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Rapid Evaluation of Least-Squares and Minimum-Evolution Criteria on
Phylogenetic Trees

David Bryant and Peter Waddell
Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand

We present fast new algorithms for evaluating trees with respect to least squares and minimum evolution (ME), the
most commonly used criteria for inferring phylogenetic trees from distance data. The new algorithms include an
optimal O(N2) time algorithm for calculating the edge (branch or internode) lengths on a tree according to ordinary
or unweighted least squares (OLS); an O(N3) time algorithm for edge lengths under weighted least squares (WLS)
including the Fitch-Margoliash method; and an optimal O(N4) time algorithm for generalized least-squares (GLS)
edge lengths (where N is the number of taxa in the tree). The ME criterion is based on the sum of edge lengths.
Consequently, the edge lengths algorithms presented here lead directly to O(N2), O(N3), and O(N4) time algorithms
for ME under OLS, WLS, and GLS, respectively. All of these algorithms are as fast as or faster than any of those
previously published, and the algorithms for OLS and GLS are the fastest possible (with respect to order of
computational complexity). A major advantage of our new methods is that they are as well adapted to multifurcating
trees as they are to binary trees. An optimal algorithm for determining path lengths from a tree with given edge
lengths is also developed. This leads to an optimal O(N2) algorithm for OLS sums of squares evaluation and
corresponding O(N3) and O(N4) time algorithms for WLS and GLS sums of squares, respectively. The GLS algo-
rithm is time-optimal if the covariance matrix is already inverted. The speed of each algorithm is assessed analyt-
ically—the speed increases we calculate are confirmed by the dramatic speed increases resulting from their imple-
mentation in PAUP* 4.0. The new algorithms enable far more extensive tree searches and statistical evaluations
(e.g., bootstrap, parametric bootstrap, or jackknife) in the same amount of time. Hopefully, the fast algorithms for
WLS and GLS will encourage the use of these criteria for evaluating trees and their edge lengths (e.g., for approx-
imate divergence time estimates), since they should be more statistically efficient than OLS.

Introduction

Distance-based methods of evolutionary tree recon-
struction are presently the default methods for the anal-
ysis of many data sets. They allow the implementation
of a wide range of model-based corrections, including
the very general LogDet transformation, which compen-
sates for variable base composition (Barry and Hartigan
1987; Lake 1994; Lockhart et al. 1994), and the CTR
compensating for unequal site rates (Waddell and Steel
1997). Distance-based analyses are considerably faster
than other model-based criteria, such as maximum like-
lihood (ML), on sequences (Felsenstein 1981; Swofford
et al. 1996). Furthermore, some data sets, such as those
for DNA hybridization experiments, originate only as
distances. Consequently, distance-based tree analyses
appear in most papers on, or involving, phylogenetic
evaluation.

Distance-based clustering algorithms such as
UPGMA and neighbor joining have been very popular
(e.g., see Saitou and Nei 1987; Swofford et al. 1996).
However, it is generally more desirable to optimize the
fit of data to an assumed model than to simply apply an
algorithm (see Swofford et al. 1996). Examples of fit
criteria applied to trees include ordinary, or unweighted,
least squares (OLS); weighted least squares (WLS); and
generalized least squares (GLS). This last criterion is
closely related to the ML tree estimation of Felsenstein
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(1981), assuming that the only data available are the
distances (for further discussion, see Felsenstein 1988;
Waddell, Lewis, and Swofford 1998).

Another set of optimality criteria emerges when
least squares is used to estimate the edge lengths of each
tree, but the optimal tree is identified as that with the
minimum sum of edge (internode or branch) lengths.
These are called minimum-evolution (ME) methods and
have a long history in phylogenetics (e.g., Kidd and
Sgaramella-Zonta 1971; Saitou and Imanishi 1989;
Rzhetsky and Nei 1992a; Swofford et al. 1996; Waddell,
Lewis, and Swofford 1998). We denote these methods
by ‘‘ME’’ followed by the optimality criterion used to
estimate edge lengths; e.g., ME(OLS) is the ME method
studied by Rzhetsky and Nei (1992a, 1992b, 1993), and
included in PAUP* 4.0 (Swofford 1997).

Tree searching requires the evaluation of many
trees, the total number of which grows exponentially
with respect to the number of taxa N (Schröder 1870;
Cavalli-Sforza and Edwards 1967). This makes speedy
evaluation of the selection criteria for each tree highly
desirable. The evaluation algorithms presented here are
as fast as or faster than any previously published. In
some cases, the speed increase is dramatic. When the
OLS algorithm was implemented in PAUP and applied
to a data set of 125 taxa, the new algorithm executed
75 times faster than the previous method (D. L. Swof-
ford, personal communication; see Discussion for fur-
ther details).

The speed of an algorithm is usually described in
terms of order complexity O( ). This notation is standard
in the biological literature (see, e.g., Rzhetsky and Nei
1993; Felsenstein 1997); however, those unfamiliar with
the concepts can consult the introductory material in
Day (1987) or Penrose (1989, pp. 140–145). Roughly,
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if f(N) is a function of N, for example, f(N) 5 N3, then
an algorithm takes O(f(N)) time if it takes at most Kf(N)
time for some fixed constant K. For example, we show
that we can now estimate OLS edge lengths on a binary
tree using less than 3N2/2 1 64N 2 126 operations—
therefore, the algorithm takes O(N2) time. In contrast,
the edge length algorithm of Rzhetsky and Nei (1993)
takes O(N3) time.

By ‘‘time-optimal’’ we mean that no algorithm can
have a lower order of complexity. Fitch’s (1971) algo-
rithm was the first time-optimal algorithm for parsimo-
ny. The algorithms we describe here are the first time-
optimal algorithms for least-squares and ME tree eval-
uation on both binary and multifurcating trees. Any fu-
ture method will take, at best, O(N2) time to evaluate
least-squares and ME criteria. Of course, the order no-
tation O( ) can obscure ‘‘hidden constants’’ and massive
overheads that make algorithms unattractive for realistic
data sets. However, the algorithms presented here are
extremely efficient, with minimal overheads. Below,
these claims are proven by determining analytic upper
bounds on the actual number of arithmetic operations
performed by each algorithm. In many ways, this is a
better measure than simply running simulations: it
avoids the inaccuracies caused by selective choice of
data, as well as those due to differing machine architec-
tures and compilation efficiencies.

Fast algorithms enable the evaluation of more trees,
but they also enable the analysis of larger data sets.
Analysis of large numbers of sequences does not merely
provide a more comprehensive evolutionary history; re-
search indicates that larger taxa sets can lead to im-
proved accuracy. Biases caused by long edges in trees
can lead to inconsistency of distance-based methods
(e.g., Jin and Nei 1990; Lockhart et al. 1996), just as
with parsimony (Felsenstein 1978; Swofford et al.
1996). Trees for larger sets of taxa may have these lon-
ger edges broken up and thus are much less susceptible
to biases due to the process of evolution not matching
the assumed model (e.g., Swofford et al. 1996).

Presently, the most popular distance-based criteria
are OLS, Fitch Margoliash least squares (FM, a form of
WLS), and ME(OLS), available in packages such as
Phylip 3.5 (Felsenstein 1993) and PAUP*4.0 (Swofford
1997). Some of the criteria evaluation algorithms intro-
duced here were added to PAUP 4.0 during the time this
article was under review (see Discussion). We hope that
the fast algorithms in this paper will encourage the use
of WLS and GLS, criteria which are predicted to be
more accurate for tree estimation (e.g., Bulmer 1991;
Kuhner and Felsenstein 1994; Swofford et al. 1996;
Waddell, Lewis, and Swofford 1998). An additional ad-
vantage of WLS and GLS estimation is that they give
more reliable estimates of a tree’s edge lengths than
OLS (e.g., Bulmer 1991; Kuhner and Felsenstein 1994).
This can be useful when inferring approximate relative
divergence times or determining which genes have
evolved faster.

Methods and Definitions
Least-Squares Criteria

We begin with a number of definitions, all of which
are standard. Throughout this paper, we adopt the vector
notation used by Rzhetsky and Nei (1992a) and others.
Let L be the set of taxa and let N be the number of taxa
in L. A distance on L, possibly given by an evolutionary
distance, is represented by a column vector with ½N(N
2 1) entries. We use d to denote a general distance and
p to denote the taxon-to-taxon distances in a tree. Each
entry in either vector corresponds to a different pair of
taxa. For example, when L 5 {1, 2, 3, 4} we have d 5
(d12, d13, d14, d23, d24, d34)t, where the superscript t de-
notes transpose.

The shape of a tree T can be encoded using a matrix
of zeros and ones called a topological matrix, here de-
noted by the matrix A. The columns of A correspond to
edges of T, and the rows of A correspond to pairs of
taxa in L. If the path connecting two taxa i and j passes
though edge k, then we put a 1 in row ij, column k;
otherwise, we put a 0 there. Using this notation, we can
write the relationship between edge lengths and taxon-
to-taxon distances:

p 5 Ab. (1)

Here, p is the column vector for the taxon-to-taxon dis-
tances, A is the topological matrix, and b is the column
vector for the edge lengths.

Note that, following Penny, Hendy, and Steel
(1992), we refer to edges in a tree rather than branches
of a tree. The term ‘‘branch’’ is ambiguous because it
can also refer to an entire subtree, as in Darwin’s Origin
of the Species (see introduction to Waddell and Steel
1997).

A split AzB is a partition of a set of taxa into two
parts, A and B. Splits are especially useful when working
with phylogenetic trees. Each edge e of a tree corre-
sponds to a unique split, because removing that edge
divides the tree and, consequently, the taxon set of the
tree, into two parts. This split is called the split corre-
sponding to the edge e. The set of splits corresponding
to the edges of a tree T is called the splits of T. A tree
can be constructed in linear time from its set of splits
(Gusfield 1991).

Any given split has an associated split metric, a
distance on L where two taxa are distance 1 apart if they
are on different sides of the split and distance 0 apart if
they are on the same side of the split. The columns of
the topological matrix A of a tree are exactly the split
metrics associated with splits in the tree. Column k of
the matrix is the split metric for the split corresponding
to edge ek.

OLS
The problem: we are given an unrooted tree T with

taxon set L, and we want to assign lengths to the edges
of T so that the taxon-to-taxon distance of T most close-
ly approximates a given distance d, the measure of mis-
fit being the sum-of-squares distance. In terms of our
vector notation, we want to find b that minimizes the
sum of squared differences
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SS(OLS) 5 (Ab 2 d)t(Ab 2 d), (2)

where the elements of b may take on any real value,
including zero or negative values.

One of the earliest references to this problem is in
Cavalli-Sforza and Edwards (1967). Straightforward
projection theory gives the solution

b 5 (AtA)21Atd (3)

(Cavalli-Sforza and Edwards 1967), but direct applica-
tion of this formula leads to an inefficient algorithm with
complexity O(N4). Sattath and Tversky (1977) propose
a more efficient method, although they leave out the
details. It seems reasonable to conclude from their de-
scription that the method they used is the same as the
O(N3) method described explicitly by Vach (1989) (see
also Vach and Degens 1991). A different approach was
taken by Rzhetsky and Nei (1993), whose formulae for
edge lengths also give an O(N3) time algorithm, al-
though it is only applicable to binary trees. The O(N2)
time algorithms for edge lengths presented here were
first published in Bryant (1997). Note that Gascuel
(1997) has also (and independently) developed an O(N2)
algorithm for OLS edge lengths, although it is restricted
to binary trees only.

WLS

The WLS method for calculating edge lengths in-
volves the minimisation of

SS(WLS) 5 (Ab 2 d)tW(Ab 2 d), (4)

where W is a given diagonal matrix with strictly posi-
tive entries on the diagonal, while b can have negative
entries (e.g., Bulmer 1991; Swofford et al. 1996). The
minimum is given directly by the formula

b 5 (AtWA)21AtWd. (5)

If we use standard matrix multiplication, this vector can
be calculated in O(N4) time.

Felsenstein (1997) has recently published an algo-
rithm for calculating edge lengths under WLS. Felsen-
stein’s algorithm is iterative: it begins with a rough ap-
proximation of the optimal edge lengths and then pro-
gressively improves this approximation with each pass
of the algorithm. Each iteration takes O(N3) time (since
O(N2) time is required for each internal vertex), and
there is no proven bound on the number of iterations
required to achieve an acceptable solution. However, it
is reported to work quite well in practice (Felsenstein
1997; D. L. Swofford, personal communication).

GLS

The function to be minimized when using GLS is

SS(GLS) 5 (Ab 2 d)tV21(Ab 2 d), (6)

where V, and hence V21, is a strictly positive definite
symmetric matrix and, as before, b can have negative
entries (Bulmer 1991; Swofford et al. 1996). The direct
solution is

b 5 (AtV21A)21At V21d. (7)

Here, V is an O(N2) 3 O(N2) matrix so calculating V21

takes O(N6) time. It must be remembered that this cal-
culation is performed only once for each data set, where-
as the edge length calculation is repeated for every tree
assessed. Therefore, we assume that this inverse has
been computed during preprocessing, before the exe-
cution of the edge-lengths algorithm. Even without cal-
culating the inverse, the above formula for b still takes
O(N5) time to compute. Below, this bound is improved
to O(N4).

The variance-covariance matrix of edge length es-
timates under GLS is given by Agresti (1990, pp. 460–
462) (for any multivariate model), Hasegawa et al.
(1985), and Bulmer (1991) (for trees) as

var(b) 5 (AtV21A)21. (8)

This formula takes O(N5) time using standard matrix
multiplication. Below, this bound is improved to O(N4)
time.

Results

The main results of this paper are as follows:
1. An algorithm to calculate Atd in minimal time.
2. Application of this algorithm to the calculation of

OLS, WLS, and GLS edge lengths, giving a fast al-
gorithm for WLS and a time-optimal algorithm for
GLS.

3. The description of a very fast time-optimal O(N2)
time algorithm for calculating OLS edge lengths,
leading directly to a time-optimal algorithm for eval-
uating the ME(OLS) criterion on a tree.

4. A time-optimal algorithm for calculating path lengths
in a tree when edge lengths are given.

5. Application of the above algorithm to give time op-
timal algorithms for the evaluation of least squares
on trees.

6. Upper bounds on the numbers of arithmetic opera-
tions required by these algorithms and a comparison
with the OLS edge-lengths algorithm of Rzhetsky
and Nei (1993).

Calculating Atd in Minimal Time

This paper describes several new techniques and
‘‘tricks’’ for speeding up tree criteria evaluation. The
first trick is a method for multiplying a vector by the
transpose of the topological matrix of a tree in a fraction
of the time taken by standard matrix multiplication.
Whereas standard multiplication takes at least ½N(N 2
1) 3 (2N 2 3) operations, this new method takes at
most ½N(3N 2 1) operations. Thus, the new method is
faster for all N $ 3, over 10 times faster for N 5 20
and over 65 times faster for N 5 100.

This fast multiplication result is so useful that it
forms a part of every algorithm in this paper. Examine,
for example, the formulae for OLS, WLS, and GLS edge
lengths (eqs. 3, 5, and 7) and count the number of times
a vector (or matrix) is multiplied on the left by At, the
transpose of the topological matrix.

The columns of A are the split metrics d1, d2, . . . ,
dK corresponding to edges in the tree, so the elements
of Atd are the quantities d d, d d, . . . , d d.t t t

1 2 K
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FIG. 1.—Any internal edge ei of a binary tree can be drawn in
the form of i: the subtrees branching off ei are represented by dotted
circles. An external edge ei of a binary tree can be drawn in the form
of ii: the subtrees branching off ei are represented by dotted circles.

FIG. 2.—Generic cases for calculating edge lengths. i, Internal
edge in a nonbinary tree. ii, External edge in a nonbinary tree.

The first step in the fast method is the calculation
of d d for all of the split metrics di that correspond tot

i

external edges of T. If ei is an external edge adjacent to,
say, taxon x, then

td d 5 d . (9)Oi xy
y∈L2x

Now for the internal edges. We consider binary
trees first. The increase in speed relies on the following
relationship between d d and d d for adjacent edges ei

t t
i j

and ej.

Theorem 1. Let ei be an internal edge of a binary tree,
and let ej, ek be edges adjacent to the same endpoint of
ei. Let Cj, Ck, and Ci be corresponding clusters (see fig.
1i, noting that Ci 5 Cl < Cm). Then,

t t td d 5 d d 1 d d 2 2 d . (10)Oi j k xy
x∈C ,y∈Cj k

Proof

We first write out d d, d d, and d d, rememberingt t t
i j k

that Cj, Ck, and Ci are disjoint:
td d 5 d 5 d 1 d (11)O O Oi xy xy xy

x∈C ,y∈L2C x∈C ,y∈C x∈C ,y∈Ci i i j i k

td d 5 d 5 d 1 d (12)O O Oj xy xy xy
x∈C ,y∈L2C x∈C ,y∈C x∈C ,y∈Cj j j i j k

td d 5 d 5 d 1 d . (13)O O Ok xy xy xy
x∈C ,y∈L2C x∈C ,y∈C x∈C ,y∈Ck k k i k j

We simply substitute equations (11), (12), and (13) into
(10) to prove the theorem.▫

The proof can easily (but tediously) be generalized
to give an analogous result for multifurcating trees:

Theorem 2. Let ei be an internal edge of a tree T,
choose either endpoint of ei, and let j1, . . . , jk be the
indices of all the edges adjacent to ei at this endpoint.
Let Cj1, Cj2, . . . , Cjk and Ci be the corresponding clus-
ters (see fig. 2). Then,

m
t td d 5 d d 2 2 d . (14)O O Oi j xyl 1 2l51 1#p,q#k x∈C ,y∈Cj jp q

Of course, theorem 1 is just a special case of theorem 2.

To use equation (10) or (14) to calculate d d for ant
i

edge ei, we need only have calculated d d for all edgest
j

ej adjacent to one endpoint of ei. Thus, if we start by
calculating d d for all external edges, we can work in-t

i

ward, repeatedly applying equation (10) or (14), until all
values d d have been calculated.t

i

To formalize this method, we provide a ready-to-
implement algorithm, FASTMTM (short for fast multi-
plication by topological matrix). It is written to handle
multifurcating trees but can easily be simplified for the
binary case. Input is a tree T (as a list of vertices and
edges) and a distance d.

Algorithm FASTMTM(T, d)

1. For each external edge pute ,i
td d ← dOi xy

y∈L2{x}

where x is the taxon attached to e .i
2. Choose an arbitrary internal edge to

be first in a list of edges. Add the
edges adjacent to this edge to the end
of the list, then the unlisted edges
adjacent to these edges, and so on un-
til all the internal edges are in the
list.

3. Working backward through the list, cal-
culate for each edge using equationtd di
(14). Note that all the edges adjacent
to one of the endpoints will already
have been calculated.

4. Output the vector with entriest tA d d d.i

end.

At first glance, the algorithm appears to take O(N3)
time. This is not the case:

Theorem 3. The algorithm FASTMTM takes at most
3N2/2 2 N/2 operations. The amount of memory used,
in addition to the memory required to store the vector
d, is O(N).

Proof is in appendix B.1.

To illustrate the use of the algorithm FASTMTM
and other algorithms in this paper, we estimate edge
lengths of the tree T in figure 3 with respect to the dis-
tance matrix d in the same figure.

Consider first the calculation of d d for externalt
1

edge e1. From equation (9), we have
td d 5 d 1 d 1 · · · 1 d (15)1 AB AB AH

5 80. (16)
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FIG. 3.—Example tree T and test distance matrix d for taxon set
{A,B,C,D,E,F,G,H}. Internal vertices are labeled with greek characters
a, b, g, d, and e for future reference.

Similarly, d d 5 70, d d 5 56, d d 5 57, d d 5 80,t t t t
2 3 4 5

d d 5 84, d d 5 90, d d 5 91.t t t
6 7 8

The list constructed in step 2 is reflected in the
numbering of the edges of T. We started with edge e12,
then added e11, then e10 and e9.

We can use equation (10) to calculate d d. Put i 5t
9

9, j 5 1, and k 5 2 such that Cj 5 {A} and Ck 5 {B}.
Then,

t t td d 5 d d 1 d d 2 2d (17)9 1 2 AB

5 136. (18)

We use equation (14) to calculate d d. Put i 5 10,t
10

k 5 3, j1 5 3, j2 5 9, and j3 5 8 such that C1 5 {C},
C2 5 {A, B}, and C3 5 {H}. Then,

t t t td d 5 d d 1 d d 1 d d10 3 9 8

2 2 d 1 d 1 dO O Oxy xy xy1 2x∈C ,y∈C x∈C ,y∈C x∈C ,y∈C1 2 1 3 2 3

(19)

5 283 2 2((d 1 d ) 1 dAC BC CH

1 (d 1 d )) (20)AH BH

5 201. (21)

Similarly, we have d d 5 129 and d d 5 158.t t
11 12

Fast Algorithms for OLS, WLS, and GLS Edge
Lengths

We now apply the matrix multiplication trick of the
previous section to the standard OLS, WLS, and GLS
edge-lengths formulae (eqs. 3, 5, and 7). In the first two
cases, the new algorithms (described below) match the
speed of the fastest existing ones (e.g., Sattath and Tver-
sky 1977), and have the the significant practical advan-
tage of being directly applicable to multifurcating trees.

The most interesting contribution in this section,
however, is the algorithm for evaluating GLS edge
lengths. Given the inverse of the covariance matrix in
advance, this method is time-optimal, because the num-
ber of individual entries in V21 is O(N4), and none of
these are redundant. Thus, no future algorithm for cal-
culating GLS edge lengths when the matrix V21 is given
can have a better order of complexity.

Since OLS is the same as WLS with the weighting
matrix set equal to the identity matrix, we describe the
two algorithms together.

WLS and OLS

Edge lengths under WLS are given by the projec-
tion formula

b 5 (AtWA)21AtWd.
(22)

The edge lengths under OLS can be obtained by putting
W 5 I, the identity matrix. As mentioned earlier, this
calculation takes O(N4) time using standard matrix mul-
tiplication, where N is the number of taxa. We apply
algorithm FASTMTM to decrease the complexity. Let K
be the number of edges in T. In the following, w is the
diagonal of the weight matrix W.

Algorithm WLSEDGES(T, w, d)

1. For each edge e :i
2. Construct using the vector w.Wdi

3. Calculate using FASTMTM andtA Wdi

store the resulting vector in column i
of a K 3 K matrix X. (The matrix X we
construct here is the matrix tA WA.)

4. end (For each edge ).ei

5. Calculate using w and then FASTtA Wd
MTM, storing the result in a vector y.

6. Solve Xb 5 y for b.
end.

Let f(K) and g(K) be, respectively, the number of
operations and memory required to solve the K 3 K
problem Xb 5 y for b. A simple count of the number
of operations, along with repeated use of theorem 3,
gives an upper bound of (K 1 1)N(2N 2 1) 1 f(K) for
the number of operations taken by WLSEDGES when ap-
plied to a tree with N taxa and K edges. Since only one
split metric vector di need be in memory at one time,
the amount of memory space required is O(N2) 1 g(K).

There are several options for solving Xb 5 y. The
most attractive is Cholesky factorization, taking f(K) 5
K3/3 1 2K2 operations and O(K2) memory. Consult Go-
lub and van Loan (1996) for details and other possible
solution methods. Note that the constraint of nonnega-
tive edge lengths can be included by replacing step 6
with

69. Find b that minimizes (Xb 2 2 y)ty) (Xb
such that $ 0 for all i,bi

which is a quadratic programming problem in standard
form. Optimized implementations of algorithms solving
these matrix problems are available in standard mathe-
matical programming libraries.

As already observed, the algorithm of Felsenstein
(1997) also takes O(N3) time and uses O(N2) memory.
However, Felsenstein’s algorithm applies only to binary
trees and has no guaranteed bound on the number of
iterations required. On the other hand, WLSEDGES works
for both binary and multifurcating trees, and is guar-
anteed to return the exact solution in just one ‘‘itera-
tion.’’
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Felsenstein (1997) was aware that WLS edge esti-
mation could be performed by solving a set of linear
equations (as in Cavalli-Sforza and Edwards 1967); we
show that this can be done while avoiding the high com-
plexity and memory costs that he assumed were oblig-
atory.

GLS

Edge lengths under GLS are given by the projec-
tion formula

b 5 (AtV21A)21 AtV21d. (23)

Using standard matrix multiplication, this calculation
takes O(N5) time. The next algorithm shows how to
complete this calculation in O(N4) time.

Algorithm GLSEDGES(T, d)21V ,

1. For each column of 21v V :j

2. Calculate using FASTMTM andtA vj

store the resulting vector in column
j of a K 3 N(N 2 1)/2 matrix Z. (The ma-
trix Z we construct is equal to the
matrix .)t 21A V

3. end (For each column).
4. For each i from 1 to K do:
5. Let denote row i of Z.tzi

6. Calculate using FASTMTM andtA zi

store the resulting vector in column
i of a K 3 K matrix X. (The matrix X
we construct here equals .)t 21A V A

7. end (For each i).
8. Multiply d by and then calculate21V

using FASTMTM. Store the resultt 21A V d
in a vector y.

9. Solve Xb 5 y.
end.

Once again, let f(K) and g(K) be, respectively, the
number of operations and the memory required to solve
the K 3 K problem Xb 5 y for b. The number of op-
erations required by GLSEDGES is bounded above by N4

1 N(3N 2 1)K/2 1 f(K), where N is the number of taxa
and K is the number of internal edges. The amount of
memory space required, in addition to that required to
store V21, is O(N3) 1 g(K).

Note that the variance-covariance matrix for edge
lengths (e.g., Agresti 1990; Hasegawa, Kishino, and
Yano 1985; Bulmer 1991) can be obtained by using al-
gorithm GLSEDGES and inverting the matrix X 5 AtV21

A. This inversion takes O(N3) time, resulting in O(N4)
time for the whole operation.

An Unusually Fast Algorithm for OLS Edge Lengths

We have described an O(N3) algorithm for calcu-
lating WLS edge lengths. When applied to OLS, this
approach is fast, but only equal in order to several ex-
isting OLS methods. Here, we describe an even faster,
O(N2) time, method. Because the number of entries in
the input distance is O(N2), this method is time-optimal:
the fastest possible hypothetical algorithms must take at
least O(N2) time.

Returning again to the projection formula for OLS
edge lengths (eq. 3), we see that the major obstacle to
an O(N2) algorithm is the construction and inversion of
the matrix (AtA)21. We need to explore and utilize the
properties of this matrix so that we can avoid construc-
tion of the matrix altogether.

The first, and perhaps most important, observation
we can make about the matrix (AtA)21 is that it consists
mainly of zeros. The reason is that the length assigned
to an edge ei under OLS is not affected by the shape of
a tree beyond those edges directly adjacent to ei. Con-
sequently, the length of an edge ei under OLS can be
written in terms of d d, d: adjacent to ei} and thet t{d ei j jl l

numbers of taxa in the corresponding subtrees. This ob-
servation was made in slightly different terminology by
Vach (1989) and, later, independently, by Bryant (1997).

For ease of understanding, we present here only the
formulas and algorithm for binary trees. Multifurcating
trees are dealt with in appendix A.

We must consider two cases when presenting the
OLS edge length formulas: internal edges and external
edges. Let ei be an arbitrary internal edge in a binary
tree T. We can draw T in the form of figure 1i. The
edges adjacent to ei are denoted by ej, ek, el, and em, and
the subtrees of T branching off these edges are repre-
sented by dotted circles. Let Nj, Nk, Nl, and Nm be the
numbers of taxa in the subtrees branching off ej, ek, el,
and em, respectively. The optimal edge length bi for ei

under OLS is given by:

N N N N
tb 5 1 1 1 2 4 d di i1 2[ N N N Nm l k j

N 1 Nj k t t1 ((2N 2 N)d d 1 (2N 2 N)d d)k j j kN Nj k

N 1 Nl m t t1 ((2N 2 N)d d 1 (2N 2 N)d d)m l l m ]N Nl m

1
3 . (24)

4(N 1 N )(N 1 N )j k l m

The formula is derived by constructing, and solving, an
appropriate set of matrix equations (Bryant 1997, p.
136). The edge length formula of Rzhetsky and Nei
(1993) can be recovered from equation (24) by substi-
tuting

td d 5 d 1 d 1 d (25)j AB AC AD

td d 5 d 1 d 1 d (26)k AB BC BD

td d 5 d 1 d 1 d (27)l AC BC CD

td d 5 d 1 d 1 d (28)m AD BD CD

td d 5 d 1 d 1 d 1 d , (29)i AC BC AD BD

giving a substantially shorter and simpler derivation of
their result.

The formula for external edges in binary trees is
simpler. Let ei be an arbitrary external edge of a binary
tree T. We can draw T in the form of figure 1ii. Let ej
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and ek be the adjacent edges, and let Nj and Nk be the
number of taxa in the subtrees branching off these edg-
es. The optimal edge length bi for ei under OLS is given
by:

1
t tb 5 [(1 1 N 1 N )d d 2 (1 1 N 2 N )d di j k i j k j4(N N )j k

t2 (1 2 N 1 N )d d)].j k k (30)

It is now a simple matter to incorporate equations (24)
and (30) into an algorithm.

Algorithm BINARYEDGES(T, d)

1. Count the number of taxa on each side
of each edge.

2. Calculate for each edge using FASTtd di
MTM.

3. For each edge doei

4. Calculate using equation (24) ifb ei i

is internal or equation (30) if isei

external.
5. end (For each edge e ).i

end.

This algorithm takes O(N2) time.

Theorem 4. The algorithm BINARYEDGES takes at most
3N2/2 1 127N/2 2 126 operations and requires O(N)
memory space in addition to that required to store the
vector d.

Proof in appendix B.2.

Although the example tree in figure 3 is not binary,
we can still use it to illustrate the application of
BINARYEDGES. We calculate bi for i 5 1 and i 5 11.
The edge e1 is external, so we use equation (30). Put j
5 2 and k 5 9 such that Nj 5 1 and Nk 5 6. The values
d d 5 80, d d 5 70, and d d 5 136 were calculatedt t t

1 2 9
earlier. Substituting everything into the equation, we ob-
tain b1 5 13/3.

The edge e11 is internal, so we use equation (24).
We put j 5 10, k 5 12, l 5 4, and m 5 5, such that Nj

5 4, Nk 5 2, Nl 5 1, and Nm 5 1. Substituting these
values into the equation, we obtain b11 5 1,325/512.

We will have to use the algorithm FASTOLS in ap-
pendix A to calculate bi for i 5 3, 8, 9, and 10.

Calculating Path Lengths in Minimal Time

So far, we have shown how to calculate edge
lengths in O(N2) time for OLS, O(N3) time for WLS,
and O(N4) time for GLS. These algorithms, followed by
a linear O(N) summation of the edge lengths, give fast
algorithms for minimum evolution, e.g., ME(OLS),
ME(FM), and ME(GLS). However, other popular tree
selection criteria, namely sums-of-squares criteria, re-
quire the calculation of the taxon-to-taxon distance with-
in the tree with these edge lengths. Given any two taxa
in a tree, it takes O(N) time to find the distance between
them by tracing the path connecting them and, hence,
O(N3) time to calculate all O(N2) pairwise distances. Al-
ternatively, direct application of equation (1) also takes
O(N3) time. While this time bound is acceptable for

WLS and GLS, it is unacceptable for OLS: an O(N2)
time evaluation method is thus required to make
SS(OLS) time-optimal.

Therefore, we developed the algorithm
DISTANCEINTREE, which calculates taxon-to-taxon dis-
tances in O(N2) time from a tree T and its edge lengths.
Note that puv is used to denote the distance between
vertices u and v in a tree. The algorithm is based on
repeated application of a simple observation: if v is a
vertex common to the path from a to c and the path
from b to c, then pac 5 pav 1 pcv and pbc 5 pbv 1 pcv.
If we were to calculate the distance from a to c and the
distance from b to c separately, we would end up tracing
the path from v to c twice. This observation enables us
to avoid this repetition. It is more efficient to calculate
all vertex-to-vertex path lengths than to calculate just
the taxon-to-taxon distances.

The distance from a vertex a to a vertex b is clearly
the same as the distance from b to a. Therefore, after
calculating the distances from a particular vertex to all
other vertices, we remove that vertex from the the tree,
being careful to leave other vertex-to-vertex distances
the same.

Algorithm DISTANCEINTREE(T)
1. For each taxon a in T do
2. ← 0.paa

3. Repeat until has been calculatedpax

for all vertices x in T.
4. Choose a vertex v such that has notpav

been calculated but v is adjacent to
a vertex u for which has been cal-pau

culated.
5. ← 1 length of edge between up pav au

and v.
6. end (repeat until).
7. Remove taxon a from T, together with

its adjacent edge.
8. If there are vertices of degree two in

T, then remove them and replace the ad-
jacent edges with a single edge with
length equal to the sum of the lengths
of the two adjacent edges.

9. end (For each taxon a).
end.

A simple count of operations gives an upper bound
of N(N 2 1) operations, while O(N2) memory space is
required.

We illustrate the algorithm by applying it to the
example in figure 3 with optimal edge weights

t13 8 23 1 47 7 9 163 15 97 25 51
b 5 , , , , , , , , , , ,1 23 3 24 12 12 2 2 24 16 32 16 16

(31)

calculated using BINARYEDGES and FASTOLS (see ap-
pendix A). The internal vertices of the tree are conve-
niently labeled a, b, g, d, and e.

First of all, pAa 5 b1 5 13/3. Then, pAB 5 pAa 1
b2 5 7 and pAb 5 pAa 1 b9 5 253/48. From there, we
can calculate pAB, pAB, pAB, and so on, until pAx has been
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FIG. 4.—Plots of the worst-case number of operations for the
FASTOLS algorithm and the worst-case number of operations for the
algorithm of Rzhetsky and Nei (1993). Note that when N 5 200,
Rzhetsky and Nei’s algorithm can take over 5 million operations, while
FASTOLS takes under 75,000.

calculated for all x ∈ {B, C, D, E, F, G, H, a, b, g, d,
e}. At that point, we remove the vertices A and a and
add an edge between B and b of weight b2 1 b9. The
process then repeats, this time starting with B.

Calculating Sums of Squares Quickly

Using the algorithm CALCULATEDISTANCE and the
fast edge length calculation methods we can speed up
sum-of-squares (SS) evaluations of trees.

For OLS,

SS(OLS) 5 (Ab 2 d)t(Ab 2 d). (32)

The optimal edge lengths b are provided by the algo-
rithm BINARYEDGES if T is binary and by FASTOLS (ap-
pendix A) if T is multifurcating. The calculation of Ab
can be reduced from O(N3) time to O(N2) time using the
algorithm DISTANCEINTREE. Thus, the whole calculation
takes O(N2) time. In both cases, a bound on the actual
number of operations is obtainable: 5N2/2 1 125N/2 2
126 operations for a binary tree, and

2 226K 2 104NK 1 213N /2 1 182K 2 415N/2 2 3

(33)

operations for a multifurcating tree with K edges.
For WLS (including FM), we can calculate edge

lengths in O(N3) time. Calculating Ab takes O(N2) time,
so the entire calculation

SS(WLS) 5 (Ab 2 d)tW(Ab 2 d) (34)

takes a total of O(N3) time. The actual number of op-
erations is bounded above by (K 1 1)N(2N 2 1) 1 N(N
2 1) 1 f(K), where K is the number of edges and f(K)
is the number of operations required to solve a K 3 K
(positive definite) linear system.

By a similar method, the SS calculation

SS(GLS) 5 (Ab 2 d)tV21(Ab 2 d) (35)

can be completed in O(N4) time, provided that, as above,
the inverse matrix V21 is calculated beforehand. The
actual number of operations required for a tree with K
edges is bounded above by N4 1 N(N 2 1) 1 N(3N 2
1)K/2 1 f(K), where, once again, f(K) is the number of
operations required to solve a K 3 K (positive definite)
linear system.

Summary of Results

A comprehensive selection of algorithms, covering
all of the main least-squares and minimum-evolution
evaluation criteria, has been provided. The algorithms
described are superior to all published algorithms in sev-
eral respects: they are as fast as or faster than existing
algorithms, many of the speed increases are dramatic,
many of the algorithms are provably time-optimal, and
the algorithms apply both to binary and multifurcating
trees.

Here, we compare the worst-case performance of
the algorithm BINARYEDGES with that of the OLS al-
gorithm presented in appendix B of Rzhetsky and Nei
(1993). Theorem 4, proved in appendix B.2, gives an
upper bound of 3N2/2 1 127N/2 2 126 on the number

of operations taken by BINARYEDGES applied to any bi-
nary tree with N leaves. The number of operations re-
quired for Rzhetsky and Nei’s algorithm depends on the
shape of the tree. For ease of calculation, we assume
that the tree is a caterpillar tree. We are not sure whether
this gives the worst-case performance for Rzhetsky and
Nei’s algorithm; if it does not, then we will have un-
derestimated the worst-case performance of Rzhetsky
and Nei’s algorithm and will have subsequently under-
estimated the increase in speed given by BINARYEDGES.
The figure 2N3/3 1 3N2 1 94N/3 1 8, derived in ap-
pendix B.4, is a lower bound on the worst-case com-
plexity of the Rzhetsky and Nei (1993) algorithm.

The bounds for up to 200 taxa are plotted in figure
4. Note that the curve for the Rzhetsky and Nei (1993)
algorithm is not complete: this would require a vertical
axis stretching up to over 5 million operations. We have
not differentiated between additions and multiplications,
as this would be laborious and possibly confusing (fur-
thermore, the ratio appears similar in both algorithms).
Differentiating between them would also be of limited
interest, since both types of calculation would be done
with floating-point numbers and the scalar multibit chips
now being used do both types of operation in similar
time.

In all calculations, memory is an important addi-
tional parameter (especially since limited memory can
be stored on the L1 or L2 on-chip cache, which runs
two, four, or more times as fast as that on the mother
board). Both algorithms use O(N) memory, making the
dominant memory term the pairwise distances (O[N2]).
As we mentioned in the introduction, computer archi-
tecture can have a significant impact on the speed of
algorithms. In the discussion, we cite examples to show
conclusively that the new algorithms are indeed sub-
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Table 1
Summary of Increases in Evaluation Speed

Evaluation Criterion Algorithm(s) Complexity Bound
Comlexity

Order
Time-

Optimal?

Edge lengths (and ME)
OLS (binary) . . . . . . . . . . . . . . .
OLS (general). . . . . . . . . . . . . . .
WLS . . . . . . . . . . . . . . . . . . . . . .
GLS. . . . . . . . . . . . . . . . . . . . . . .

BINARYEDGES

FASTOLS
WLSEDGES

GLSEDGES

3N2/2 1 O(N)
26K2 2 104NK 1 211N2/2 1 O(N)
K3/3 1 2N2K 1 O(N2)
N4 1 K3/3 1 2N2K 1 O(N2)

O(N2)
O(N2)
O(N3)
O(N4)

Yes
Yes
Possibly
Yes

Sum of squares
OLS (binary) . . . . . . . . . . . . . . .
OLS (general). . . . . . . . . . . . . . .
WLS . . . . . . . . . . . . . . . . . . . . . .
GLS. . . . . . . . . . . . . . . . . . . . . . .

BINARYEDGES 1 DISTANCEINTREE

FASTOLS 1 DISTANCEINTREE

WLSEDGES 1 DISTANCEINTREE

GLSEDGES 1 DISTANCEINTREE

5N2/2 1 O(N)
26K2 2 104NK 1 213N2/2 1 O(N)
K3/3 1 2N2K 1 O(N2)
N4 1 K3/3 1 2N2K 1 O(N2)

O(N2)
O(N2)
O(N3)
O(N4)

Yes
Yes
Possibly
Yes

Variance-covariance matrix. . . . . . GLSEDGES 1 INVERSION 3N4/2 1 O(N3) O(N4) Yes

stantially faster than previous ones with standard com-
puter systems.

Bounds on the number of operations required by
all of the algorithms introduced in this paper are sum-
marized in table 1. All cited values assume that Cho-
lesky decomposition is used to solve linear equations—
if a faster algorithm becomes available, this will further
speed things up. The number of taxa is N and the num-
ber of edges in T is K.

The figures in the table allow us to draw conclu-
sions about the comparative time costs of the various
evaluation criteria. For example, SS evaluation takes an
additional N(N 2 1) operations on top of those required
to calculate edge lengths.

We also note that for moderate values of N, the
time taken by the GLS algorithms is only a few times
that taken by the WLS algorithms. As a general rule of
thumb, when there are N taxa, the GLS methods take
N/8 times as long as WLS. For example, when N 5 50,
the GLS algorithms take between seven and eight times
as long as the WLS algorithms (and about 1,200 times
as long as OLS!).

Discussion

The increase in speed of least-squares tree criterion
evaluation described in this paper should allow faster
and more extensive tree search strategies for distance-
based methods. The algorithms have already been in-
corporated into PAUP* for OLS, ME(OLS), and WLS
(Fitch Margoliash, with Wij 5 1/(dij)2) tree searches. As
expected, the new algorithms performed well. In the
largest benchmark tried (a 125-taxon distance matrix),
the new OLS algorithm evaluated 132 trees per second,
compared with a rate of 1.68 trees per second for the
previously implemented Felsenstein (1997) algorithm.
Note that the algorithms of Sattath and Tversky (1977)
and Rhzetsky and Nei (1993) were not considered prac-
tical for PAUP* because of their inability to evaluate
nonbinary trees (a key feature in the program, especially
when using star decomposition searches).

Rzhetsky and Nei (1992a) describe an alternative
localized, but still useful, method of evaluating all trees
within a small partition distance of a good starting tree.
Use of our algorithm FASTOLS makes this approach run

O(N) times as fast. See also the fast one-step local
search method of Gascuel (1996). Bryant (1997, pp.
149–154) has developed a fast algorithm that optimizes
ME(OLS) over trees within an arbitrary partition dis-
tance, without evaluating each individual tree.

It is important to note that the algorithms we de-
scribe will sometimes assign negative lengths to edges.
It has been a long-running argument whether this is de-
sirable or not (e.g., Felsenstein 1984; Farris 1985; Kuh-
ner and Felsenstein 1994; Swofford et al. 1996; Wad-
dell, Lewis, and Swofford 1998). To date, there is no
definitive answer and a good deal of disagreement.
There are some who feel that negative edge lengths
should be avoided wherever possible and propose that
any tree containing a negative edge be automatically re-
jected (e.g., Kidd and Sgaramella-Zonta 1971). Another
approach is to define the ME score of a tree as

zb z instead of b , (36)O Oi i
i i

thereby penalizing negative edges (Kidd and Sgaramel-
la-Zonta 1971; Swofford et al. 1996).

A third approach is to calculate edge lengths on a
tree subject to the constraint that edges lengths must be
nonnegative. This is not simply a matter of collapsing
negative edges to zero then reoptimizing the remaining
edge lengths; we have discovered a seven-taxa tree for
which this approach fails (unpublished data). Thus,
when there are two or more negative edge lengths in the
unconstrained optimum for a tree, a more sophisticated
method is required to guarantee constrained optima. The
only polynomial time methods proven to give optimal
edge lengths in the constrained case are ellipsoid and
interior point algorithms for convex quadratic program-
ming (e.g., Kozlov, Tarasov, and Khachiyan 1979; Gold-
farb and Liu 1991). It is possible that versions of these
algorithms could be made simpler and faster when they
are tailored to the specific least-squares edge length
problem on trees.

Presently, a practical alternative is to employ a heu-
ristic method such as the iterative algorithm of Felsen-
stein (1997) or the iterative QR2 algorithm of Gascuel
and Levy (1996). One can, for example, switch from
our exact algorithms to these iterative algorithms when
encountering trees exhibiting the problem of negative
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edges, thereby optimizing overall speed. This is the ap-
proach taken by Swofford (1997) in PAUP*. When there
is a constraint in place of all nonnegative edges, all neg-
ative edges are first collapsed, and the edge lengths are
re-estimated by the algorithms described in this paper
(applied to nonbinary trees). At this point, the version
of the algorithm WLSEDGES giving nonnegative edge
lengths is used—the quadratic programming problem is
currently being solved using Gauss Siegel iteration.

The increases in speed offered by the algorithms
presented here will hopefully encourage the use of WLS
and GLS. Since these criteria come closer to ML on
distances than any others currently implemented, it is
reasonable to expect they will be more statistically ef-
ficient and return the correct answer more often than the
computationally faster OLS methods. A useful combi-
nation of the algorithms presented here may be fast
searches of tree space with SS(OLS) or ME(OLS), fol-
lowed by the use of WLS or GLS to select among the
better trees found.
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APPENDIX A

Calculating OLS Edge Lengths in Multifurcating
Trees

We have described an O(N2) algorithm for calcu-
lating OLS edge lengths in a binary tree. The method
can be extended to multifurcating trees. Although the
equations are longer, the basic idea is the same: we cal-
culate the quantities d d for each edge ei and then applyt

i

an edge length formula, in this case equation (37). How-
ever, in order to obtain an O(N2) time algorithm we have
to be careful about how we apply the formula. We show
how to do this explicitly in the algorithm FASTOLS,
making the algorithm code longer than necessary but
easier to implement.

As with binary trees, we consider two cases when
presenting the OLS edge length formulas: internal edges
and external edges. Any internal edge ei in a multifur-
cating tree can be drawn in the form of figure 2i. Let a
and b be the endpoints of ei. Let , , . . . , be thee e ej1 j2 jk

remaining edges adjacent to a, and let , . . . , bee ej jk+1 m

the remaining edges adjacent to b. The dotted circles
represent the subtrees branching off the respective edg-
es. Let C1, . . . , Cm be the taxon sets of these subtrees,
and let Nl be the number of taxa in Cl, for all l 5 1,
. . . , m. Put Na 5 S Nl and Nb 5 S Nl. Let v bek m

l51 l5k11
the vector with Nb in positions 1, . . . , k and Na in po-
sitions k 1 1, . . . , m.

We use similar labeling in the case of an external
edge ei, any example of which can be drawn in the form

of figure 2ii. Let , . . . , be the edges adjacent toe ej j1 m

ei, let C1, . . . , Cm be their associated taxon sets, and let
Nl be the number of taxa in Cl, for all l 5 1, . . . , m.
Let v be a vector of m ones, and put Na 5 N 2 1 and
Nb 5 1.

One formula, equation (37), suffices for both inter-
nal and external edges. What it might lack in aesthetic
appeal it makes up for in usefulness.

Theorem 5. Let ei be an external or internal edge with
adjacent edges and subtrees as described. The optimal
edge length bi for ei under OLS is given by

t t 21d d 2 w N Pib 5 , (37)i tN N 2 w va b

where N is the number of taxa,

t t t tP 5 (d d, d d, . . . , d d) , (38)j j j1 2 m

and

21 21w 5 (NN 2 2I 1 U) v, (39)

where the matrix U is the m 3 m matrix of ones, N is
the diagonal matrix with diagonal N1, N2, . . . , Nm, and
I is the identity matrix.

See Vach (1989) and Bryant (1997) for two inde-
pendent and alternative derivations of this result, as well
as the proof in Bryant (1997) that the matrix (NN21 2
2I 1 U) is invertible.

There are explicit formulas for the elements of w,
with two cases to consider.

If Nl ± N/2 for all l 5 1, . . . , m, then

1
w 5 (g 1 v ), (40)l l(N/N 2 2)l

where
m21 vj

g 5 O
k (N/N 2 2)j51 j

and
m Nj

k 5 1 1 .O
N 2 2Nj51 j

If there is some l e {1, . . . , m} such that Nl 5 N/
2, then for all l ± l, we have

v 2 vl lw 5 , (41)l N/N 2 2l

whereas

N (v 2 v )j jlw 5 v 1 . (42)Ol l 1 2N 2 2Nj±l j

Note that for any external or internal edge there can be
at most one adjacent subtree with N/2 taxa, so there can
be at most one l such that Nl 5 N/2. We summarize
the entire process in algorithm FASTOLS and calculate
the time and memory requirement in appendix B.3.

Theorem 6. The algorithm FASTOLS takes at most
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2211N 413N
226K 2 104NK 1 1 182K 2 2 3 (43)

2 2

operations when applied to an N-taxon distance matrix
and a tree with K edges. It requires O(N) memory space
in addition to that required to store the vector d.

Algorithm FASTOLS(T, d)

1. Count the number of taxa on each side
of each edge.

2. Calculate for each edge usingtd di
FASTMTM.

3. For each edge doei

4. If is internal thenei

5. Label the endpoints, adjacent
edges, and adjacent clusters of
as in figure 2 i. For each l, letei

be the number of taxa in LetN C .l l

and be the number of taxa onN Na b

each side of e .i
6. else
7. Label the endpoints, adjacent

edges, and adjacent clusters of
as in figure 2 ii. For each l, letei

be the number of taxa in PutN C .l l

5 N 2 1, 5 1, and k 5 m.N Na b

8. end (if-else).
9. Let v be the vector with in posi-Nb

tions 1, . . . , k and in positions k 1Na

1, . . . , m.
10. If there is l such that 5 N/2 thenNl

11. For l 5 1, . . . , m except l do
12. ← 2 2 2).w (v v )/(N/Nl l l l

13. end (for).
14. wl ← vl 1 Sj±l {[Nj(vl 2 vj)]/(N 2 2Nj)}.
15. else
16. k ← 1 1 2mS [N /(N 2N )].j51 j j

17. l ← (21/k) 2 2)].mS [v /(N/Nj51 j j

18. For l 5 1, . . . , m do
19. ← 2 2)](g 1w [1/(N/N v ).l l l

20. end (for).
21. end (if-else).

m tw d dl jltd d 2 Oi Nl51 lb ← .22. i m

N N 2 w vOa b j j
j51

23. end (For each edge ).ei

end.

The algorithm may appear daunting, but it is little
more than an explicit implementation of equations (37)–
(42). We demonstrate the use of this algorithm by cal-
culating the optimal edge lengths b8, b9, and b10 for the
example tree and distance in figure 3. We will use the
values for d d calculated earlier.t

i

First, we consider the external edge e8. Putting the
tree in the form of figure 2ii, we have j1 5 9, j2 5 3,
and j3 5 10. Thus, N1 5 2, N2 5 1, N3 5 4, Na 5 7,

Nb 5 1, and k 5 m 5 3. The vector v in step 9 becomes
v 5 (1, 1, 1)t.

There does exist a l such that Nl 5 N/2: l 5 3.
Therefore, we use steps 11–14 to calculate w. We have
w1 5 w2 5 0 and w3 5 1, since all elements of v are
equal.

We now substitute everything into the equation in
step 22, obtaining:

td d10td d 28 N3b 5 (44)8 7 2 1

5 163/24. (45)

Now we consider the internal edge e9, so i 5 9.
Putting the tree in the form of figure 2i, we have j1 5
2, j2 5 1, j3 5 8, j4 5 10, and j5 5 3. Thus, k 5 2 and
m 5 5, N1, N2, N3, N4, and N5 equal 1, 1, 1, 4, and 1,
respectively, Na 5 2, and Nb 5 6. The vector v in step
9 becomes v 5 (6, 6, 2, 2, 2)t.

Once again, there does exist a l such that Nl 5 N/
2: l 5 4. We therefore use steps 11–14 to calculate w,
obtaining w 5 (4/6, 4/6, 0, 4/6, 0)t. Substituting into the
equation in step 22, we obtain

t t t4 d d 4 d d 4 d d2 1 10td d 2 · · 1 0 1 · 1 09 1 26 N 6 N 6 N1 2 4
b 5 (46)9 28

12 2
3

15
5 . (47)

16

Finally, we consider the internal edge e10: i 5 10.
Again putting the tree in the form of figure 2i, we have
j1 5 3, j2 5 9, j3 5 8, j4 5 12, j5 5 11, k 5 2, and m
5 5. Thus, N1, N2, N3, N4, and N5 equal 1, 2, 1, 2, and
2, respectively, and Na 5 4 and Nb 5 4. The vector v
in step 9 becomes v 5 (4, 4, 4, 4, 4)t.

This time, there is no l such that Nl 5 N/2. There-
fore, we use steps 16–20 to calculate w. The formula in
step 16 gives k 5 10/3, and the formula in step 17 gives
g 5 22. Steps 18–20 give w 5 (1/3, 1, 1/3, 1, 1)t.
Substituting into the equation in step 22 gives b10 5 97/
32.

Repeating the above calculations for all i 5 1, . . . ,
12 gives an edge length vector of

t13 8 23 1 47 7 9 163 15 97 25 51
b 5 , , , , , , , , , , ,1 23 3 24 12 12 2 2 24 16 32 16 16

(48)

APPENDIX B

Speed and Memory Usage of the Algorithms
B.1. FASTMTM

We now prove theorem 3, which we restate here:

Theorem 3. The algorithm FASTMTM takes at most
3N2/2 2 N/2 operations. The amount of memory used,
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in addition to the memory required to store the vector
d, is O(N).

Proof

We discuss each step of the algorithm in turn.
Step 1. We can calculate d d for an external edget

i
ei in just N 2 2 operations by using equation (9). Re-
peating for all N external edges takes N(N 2 2) opera-
tions.

Step 2. The tree T is input as an adjacency list, so
we can construct the required ordering using at most 2N
operations.

Step 3. First, observe that for each pair of taxa x,y,
the length dxy is used to calculate d d for at most onet

i

edge ei. Similarly, each value d d, once calculated, ist
i

only used once when calculating the other values d d.t
j

The calculation of d d also requires one additional mul-t
i

tiplication (by 2) and a subtraction. Thus, the total num-
ber of operations required in step 3 is (N/2) 1 N 1 2N,
and the total number of operations is at most

N
2N(N 2 2) 1 2N 1 1 3N 5 3N /2 2 N/2, (49)1 22

proving the speed bound.
To prove that only O(N) memory is used, we note

that the only memory used by the algorithm is that used
to store the tree T, the ordering of the edges, and the
values d d.t

i ▫

B.2. BINARYEDGES

Theorem 4. The algorithm BINARYEDGES takes at most
3N2/2 1 127N/2 2 126 operations and requires O(N)
memory space in addition to that required to store the
vector d.

Proof

Step 1 can be completed in at most 2(2N 2 3)
operations by rooting T at some internal vertex and then
recursively calculating the taxa in every cluster of this
rooted tree.

Step 2 takes ½N(3N 2 1) operations by theorem 3.
Step 4 takes at most 40 operations for internal edg-

es and 20 operations for external edges. Therefore steps
3–5 take 20N 1 40(N 2 3) 5 60N 2 120 operations.

Counting all steps together, we have that the al-
gorithm takes at most

N(3N 2 1)
4N 2 6 1 1 60N 2 120

2
23N 127N

5 1 2 126 (50)
2 2

operations.
The memory required is that needed to store the

values d d, the numbers of taxa in each subtree, and thet
i

edge length calculated. ▫

B.3. FASTOLS

Theorem 6. The algorithm FASTOLS takes at most
26K2 2 104NK 1 211N2/2 1 182K 2 413N/2 2 3

operations when applied to an N-taxon distance matrix
and a tree with K edges. It requires O(N) memory space
in addition to that required to store the vector d.

Proof

Step 1 can be completed in at most 2(2N 2 3)
operations by rooting T at some internal vertex and then
recursively calculating the taxa in every cluster of this
rooted tree.

Step 2 takes ½N(3N 2 1) operations by theorem 3.
Fix some ei. Let m 5 m(i) be the number of edges

adjacent to ei. A simple count gives an upper bound of
20m operations to construct w. A further 5m 1 1 op-
erations are required to calculate bi. Thus, each edge
length takes at most 26m operations.

Summing over all edges, we see that the number
of operations required depends on the number of ordered
pairs of edges (ei, ej) such that ei is adjacent to ej. The
number of such edges in a tree with N leaves and K
edges is bounded above by 6(K 2 N) 1 (2N 2 K)(2N
2 K 2 1). Taking steps 1 and 2 into account we have
an upper bound of 26K2 2 104NK 1 211N2/2 1 182K
2 413N/2 2 3.

The only memory required, in addition to that used
for the input distance, is that used for storing the values
d d, the edges, vertices, and cluster sizes of the tree, thet

i

vectors v and w (which can be written over every iter-
ation), the edge lengths calculated, and assorted place-
holders in the calculation (e.g., g and k). Thus, the ad-
ditional memory used takes a modest O(N) space. ▫

B.4. Complexity of the Algorithm of Rzhetsky and
Nei

Rzhetsky and Nei (1993) describe an algorithm for
calculating OLS edge lengths for binary trees. We ana-
lyze the time complexity of that algorithm, as presented
in appendix B of Rzhetsky and Nei (1993).

Rzhetsky and Nei calculate the length of an internal
edge b using the formula

b̂ 5 v d , (51)O ij ij
i,j

where d is the distance matrix and vij takes on one of
seven different quantities calculated for each separate
edge.

Calculating the possible values for vij from equa-
tions (B2) and (B3) in Rzhetsky and Nei (1993) takes
(at least) 36 operations for internal edges and 7 opera-
tions for external edges. If the multiplication and sum-
mation are carried out over all pairs of taxa i,j, then the
number of operations per edge is at least 36 1 N(N 2
1) or 7 1 N(N 2 1), resulting in

(N 2 3)(36 1 N(N 2 1)) 1 N(7 1 N(N 2 1))
3 25 2N 2 5N 1 46N 2 108 (52)

operations for the whole tree.
However, it is not necessary to count additions and

multiplications for pairs i,j such that vij 5 0. For any
particular edge b, we have vij ± 0 if and only if the
path from i to j passes through one or both endpoints
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of b. The number of such paths depends on the shape
of the tree and the location of b within the tree.

Suppose that we choose a particular pair of taxa i,j
and then count the number of edges for which the quan-
tity vij is nonzero. Clearly, this includes only the edges
along the path from i to j, together with one extra edge
for every internal vertex on the path from i to j. Thus
if we sum over all pairs i,j, we can derive the number
of operations required by the algorithm,

36(N 2 3) 1 7N 1 2 (2r 2 1)O ij
i,j (53)

25 44N 2 N 2 108 1 4 r ,O ij
i,j

where rij is the number of edges on the path from i to j.
The quantity Si,j rij depends on the shape of the

tree and is difficult to calculate for general N. However,
here we are interested in worst-case complexity, so we
can restrict our analysis to the case in which the tree is
a caterpillar tree (a single long path with external edges
branching off) and be safe in the knowledge that the
worst case is at least as bad as this.

If T is a caterpillar tree with N leaves, then a re-
cursive counting calculation gives

1 19N
3 2r 5 N 1 N 2 1 2. (54)O ij 6 6i,j

Combining all factors together, we have:

Theorem 7. The algorithm of Rzhetsky and Nei (1993),
appendix B, can take at least 2N3/3 1 3N2 1 94N/3 1
8 operations.

Thus, the complexity bound of O(N3) derived by Rzhet-
sky and Nei (1993) was tight.
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