx
U|V = µx

U|V (d) := min
u∈U,v,v′∈V

{βxu|vv′},

and put Bx(d) = {U |V s.t. µx
U|V > 0}. The set of

splits Bx(d) is compatible [12]. The weighted un-
rooted tree associated to Bx(d), whose edges corre-
spond to the splits U |V ∈ Bx(d) and are weighted
according to µx

U|V (d), is called the Buneman tree
anchored at x.

Clearly µx
U|V ≥ µU|V for all splits U |V , so that

B(d) ⊆ Bx(d). Indeed µU|V = minx∈X µx
U|V so

B(d) = ∩x∈XBx(d).
There is a straightforward generalization of the

anchored Buneman tree for when the input is a
quartet weight function. Given any set of quar-
tets Q and a weighting function w for Q such that
at most one quartet has positive weight for each

subset of four species, define qx(U |V) = {uu′|vv′ ∈
q(U |V) : u′ = x} and

Bx(w) := {U |V : qx(U |V) ⊆ Q}

where each split in Bx(w) is weighted by

µx
U|V (w) := min

q∈qx(U |V)
w(q).

2.4.3 The Refined Buneman tree

Recently, Moulton and Steel [27] have shown that
another special relaxation of the condition µU|V >0
also gives a set of compatible splits: put m =
|q(U |V)| and let q1, . . . , qm be an ordering of the ele-
ments in q(U |V) such that for all 1 ≤ i ≤ j ≤ m we
have βqi

≤ βqj
. Put qmin(U |V) = {q1, q2, . . . , qn−3}.

The Refined Buneman index of a non-trivial split
U |V is defined as

µ̄U|V = µ̄U|V (d)

:=
1

n − 3
·

n−3
∑

i=1

βqi

=
1

n − 3
·

∑

q∈qmin(U |V)

βqi

Note that µ̄U|V can also be defined for triv-
ial splits U |V [12, 27], but this definition implies
that µ̄U|V is always positive if d satisfies the trian-
gle inequality (if this is not the case, then, with-
out changing the index of the non-trivial splits,
we can add a sufficiently high constant c to ev-
ery entry of d such that d satisfies the triangle in-
equality). Thus, w.l.o.g., we will always suppose
that the trivial splits have a positive index. The
set of splits RB(d) = {U |V : µ̄U|V (d) > 0} is
shown to be compatible in [27] and the associated
weighted unrooted-tree, whose edges correspond to
the splits U |V ∈ RB(d) and are weighted accord-
ing to µ̄U|V (d), is called the Refined Buneman tree.
It is clear that B(d) ⊆ RB(d), and often B(d) is
strictly contained in RB(d), in which case the Re-
fined Buneman tree refines the Buneman tree.

The Refined Buneman tree (Figure 1 (ii)) adds
three splits to the previous mammal tree. We draw
the tree with equal length edges so that the ad-
ditional splits are easy to identify (they have only
small weight). The cluster (pig,sheep,cow) is ex-
pected; the cluster (dog,kanga) is also found by
Neighbour Joining and Maximum Parsimony; the
cluster (rabbit, rodent), also found by Maximum

5

(i) Buneman tree on the mammal data set [28]

(ii) Refined Buneman tree for the mammal data set [28]
 (drawn with equal length edges)

(iii) Splits graph for the mammal data set [28]

Title: mammiferes.nex
Date : Fri Oct 9 07:17:47 1998

Fit=67.2 ntax=11 nchar=188 miss=22 nonparsi=19 -dtree -hamming

Cow

Human, Ape

Dog

Monkey Pig

Sheep

Horse

Rabbit

Rodent

Kanga

0.1

Title: mammiferes.nex
Date : Fri Oct 9 07:16:18 1998

Fit=75.8 ntax=11 nchar=188 miss=22 nonparsi=19 -dsplits -hamming

Ape, Human

Sheep

Kanga

Rabbit

Monkey

Cow

Dog

Horse

Pig

Rodent

0.1

Title: mammiferes.nex
Date : Fri Oct 9 07:18:28 1998

Fit=81.2 ntax=11 nchar=188 miss=22 nonparsi=19 -rdtree -hamming

Cow

Ape

Rabbit

Horse

Monkey

Dog

Pig

Human

Sheep

Kanga

Rodent

Figure 1: Buneman tree, Refined Buneman tree, and splitsgraph for the mammal data set [28]

6

Parsimony and Neighbour Joining, is suspected to
be wrong due to the long branch attract problem,
but no firm conclusion as been reached concerning
these groups [28].

Like the Buneman and anchored Buneman
trees, this method can be modified to handle more
general quartet weights. Suppose that w is a weight
on quartets such that w(ab|cd) + w(ac|bd) ≤ 0 for
any two quartets ab|cd, ac|bd on the same set of
species. Once again, let qmin(U |V) be the set of
n − 3 minimum score quartets in q(U |V). A modi-
fication of the proof in [27] shows that if we define

µ̄U|V = µ̄U|V (w) :=
1

n − 3
·

∑

qi∈qmin(U |V)

w(qi).

then the set of splits RB(w) = {U |V : µ̄U|V > 0} is
compatible.

2.4.4 Split decomposition and the splits-
graph

Just as weak compatibility of splits generalizes com-
patibility of splits, the d-split construction of Ban-
delt and Dress [5] generalizes the tree construction
method of Buneman. We replace the Buneman
quartet score βq with the weak quartet score β∗

q

for a quartet q=wx|yz, w, x, y, z ∈ X, defined as

β∗
q = β∗

wx|yz :=
1

2
(max{wy+xz,wz+xy}−(wx+yz)).

where, as before, d(x, y) is denoted xy, all x, y ∈ X.
The (weak) isolation index of a split U |V is then
defined

αU|V = αU|V (d) = min
u,u′∈U,v,v′∈V

β∗
uu′|vv′ .

Here u and u′ need not be distinct; likewise for v

and v′. A split U |V is called a d-split if αU|V > 0.
Bandelt and Dress [5] showed that the set of d-
splits of a distance function d is weakly compatible.
They use this construction to describe a canonical
decomposition of metrics into split metrics (and a
residue).

The split decomposition approach can be ap-
plied to sets of weighted quartets. Given a set
of quartets Q containing at most two quartets for
each set of four leaves, the set of splits S(Q) =
{U |V : q(U |V) ⊆ Q} is weakly compatible. If
w is a weighting function on quartets such that
w(ab|cd) + w(ac|bd) + w(ad|bc) ≤ 0 for all subsets
of four leaves a, b, c, d then Q could be taken to be

{ab|cd : w(ab|cd) > 0}. In this case the weight
given to a split U |V would be

w(U |V) = min{w(uu′|vv′) : uu′|vv′ ∈ q(U |V)}.

Once the set of d-splits has been constructed,
the set of weakly compatible splits can be used to
construct a splitsgraph. A splitsgraph can be re-
garded as a generalized tree diagram, except that
every split corresponds to a collection of parallel
edges rather than a single edge. In many cases
the splitsgraph looks like a normal tree with some
additional boxes in regions of uncertainty. This
is evident when we compute the splitsgraph for
the mammal data (Figure 1 (iii)). The splits-
graph for the dataset adds a split separating (rab-
bit,rodent,primates) from the other species, which
was also proposed in [28].

3 An O(n3) time algorithm for the

Buneman tree

The definition of the Buneman tree seems to imply
that any algorithm for computing the tree and edge
weights would take at least Ω(n4) time—we need
to calculate βq for every possible quartet q. Here
we provide an O(n3) algorithm. The gain in effi-
ciency is achieved by converting the problem from
one involving unrooted trees and distances to one
involving rooted trees and similarities.

A similarity measure s on a finite set X is a
symmetric function on X × X. Intuitively, a high
similarity between two objects indicates a high de-
gree of relationships. The strong isolation index
is(A) of a cluster A ⊆ X with respect to s is defined

is(A) = min
a,a′∈A,x∈X−A

{

s(a, a′) − max{s(a, x), s(a′, x)}
}

which is equivalent to

is(A) = min
a,a′∈A,x∈X−A

{s(a, a′) − s(a, x)}.

The clusters {A : is(A) > 0} are called the strong
clusters of s and form a (strong) hierarchy [4].

If we fix x ∈ X then a distance d can be con-
verted into a similarity sx on X − {x} using the
Farris transform

sx(a, b) = 1
2(d(a, x) + d(b, x) − d(a, b))

7

for all a, b ∈ X −{x}. The inverse of the transform
is given by

d(a, b) = sx(a, a) + sx(b, b) − 2sx(a, b)

for all a, b ∈ X − {x} with d(a, x) = sx(a, a) and
d(x, x) = 0.

The connection with Buneman trees is provided
by the following Lemma. It can be proved by ex-
pressing βq in terms of sx.

Lemma 1 If d is a distance function on X with
Farris transform sx and U |V is a split of X with
x ∈ U then

µx
U|V = isx(V).

That is, strong clusters correspond to splits in the
anchored Buneman tree.

Thus A|B is a split in the Buneman tree if and
only if A is a cluster of sx for all x ∈ B and B is a
weak cluster of sy for all y ∈ A. The question now
becomes: how quickly can we construct the strong
clusters?

3.1 Strong clusters and the single link-

age tree

One of the most widely known tree constructions
in classification is the single linkage clustering tree.
It is the close cousin of popular phylogenetics algo-
rithms neighbor joining [31] and upgma [32]. We
use it to construct strong clusters.

Theorem 2 If A is a strong cluster of s then A is
a cluster in the single linkage tree for s.

Proof
We use a characterization of single linkage trees
described by [7] and rediscovered in [17] to solve
a related problem. Given a similarity s on finite
set X we construct the graph G[k] with edge set
E[k] = {{a, b} : s(a, b) ≥ k}. A cluster is in the sin-
gle linkage tree for s if and only if it is a component
of G[k] for some k.

Suppose that k is the maximum value such that
A is connected in G[k]. Given any a in X and
x ∈ X − k if {a, x} ∈ E[k] then s(a, x) ≥ k and so
s(a, a′) > s(a, x) ≥ k for all a′ ∈ A, since A is a
strong cluster. However this contradicts the maxi-
mality assumption for k. Hence A is a component
of G[k]. 2

This result has been proved independently in
[2]. The single linkage tree for s can be constructed
in O(n2) time using spanning tree based methods
[7, 19, 25].

3.2 An O(n2) algorithm for strong clus-

ters in a tree

We are able to create a superset of the collection
of strong clusters in O(n2) time. The task that re-
mains is to prune those clusters with zero, or neg-
ative, isolation index from this collection.

Let C be the collection of clusters returned
by the single linkage algorithm. For each cluster
Ci ∈ C and each x ∈ Ci we calculate two values:

m(Ci, x) := min{s(x, x′) : x′ ∈ Ci}

M(Ci, x) := max{s(x, x′) : Ci = 〈x, x′〉}

Since C is compatible, 〈x, x′〉 = Ci if and only if Ci

is the cluster corresponding to the least common
ancestor of x and x′. Furthermore, if Cj is a cluster
that is covered by Ci and contains x then

m(Ci, x) = min
{

m(Cj , x),min{s(x, x′) : Ci = 〈x, x′〉}
}

.

Since each pair of leaves x, x′ gives exactly one clus-
ter Ci = 〈x, x′〉 the values m and M can be calcu-
lated for all leaves and clusters in O(n2) time, using
a depth first search of the single linkage tree. Once
these values are calculated the isolation indices can
be computed:

Lemma 3 If A is a cluster in C and B is a strong
cluster that covers A in C then

is(A) = min
a∈A

{m(A, a) − M(B, a)}.

Proof
The strong cluster B has positive isolation index so
s(a, y) > s(a, x) and s(a, a′) − s(a, y) < s(a, a′) −
s(a, x) for all y ∈ B − A and x ∈ X − B. Hence

is(A) = min
a,a′∈A,y∈B−A

{s(a, a′) − s(a, y)}

= min
a∈A

{

min
a′∈A

{s(a, a′)} − max
y∈B−A

{s(a, y)}

}

= min
a∈A

{m(A, a) − M(B, a)}

as required. 2

The values is(A) can now be calculated for
all clusters using a preorder traversal of the tree.

8

Whenever a cluster is found with zero or negative
isolation score, we remove the cluster from the tree.

Applying the pruning procedure to the single
linkage tree gives us the strong clusters with their
isolation index (algorithm 1 in the Appendix). We
have now established

Theorem 4 The strong clusters of a similarity
measure can be recovered, together with their iso-
lation indices, in O(n2) time.

3.3 An O(n3) algorithm for the Buneman

tree

We can now exploit the relationship between the
anchored Buneman trees and the Buneman tree.
We let si denote sxi

, the Farris transform of d with
respect to xi. We construct the set of clusters from
the single linkage tree of s1 then successively prune
off clusters that are not strong clusters for some
other si (algorithm 2 in the Appendix). At the
conclusion of the algorithm each split A|B in S is
weighted by minx∈X{µx

A|B} = µA|B, the Buneman

score for A|B.

Note that a number of shortcuts can speed up
execution, however they do not improve the order
of time complexity and will be reserved for an ex-
tended version of this paper.

4 Computing Refined Buneman

trees in O(n5) time

The algorithm of Bryant and Moulton [12] for com-
puting the splits RB(d) of the Refined Buneman
tree is iterative. It assumes an arbitrary order on
the species X = {x1, . . . , xn}, computes RB(d) for
a small subset of species then extends it by progres-
sively incorporating the other species. The same it-
erative technique has been successfully used to solve
other related problems [5, 10].

Let Xk = {x1, . . . , xk} and dk be the dissimi-
larity d restricted to Xk. Each iteration step was
based on the following Lemma:

Lemma 5 ([12]) Suppose |X|>4, and fix x ∈ X.
If σ = {U, V } is a split in RB(d) with x ∈ U ,
and |U | > 2, then either {U, V } ∈ Bx(d) or {U −
{x}, V }∈RB(dX−{x}) or both.

Thus, the algorithm of [12] first computes
RB(d4) = B(d4), then at each step k (k ranging

from 5 to n), the set RB(dk) is computed by consid-
ering the splits U |V ∈Bxk

(dk) as well as {U∪xk, V }
and {U, V ∪xk} for each {U, V } ∈ RB(dk−1). From
these splits, only those having a positive Refined
Buneman index are included in RB(dk).

The most time consuming step of this O(n6)
algorithm is computing the index of the splits con-
sidered for addition in the set RB(dk) at each step
k. To compute the index of a split, we have to know
the k−3 quartets of least Buneman score it induces.
The set QX of all existing quartets is sorted at the
beginning of the algorithm according to their Bune-
man score. Then, for each examined split σ, the
algorithm proceeds in ascending order through the
sorted list QX , to find the k − 3 quartets of lower
Buneman score induced by σ. However, this can re-
quire up to O(n4) for each split, i.e., O(n5) at each
step (O(k) splits are considered), hence the O(n6)
complexity of the algorithm.

Our approach is to partition the quartet set into
disjoint subsets, obtain the n − 3 smallest quartet
values for each subset, then calculate Refined Bune-
man scores using an analogue of merge sort.

4.1 Calculating Refined Buneman scores

path by path

Let T be an unrooted tree and let wx|yz be a quar-
tet in q(T). The path between w and y, and the
path between x and z intersect along an internal
path in the tree: the path connecting mid(w, x, y)
and mid(w, y, z). Thus to every quartet there cor-
responds a unique internal path in the tree. Let P
be the set of paths connecting internal vertices in
T . For each P let QP be the set of quartets cor-
responding to P . Thus q(T) is the disjoint union
of {QP : P ∈ P}. Furthermore wx|yz ∈ QP if and
only if wx|yz ∈ q(U |V) for exactly those splits U |V
corresponding to edges along P .

Given an internal edge e (with corresponding
split U |V) let P(e) be the set of paths in P that
traverse e. Then |P(e)| ≤ |P| < n2 and q(U |V)
is the disjoint union of {QP : P ∈ P(e)}. Hence
the set qmin(U |V) of n− 3 quartets in q(U |V) with
minimum score can be constructed from the sets of
n − 3 minimal quartets contained in each QP such
that P ∈ P(e). This idea forms the basis of al-
gorithm 3 which calculates Buneman scores of all
splits in a tree in just O(n4) time. We will assume,
without loss of generality, that the tree is binary,
and that the set of all 3

(

n
4

)

quartets on X has been

9

sorted according to quartet score.

Note that computing the mid(a, b, x0)’s is per-
formed in O(n2) time using a depth first search of
the tree, and the map between edges e and P(e)
can be constructed in O(n3) time. After prepro-
cessing we can determine the path P correspond-
ing to a quartet wx|yz in O(1) time by examining
the vertices {mid(a, b, x0) : a, b ∈ {w, x, y, z}}. The
quartets in q(T) are already sorted, so each inser-
tion in the list corresponding to a path takes O(1)
time. There are O(n2) paths in each P(e) so it takes
O(n3) time to calculate the Refined Buneman score
for each edge. We have now established

Lemma 6 If we are given a sorted list of quartets
in q(T) then it takes at most O(n4) time to calcu-
late the Refined Buneman scores for every edge of
T .

4.2 Constructing the Refined Buneman

tree in O(n5) time

We now proceed from calculating Refined Buneman
scores to constructing Refined Buneman trees. Al-
gorithm 4 calculates the splits in RB(d) as well as
there weights in O(n5) time. The algorithm re-
quires O(n4) memory space. This amount of mem-
ory usage is quite acceptable when the input data is
a set of weighted quartets, however it should be pos-
sible to improve space complexity when the input
is an n × n distance matrix. In any case, sophisti-
cated bitmap techniques enable quartet computa-
tion with 200 to 300 taxa (D. Swofford, personal
communication).

5 Split decomposition

The definition of d-splits makes it clear that split
decomposition is to weakly compatible splits what
the Buneman tree and the Q∗ tree are to compat-
ible splits. That said, can we use an analogue of
our fast Buneman tree algorithm to quickly perform
split decomposition? The answer is yes, however we
have to be careful. Systems of weakly compatible
splits are a bit more complicated than trees.

Once again we convert the problem from dis-
tances to similarities. The weak isolation index
of a cluster A ⊆ X with respect to a similarity
measure s on X is defined

i∗s(A) = min
a,a′∈A,x∈X−A

{s(a, a′)−min(s(a, x), s(a′, x))}

The set of clusters {A : i∗s(A) > 0} are called the
weak clusters of s and form a weak hierarchy [4].

The connection back to d-splits is provided by

i∗s(U) = min{β∗
ab|cx : ab|cx ∈ q(U |X − U)}

where s is the Farris transform of d with respect to
x. Thus A|B is a d-split if and only if A is a weak
cluster of sx for all x ∈ B and B is a weak cluster
of sy for all y ∈ A.

At the moment, the fastest algorithm for calcu-
lating the weak clusters of a similarity measure is
still the original iterative O(n5) time algorithm of
[4]. There appears to be no analogue of the single
linkage tree connection in the strong cluster case.

Let C be the set of weak clusters with respect
to sx for a leaf x. We wish to prune out clusters of
C that do not correspond to d-splits.

Fix a leaf x. For each cluster A ∈ C and leaf
b ∈ X − A we calculate

Fx(A, b) = min{β∗
aa′ |bx : a, a′ ∈ A}.

The function Fx can be calculated recursively using

Fx(A, b) = min
{

min{F (B, b) : A covers B},

min{β∗
aa′ |bx : 〈a, a′〉 = A}

}

.

There are at most O(n3) covering relations in a
weak hierarchy such as C that is closed under in-
tersections. Hence for each x the value of Fx(A, b)
for each A ∈ C and b ∈ X can be calculated in
O(n4) time. Thus Fx(A) := min{β∗

aa′ |bx : a, a′ ∈

A, b ∈ X − A} can be all calculated in O(n4) time.
We store these values for each cluster then repeat
for the remaining x ∈ X. The isolation index for
A|(X−A) is the minimum of Fx(A) over all x ∈ X.
In this way, the d-splits can be obtained in O(n5)
time using only O(n3) memory.

We summarize the method in algorithm 5. Once
again we let si denote the Farris transform of d with
respect to xi.

10

Acknowledgements

The authors would like to thank D. Penny for pro-
viding the mammal data set. This work was carried
out while D. Bryant held a Bioinformatics Post-
doctoral Fellowship from the Canadian Institute
for Advanced Research, Evolutionary Biology Pro-

gram. Research supported in part by the Natu-
ral Sciences and Engineering Research Council of
Canada and the Canadian Genome Analysis and
Technology grants to D. Sankoff. V. Berry was sup-
ported during part of this work by ESPRIT LTR
Project no. 20244 — ALCOM-IT.

Appendix:- algorithm code

Algorithm 1: Strong clusters.

input : A similarity s on a set X of taxa.

output: The tree containing the strong clusters A ∈ C(s) and their strong isolation index is(A).

Construct the single linkage tree T for s using Prim’s algorithm.
C := clusters of T .
foreach Ci ∈ C in a depth first traversal of T

Compute m(Ci, x) for all x ∈ Ci.
Compute M(Ci, x) for all x ∈ Ci.

foreach Ci ∈ C in a pre-order traversal of T

Calculate is(Ci) using Lemma 3.
Remove Ci if is(A) < 0.

Output C with weights.

Algorithm 2: Buneman Tree.

input : A dissimilarity d on a set x1 . . . xn of taxa.

output: The set of splits S of the Buneman tree with weights w.

Construct the set C of strong clusters for s1

foreach A ∈ C
S := S ∪ {A|X − A}
w(A|X − A) := is1

(A)

foreach i = 2, 3, . . . , n
Construct Farris transform si

C := ∅
foreach A|B ∈ S with xi ∈ B

C := C ∪ {A}

Prune clusters from C that are not strong clusters of si.
foreach A ∈ C

S := S ∪ {A|X − A}
w(A|X − A) := min{w(A|X − A), is1

(A)}

Output S with weights.

11

Algorithm 3: Refined Buneman scores in a tree

Fix a leaf x0 and use a depth first search of the tree to determine mid(a, b, x0) for every pair of
leaves a and b.
for i = 1..|q(T)| do

Determine the path P such that qi ∈ QP .
Insert the score of qi into the sorted list corresponding to QP .

Construct P(e) for each edge e.
for For each edge e do

Merge the sorted lists of values for each P in P(e) together, halting the process when we obtain
n − 3 minimum scores.
Calculate the Refined Buneman score for e from this list.

foreach split U |V in T Output U |V , ¯µU|V and qmin(U |V).

Algorithm 4: A merge sort algorithm on quartets to construct the Refined Buneman tree.

Construct the list QX of all possible quartets wx|yz on X, sorted according to weight.
S4 := B(d4).
foreach k from 5 to n

Sk := {xk|Xk − xk}.
Construct Bx(dk) for dk.
Calculate µ̄U|V and qmin(U |V) for each U |V ∈ Bx(dk) using algorithm 3.
Sk := Sk ∪ {U |V ∈ Bx(dk) : µ̄U|V > 0}.
Construct the sorted list Qk = {ab|cxk : a, b, c ∈ Xk−1}.
foreach split U |V ∈ Sk−1

Construct a list L of n − 3 smallest quartets in Qk ∩ q(U ∪ {xk}|V).
Construct qmin(U ∪ {xk}|V) from L and qmin(U |V).
Construct a list L′ of n − 3 smallest quartets in Qk ∩ q(U |V ∪ {xk}).
Construct qmin(U |V ∪ {xk}) from L′ and qmin(U |V).
Calculate µ̄U∪{xk}|V and µ̄U |V ∪{xk}.
if µ̄U∪{xk}|V > 0 then

Sk := Sk ∪ {U ∪ {xk}|V }

if µ̄U |V ∪{xk} > 0 then
Sk := Sk ∪ {U |V ∪ {xk}}

Output RB(d) = Sn and {µ̄U|V : U |V ∈ Sn}.

12

Algorithm 5: Split decomposition

input : a dissimilarity measure d on X = {x1, x2, . . . , xn}.

output: d-splits of d together with their weights.

Construct s1, the Farris transform of d with respect to x1.
Construct the weak clusters of s1 using the iterative algorithm of [4].
Let C be this set of clusters and put w(A) = i∗s1

(A) for all A ∈ C.
Sort C by set inclusion and tabulate covering relations.
for all x ∈ X − {x1} do

for all clusters A ∈ C do
for all b ∈ X − A do

Fx(A, b) := min
{

min{Fx(B, b) : A covers B}, β∗
aa′|bx : 〈a, a′〉 = A

}

w(A) := min {w(A),min{F (A, b) over allb ∈ X − A}}.

for all A ∈ C do
if w(A) > 0 then

S := S ∪ {A|X − a}.
w(A|X − A) := w(A).

Output S with weights.

13

References

[1] K. Atteson. The performance of neighbor-joining algorithms of phylogeny reconstruction. In Proc. of
COCOON, Computing and Combinatorics, pages 101–110. Springer, 1997.

[2] J. P. Benzecri (1967) and coll. Description mathmatique des classifications, volume 1 : La Taxinomie
of L’analyse des donnes, chapter TIB No 3 [D.M.Cl.], pages 146–148. Dunod, Paris, 1973.

[3] H-J. Bandelt and A.W. Dress. Reconstructing the shape of a tree from observed dissimilarity data.
Adv. in appl. math., 7:309–343, 1986.

[4] H.-J. Bandelt and A.W. Dress. Weak hierarchies associated with similarity measures - an additive
clustering technique. Bull. Math. Biol., 51:133–166, 1989.

[5] H.-J. Bandelt and A.W. Dress. A canonical decomposition theory for metrics on a finite set. Advances
Math, 92:47–105, 1992.

[6] H.-J. Bandelt and A.W. Dress. A relational approach to split decomposition. Technical report.
Universität Bielefeld. 1994.

[7] J.P. Barthélemy and A. Guénoche. Trees and proximities representations. Wiley, 1991.

[8] V. Berry and O. Gascuel. On the interpretation of bootstrap trees: appropriate threshold of clade
selection and induced gain. Mol. Biol. Evol., 13(7):999–1011, 1996.

[9] V. Berry and O. Gascuel. Reconstructing phylogenies from resolved 4-trees. Technical Report 97076,
LIRMM, 1997.

[10] V. Berry and O. Gascuel. Inferring evolutionary trees with strong combinatorial confidence. Theoretical
Computer Science (to appear), 1998.

[11] D. Bryant and M. Steel. Extension operations on sets of leaf-labelled trees. Advances in Appl. Math.,
16:425–453, 1995.

[12] D. Bryant and V. Moulton. A polynomial time algorithm for constructing the refined buneman tree.
Appl. Math. Lett., in press, 1998.

[13] D. Bryant and M. Steel. Fast algorithms for constructing optimal trees from quartets. SODA’99. (in
press).

[14] P. Buneman. Mathematics in Archeological and Historical Sciences, chapter The recovery of trees
from measures of dissimilarity, pages 387–395. Edhinburgh University Press, 1971.

[15] J. Dopazo, A. Dress, and A. von Haeseler. Split decomposition: A technique to analyze viral evolution.
Proc. Natl. Acad. Sci. USA, 90:10320–10324, 1993.

[16] P.L. Erdös, M.A. Steel, L.A. Szkely, and T.J. Warnow. Constructing big trees from short sequences.
In 24th International Colloquium on Automata Langages and Programming, 1997.

[17] M. Farach, S. Kannan, and T. Warnow. A robust model for finding optimal evolutionary trees.
Algorithmica, 13:155–179, 1993.

[18] J. Felsenstein. Evolutionary Trees from gene frequencies and quantitative characteres : finding maxi-
mum likelihood estimates. Evolution, 35(6), 1229-1242, 1981.

[19] Gower and Ross. Minimum spanning tree and single linkage cluster analysis. Appl. Stats., 18:54–64,
1969.

14

[20] D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:19–28, 1991.

[21] D. Huson. SplitsTree - a program for analyzing and visualizing evolutionary data. Bioinformatics
14(1):68–73, 1998.

[22] Huson, D., S. Nettles, T. Parida, T. Warnow, and S. Yooseph. The disc-covering method for tree
reconstruction. Proceedings of ALEX, 1998, Trento, Italy, 1998.

[23] T. Jiang, P. Kearney, and M. Li. Orchestrating quartets: approximation and data correction. sub-
mitted, 1998.

[24] P. E. Kearney. The ordinal quartet method. Proceedings of the Second Annual International Confer-
ence on Computational Molecular Biology, pages 125–134, 1998.

[25] B. Leclerc. Description combinatoire des ultramétriques. Math. Sci. Hum., 73:5–37, 1981.

[26] C. Meacham. A manual method for character compatibility. Taxon, 30:591–600, 1981.

[27] V. Moulton and M. Steel. Retractions of finite distance functions onto tree metrics. Discrete Applied
Math., 1998. (To appear).

[28] D. Penny and M.D. Hendy and M.A. Steel Testing the theory of descent. In M.M. Miyamoto and
J. Cracraft, editors, Phylogenetic analysis of DNA sequences, 155-183, Oxford University press, 1991.

[29] K. Rice, M. Steel, T. Warnow, and S. Yooseph. Hybrid tree construction methods. manuscript, 1997.

[30] K. Rice, M.A. Steel, T. Warnow, and S. Yooseph. Better methods for solving parsimony and compat-
iblity. In Proc. of the 2nd Ann. Int. Conf. on Computational Molecular Biology (RECOMB). ACM,
1998.

[31] N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstruction phylogenetic
trees. Mol. Biol. Evol., 4(4):406–425, 1987.

[32] P.H. Sneath and R.R. Sokal. Numerical Taxonomy. Freeman, San Fransisco, 1973.

[33] M. Steel. The complexity of reconstructing trees from qualitative characters and subtrees. J. of
Classification, 9:91–116, 1992.

[34] K. Strimmer and A. von Haeseler. Quartet puzzling: a quartet maximum-likelihood method for
reconstructing tree topologies. Mol. Biol. Evol., 13(7):964–969, 1996.

[35] D.L. Swofford, G.J. Olsen, P.J. Wadell, and D.M. Hillis. Phylogenetic Inference. In D.M. Hillis,
C. Moritz, and B.K. Mable, editors. Molecular systematics (2nd edition) 407–514. Sunderland, USA,
1996.

[36] S. Willson. Measuring inconsistency in phylogenetic trees. J. Theoret. Biol, 190:15–36, 1998.

15

