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A fundamental problem in classification is how to combine collections of trees
having overlapping sets of leaves. The requirement that such a collection of trees is
realized by at least one parent tree determines uniquely some additional subtrees
not in the original collection. We analyze the “rules” that arise in this way by
defining a closure operator for sets of trees. In particular we show that there exist
rules of arbitrarily high order which cannot be reduced to repeated application of
lower-order rules.  © 1995 Academic Press, Inc.

1. PRELIMINARIES

Introduction

Trees with labelled leaves are useful models for representing evolution-
ary relationships, particularly in biology (where they are called phyloge-
netic trees). The wider availability of genetic sequence data, and the use of
tree-building programs such as Paup, Phylip, and MacClade, has led to a
substantial increase in the size and number of phylogenetic trees. This
trend has heightened the relevance of the generalized tree compatibility
problem: determining whether a collection of phylogenetic trees on over-
lapping sets of taxa can be combined into one all-inclusive tree. Any
“divide and conquer”. technique for large classifications encounters this
problem, as would any attempt to incorporate the many existing phyloge-
nies into new phylogenetic trees. Tree compatibility can be efficiently
determined when all the input trees are either all rooted or have a leaf in
common [2,6,12]. If the trees have the same leaf sets then compatibility
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426 - BRYANT AND STEEL

can be determined in linear time [18]. However, the general problem for
unrooted trees is NP-complete [14].

A further problem in combining phylogenetic trees is that any tree
constructed might be only one among a multitude of possible trees, each of
which is well supported by the data. This situation arose, for example, in
work by Cann et al. [5] involving the evolution of human mitochondrial
DNA. Maddison [11] argues that the tree used to assert the African origin
of human mtDNA is only one among many equally plausible trees, some
which even support an Asian origin. In practice there are often thousands
of suitable trees consistent with any given data set. This reflects the
exponentially large number of possible phylogenetic trees.

Our approach is to break the initial collection of trees into an equivalent
set of binary trees, each with three leaves (rooted triples) or four leaves
(quartets). In this way, many of the original problems involving phyloge-
netic trees can be converted into equivalent problems involving these sets.

Dekker [7] investigated the use of quartets to construct a form of
predicate calculus. Unlike standard predicate calculus there would be
three possible logical values, corresponding to the three possible quartets
on a set of four leaves. This approach led to a number of inference rules: a
set Q of quartets “implies” another quartet g if every tree compatible with
Q is also compatible with g. In this way we can deduce new phylogenetic
information that is not explicitly present in the initial data set. The same
principles apply to sets of rooted triples. ,

We introduce closed sets—sets of quartets or rooted triples which
cannot be extended by applying inference rules. The associated closure
operator, which replaces a set by the minimal closed set containing it, has
a number of attractive properties, especially when applied to sets of rooted
triples. The closure of a set contains the triple /quartet information that
can be directly inferred from that set.

Despite the fact that inference rules are defined in such a simple
manner, the set of all inference rules exhibits a remarkable complexity. In
particular, there is no finite list of quartet or rooted triple rules that
generates all other rules through repeated application. This result was first
conjectured by Dekker [7], and we prove it by using a graph theoretic
approach to the study of closed sets. An outline of the paper is as follows:

e In the remainder of this section we define phylogenetic trees and
compatibility, giving a brief survey of related concepts in the literature. We
characterize compatibility in terms of quartets and rooted triples and
discuss when a collection of subtrees defines a unique tree.

e Section 2 introduces compatibility rules for quartet sets and proves
a number of related properties.
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e Section 3 examines sets of rooted triples and presents a new
graphical characterization of consistency and closure.

« In Section 4 we use this graphical representation to prove that there
are rules of any order that cannot be derived from rules of lesser order.
The result is proved first for rooted triples and then extended to quartets. -

Phylogenetic Trees

An unrooted (phylogenetic) tree is an acyclic connected graph with no
vertices of degree two and with each leaf (vertex of degree one) labelled
uniquely. This corresponds to a phylogenetic tree in [8,14], to a semi-
labelled tree in [15], an S-labelled tree in [3], and a fully resolved tree
structure in [4].

A rooted phylogenetic tree is defined in the same way, except that one
internal vertex, which can have degree two, is distinguished and called the
root. The remaining internal vertices all have degree three or greater. In
this paper, the root will always be labelled p.

In a binary unrooted phylogentic tree every internal (i.e., non-leaf)
vertex has degree three. This is called a non-degenerate tree structure in
[4]. In a binary rooted phylogenetic tree, all internal vertices have degree
three, except the root which has degree two.

Given any tree T, let Z#(T) be the leaf set of T. If I is a set of trees, let
A(F) be the union of the leaf sets of the trees in 7.

Sometimes the internal vertices of a phylogenetic tree are labelled, or a
vertex might have more than one label [7,8]. (These trees are also called
“S-labelled trees” [18), or “tree structures” [4].) Eldredge and Cracraft
discuss the various merits of each tree type and observe that all of the
classification information contained in a tree with labelled internal vertices
can be represented in a tree with only the leaves labelled [9, p. 211ff].

Rooted phylogenetic trees are sometimes displayed with a vertical axis
representing the time each branching point occurred. These diagrams are
called dendrograms. In the present paper we are only concerned with the
underlying branching tree structure.

Compatibility

Let T be a rooted or unrooted phylogenetic tree. A contraction of T is
obtained by removing an internal edge and identifying its endpoints.

Let A be a subset of the leaf set #(T) of T. Consider the minimal
subtree T(A) of T that connects leaves from A. If T is unrooted suppress
all vertices of T(A) of degree two to obtain an unrooted phylogenetic tree
on leaf set A, denoted T, ,. If T is rooted, distinguish the vertex of T(A)
closest to the root of T and suppress any remaining vertices of 7(A) that
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428 BRYANT AND STEEL

FiG. 1. Four examples of phylogentic trees. A and B are unrooted. C and D are rooted. B
and D are binary.

have degree two to obtain a rooted phylogenetic tree on leaf set A, also
denoted 7). In both cases we call 7|, the subtree of 7" induced by A.

For example, consider Fig. 1. Tree D is an induced subtree of tree C.
Tree A is obtained from tree B by a contraction of the horizontal edge, but
it is not an induced subtree of B.

We say that a tree T is compatible with a tree S if S can be obtained by
contractions of an induced subtree of T (or equivalently, if S is an induced
subtree of a contraction of 7). We denote this partial order by § < 7. A
tree T* is compatible with a set of trees I ={T),..., T} if T* is
compatible with each T, in which case we say that 7 consistent. This
definition of compatibility corresponds to “weak” compatibility in [12]. The
terms consistent and compatible are sometimes interchanged in the litera-
ture [12, 14].

The underlying assumption made when choosing this type of compatibil-
ity is that the tree structures we are trying to model are binary. Hence a
non-binary tree corresponds to incomplete knowledge. It is the branching
information that we are most interested in. In cladograms, the branching
structure determines the nesting of the sets of taxa. Our definition of
compatibility corresponds to one tree containing all the clustering informa-
tion of the other trees (Theorem 1(1) of [8]), or alternatively to one tree
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containing all the nested set information of the other trees (Corollary 1).

There are, however, several versions of compatibility in common use.
For example, [3, 6, 12] do not incorporate contraction into their definitions
of compatibility.

Quartets and Rooted Triples

A useful way to analyse trees and sets of trees is in terms of their
smallest phylogenetically informative subtrees—rooted triples for rooted
trees and quartets for unrooted trees.

DEFINITIONS. 1. A quartet is an unrooted binary tree with four leaves.
The quartet with two pairs of leaves {a,b} and {c,d} connected by an
internal edge is denoted ablcd. A rooted triple is a rooted binary tree with
three leaves. The rooted triple with a pair of leaves {a, b} connected to the
third leaf ¢ via the root is denoted ab|c. Adams [1] uses the term “triad”
for rooted triples.

2. If Q is a set of quartets, then the span of Q, or {Q) is the set of
unrooted trees that are compatible with Q and have leaf sets Z(Q).
Similarly, if R is a set of rooted triples, then the span of R, or {R) is the
set of rooted trees that are compatible with R and have leaf sets Z(R).
The algorithm ALL TREEs of [12] and the algorithm SUPERB [6] can both be
used to construct the span of a set of rooted triples.

3. Let r(T) denote the set of rooted triples that are induced subtrees
of a rooted tree T, and let g(T) denote the set of quartets that are induced
subtrees of an unrooted tree 7. The set r(T) is called the rooted triple set
of T, and q(T) is called the quartet set of 7.

4. Given a phylogenetic tree T, deleting an edge gives two smaller
subtrees and thereby a partition of the leaf set of 7 into two non-empty
subsets. Such a partition is called a split of T.

The following theorem extends a result of [8] giving a characterization of
compatibility and the partial order <.

THEOREM 1. Let S and T be unrooted phylogenetic trees. T is compatible
with S, that is S S T, if and only if q(S) € g(T) and £(S) cAT).

a b c

Fic. 2. The quartet ablcd and the rooted triple ablc.
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Similarly, let S and T be rooted phylogenetic trees. S < T if and only if
r(S) c r(T) and Z(S) cA(T).

Proof. Suppose first that S < T. If ablcd € ¢(S) then abled < S. Since
g is transitive, we have that ablcd < T and so ablcd € q(T). Of course if
T is compatible with S then we also have A(S) . A(T).

Conversely, suppose that g(S) € g(T) and Z(S) cZ(T). If we can
prove that the subtree of T induced by -#(S) is compatible with S, then
S < T. Therefore we assume that Z(T') =.£(S). We will show that the set
of splits of S is contained in the set of splits of 7 so that the result follows
from Theorem 1, (1) in [8].

Let (n,%) be a split of S. Then ablcd € q(S) for all a,b € n and
¢,d € [4]. Since g(S) € q(T), ablcd € g(T) forall a,b € nand ¢, d € 7.
Hence (7, 7) is a split of 7. An analogous argument applies for the rooted
case. |

Note that if g(S) € g(T) then Z(S) C(T), unless S is a fan-like tree
with no internal edges, in which case ¢(§) = .

Adams [1] defines a relation < ; on sets of leaves in a rooted tree 1. Let
X,Y be subsets of (T). Then X <;Y if the most recent common
ancestor of X is a proper descendent of the most recent common ancestor
of Y. We say that X nests in Y. The relation defines the tree uniquely. We
_ show that compatibility corresponds to one tree containing all the nesting
information of the other tree.

COROLLARY 1. Let S and T be two rooted phylogenetic trees. S < T if and
only if A <¢B, A CB, implies A < B.

Proof. Note that {a, b} < ;{a, b, c} if and only if ablc € r(T). Suppose
that 4 < B implies A < ;B. Clearly (S) CA(T). If ablc € r(S) then
{a, b} <la,b,c} so {a,b} < {la,b,c} and ablc € r(T). By Theorem 1,
SaT.

Conversely suppose that S < T. If 4 < B, A CB, then the most
recent common ancestor of A is a descendant of most recent common
ancestor of B. This will still be true if we add leaves and expand
contracted vertices. Hence A <;B. |

Consensus Trees

A rooted tree can be defined in terms of its nesting partial order, in
terms of its rooted triples, or in terms of its splits. To represent the
consensus information shared by a number of rooted trees, a desire would
be to preserve the nestings, rooted triples, or splits common to all the
trees. Adams [1] observed that trees tend to have more nesting information
in common than can be obtained from the intersection of their rooted
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triple sets, and the Adams consensus tree is constructed from this shared
nesting information. In contrast, the strict consensus subtree, which is
constructed from the splits common to all the trees, contains less informa-
tion than the intersection of the rooted triple sets. This decrease in shared
information, from nestings to rooted triple sets to splits, is discussed in
detail in [1,16]. A simple comparison between the three approaches is
obtained by studying rooted triple sets as follows.

ProposITION 1. Let = {T,,T,,...,T,} be a collection of rooted trees
with the same leaf set. If T,. is the Adams consensus tree of I, Ty is the
strict consensus tree of 7, and R = N ;¢ 41(T) then

r(Tsc) SR Cr(The)-

Proof. We have Ty 9 T, VT € 7. If ablc € r(Tc), then ablc € r(T)
for all T €9, so ablc € R. If ablc € R then {a, b} < ;{a,b,c} for all
T €9, so {a, b} < TAC{“’ b,ct. 1

The Algorithm OneTree

A rooted tree T satisfies the constraint (a, b) < (¢, d) if the most recent
common ancestor of a and b is a descendent of the most recent common
ancestor of ¢ and d, that is, if {a, b} < ,{c,d}. Aho et al. [2] present an
algorithm BUILD that returns a tree compatible with a set of constraints
whenever such a tree exists. The set of all possible constraints that can be
obtained from any one tree is characterized in [12].

Aho et al’s algorithm has been extended and modified [6, 12]. Constanti-
nescu and Sankoff [6] present an algorithm SUPERB that takes a set of
constraints and returns all of the binary trees compatible with them, if any
such trees exist. Ng and Wormald [12] give two tree construction algo-
rithms ONETREE and ALLTREES. These take rooted triples and k-leaved -
fan trees as input, where a tree T is defined to be compatible with a fan
tree § if S is an induced subtree of T. ONETREE constructs a single
compatible tree and ALLTREES lists all compatible trees.

The algorithm given below is a simplification of ONETREE. It does not
handle fan trees. In addition, instead of constructing the blocks of a
partition at each iteration, we construct a graph and consider its compo-
nents. This graphical approach was used in [2] to show that their algorithm
has O(mn) complexity when applied to a set of m rooted triples and n
leaves.

ONETREE(R, A4,v,T).

Input: set R of rooted triples, A
non-empty set 4 = {a,,...,a,} containing the leaves of R,
vertex v.

e W - ‘ - - .



432 BRYANT AND STEEL

Output:  tree T with root v.

1. If n = 1, set T = v with label a, and return.
If n = 2, create T by attaching two new vertices to v, label them
a, and a, and return.

2. Create a graph G with vertices A and an edge between a and b if

there is an element ¢ € A such that ablc € R.

. If G has only one component then set 7 = (J and return.

4. For each component A; of G, create a vertex v;:
set R, = the set of rooted triples in R with leaves in A, and call
ONETREE(R;, A;,0;, T)).

If T, = & then set T = J and return.

Otherwise, add 7, and the edge (v, v,) to T.

w

The algorithm has complexity O(mn), where n is the number of leaves
in the input set of rooted triples and m = |R|.

Defining a Tree by Collections of Subtrees

Given a collection of input trees, a natural question is whether there is
exactly one parent tree compatible with each input tree, in which case we
say that the input defines the parent tree. When considering sets of
quartets and rooted triples the question becomes when does the span (X )
of a consistent set contain only one tree?

One immediate observation is that if (X ) contains a non-binary tree T,
then (X ) also contains all the binary trees that can be contracted to T.
Note also that any binary tree T is defined by ¢(T) [4].

Necessary and sufficient conditions for defining a rooted tree by rooted
triples are presented in [14]. Given an edge e of a rooted tree S, and a
rooted triple ablc € r(S), we say that ab|c distinguishes e if the path from
a to ¢ in S intersects the path from b to the root of S only on the edge e.
It was shown in [14] that a set of rooted triples R defines a unique binary
rooted tree T if and only if each edge in T is distinguished by a rooted
triple in R. We can also characterize when a set of triples defines a tree
using the algorithm ONETREE.

PROPOSITION 2. The algorithm ONETREE returns a binary tree T when
applied to a set of rooted triples R if and only if R defines T.

Proof. Suppose that the algorithm applied to R returns a binary tree 7.
The algorithm constructs a graph G with two components. Each compo-
nent contains the leaves of one of the two subtrees of T branching off the
root of T. Let T' be any rooted tree with leaf set Z(R) that is compatible
with R. By Lemma 1 of [2], the two components of G are wholly contained
in subtrees branching off the root of 7. Hence the subtrees that branch
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off the root of 7' have the same leaves as the subtrees branching off the
root of T. Now the algorithm ONETREE recurses on these subtrees of T
and so every subtree of T has the same leaves as some subtree of T". It
follows that T = T'.

Conversely if R defines T then the tree returned by ONETREE would
have to equal 7. If T was not binary, then any tree that contracts to give T
would also be compatible with R, a contradiction. [

Note that Proposition 2 can also be proved by referring to the algorithm
ALLTREES of [12].

Let 7 be an unrooted tree and let e be an edge of 7. We say that the
quartet ab|cd distinguishes e if the path from a to ¢ in T and the path
from b to d in T intersect only on the edge e. If a set of quartets Q
defines a tree T (that is, Q) = {T'}) then, by Proposition 6 in [14], every
edge of T is distinguished by a quartet of Q. Hence if Q defines 7 and T
has n leaves then |Q| > n — 3, the number of internal edges of T [14,13].
This lower bound can be realized for every unrooted tree, by a construc-
_ tion given in [14].

We can generalize this result from sets of quartets to collections of
trees.

ProposiTioN 3. If {1}, T,,...,T,) is a set of trees such that
U1, Ty, ..., T,}) = {T} for some binary tree T with n leaves, then

(n,—3)=n-3, (1)

k
=1

where n; is the number of leaves in T,.

Proof. For each tree T, let S; be the binary subtree of 7' induced by
the leaves of 7, so that S; = T'|gr,. Hence for each i, g(T;) < q(S,) so the
trees {S,, S,,..., S} define T. Using the construction of [14], let Q; be a
set of n; — 3 quartets that defines S;, i =1,2,3,...,k. Hence O, U O,
U -~ UQ, is a set of quartets that defines 7. It takes at least n — 3
quartets to define T, so

n—-3<|0,VUQ0,U - UQ,l
<10 + 10, + -+ +1Q,l

k
= ~;1(”:' - 3),

as required. [
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Note that even when the inequality (1) does hold for a particular choice
of ny,n,,...,n, and n it does not necessarily follow that there exist trees
T, with n; leaves (i = 1,..., k) which define a given binary tree T with n
leaves. The smallest counterexample is given by binary tree with n =9
leaves that has a vertex with threefold symmetry. Such a tree cannot be
defined by two subtrees each with six leaves.

The tree T will not, in practice, be known in advance. In this case,
Warnow [17] showed that we only need to examine O(nlogn) of the

quartets in g(7') before we can uniquely determine 7.

2. CLOSED SETS—QUARTETS

Any question relating to the compatibility of unrooted trees can be
converted into a question about sets of quartets. In this section we study
sets of quartets and introduce the concept of closed sets of quartets.
Closed sets arise in two different contexts: first, in terms of the inference
rules of [7]; second, as the intersection of quartet sets of trees.

Inference Rules for Quartets

Let T be an unknown unrooted phylogenetic tree. Given a subset of
g(T), it is often possible to deduce additional quartets of g(7). For
example,

1. If ablcd, ablce € q(T) then ablde € q(T) [47].
2. If ablcd, aclde € q(T) then ablce € q(T) [47,14].
3. If ablcd, ablef, celdf € q(T) then abldf € q(T) [7].

We generalize these results by defining abstract inference rules. A rule is a
statement of the form: “If Q < g(T) then abled € ¢(T)” and is denoted
Q + ablcd. Hence Q + ablcd is true if every tree compatible with a
particular set of quartets Q is always compatible with the quartet ablcd.
Given a consistent set of quartets Q, define

0= N a(T).
Te{Q)

Thus Q + ablcd is a rule if and only if ablcd € Q. The set Q is called the
closure of Q. A set Q is closed if every rule Q F ablcd implies that
ablcd € Q. The order of the rule Q + ablcd is equal to the cardinality of
Q. ,
We present a number of basic properties of closed sets and the closure
operator, all of which follow immediately from the definitions of closure
and closed sets.
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PrOPOSITION 4.  Let X,Y be consistent sets of quartets.

X is the minimal closed set containing X.
X = (X). |
IfXCYthenX CY. . p

X is closed if and only if X = X.

If X and Y are closed sets then X N Y is also closed.

T is compatible with X if and only if T is compatible with X.
(XY =AY)ifand only if X = Y.

NS RN =

Closed Sets and Quartet Sets of Trees

The definition of closure suggests a link between closed sets and quartet
sets of trees. In fact, the quartet sets of binary trees are the maximal
closed sets, and all other closed sets can be written as the intersection of
them.

PROPOSITION 5. X is closed if and only if X = q(T)) N g(T,) N - N
q(T,) for some trees T,,T,,...,T,. Furthermore, we can assume that
T,,T,,..., T, are binary.

Proof. Clearly, if T is a tree, then q(T) = q(T), so g(T) is closed. If
X = q(T) N g(T,) N --- N g(T,) for some trees 7,,T,,...,T, then X is
closed, by Proposition 4(5).

Conversely if X is closed then X =X which is, by definition, the
intersection of the quartet sets of all the trees compatible with X. We can
restrict our attention to binary trees because the quartet set of g(T) of any
non-binary tree T equals the intersection of the quartet sets of the binary
trees compatible with 7. |

PROPOSITION 6. If X and Y are consistent sets of quartets and Z(X) N
A(Y) = Bthen X U Y is consistent and X U Y=X U Y.

Proof. First assume that there are unrooted trees T; and T, such that
X = ¢g(T)) and Y = ¢g(T,). We can combine 7, and T, into a single tree by
identifying an internal vertex of 7', with an internal vertex of T,. Any tree
thereby constructed is compatible with g(T,) U g(T,), so X U Y is consis-
tent. Each different pair of internal vertices gives rise to a different tree.
Let 9 be the collection of all these trees. Then

q(T;) Vq(T,) = () 9(T) .
Teg

so X UY = g(T)) U q(T,) is closed by Proposition 5.

% .. . .
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Suppose that X and Y are any two consistent sets. By the definition of
closure, N

X= N «1), Y= N aT).
T,e<Y)
Hence

)?U)_/=( N q(Tl))U( N ‘I(Tz))

T,elY>

= ﬂ (Q(Tl) U‘I(Tz))

T,€{X ), T,eY)

which is closed by the first part and Proposition 4(5). Now XuYcXUY,
and X U Y is the minimal closed set containing X U Y. Since X U'Y is
closed, it follows that X U Y= X U Y, as required. |}

Some Applications of Closed Sets

(1) Let 9 be collection of Trees Ty, T,,...,T; and let Q = q(T}) N
g(T,) N --- N q(T,). The set of quartets Q is often taken to be the
consensus information shared by all the trees in .. By Proposition 5 any
such set is closed. As well, if S is any consensus tree such that § < T,
i=1,...,k, then g(8) € Q. Note that other consensus methods are in
use. Some consensus trees, like Adams consensus tree [1], preserve more
information than is contained in the intersection of quartet (or rooted
triple) sets.

(2) Let Q be a set of quartets or trees and let n = |Z(Q)l. The
number of trees compatible with Q can be exponentially large with respect
to n, so it is often impractical to list every possible tree. Instead we could
use the closed set Q to represent the set of possible trees. The set 9]
contains exactly those quartets that can be directly deduced from Q.

(3) Another advantage of using closed sets to process phylogenetic
information is that the collection of closed subsets of a closed set, partially
ordered by inclusion, forms a complete lattice, with

A:X = NX, VX =U.X,

for closed sets X,. In contrast, the set of trees partially ordered by
compatibility (<) has no well-defined meet and join, even when the trees
are consistent.

(4) In Section 1 we discussed the question “When does a set of
quartets define a tree?” An answer is provided by the closure operator. If
(X consists of just one tree T then X = q(T). Conversely, if X = q(T)

—d
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for some binary tree T then (X ) = (X) = {g(T)) = {T}. Therefore a set
of quartets X defines a tree 7 if and only if T is binary and X = q(T).

(5) Phylogenetic information is often given by sets of characters. Each
character gives a partition of the set of species, that is, a partition of the
leaf set. Given a partition A4,|A,|-+- | A, define the set of quartets,

g(A Ayl 14,) = {wxlyz:w,x €A;3y, 2 € A5 # j}.

There is a corresponding notion of compatibility with partitions [8, 10, 17].
It can be shown that a tree T is compatible with the partition A,[A4,|--- |4,
if and only if g(A4,|A4,|-+- |4,) € q(T). Hence every tree compatible with
X is compatible with the partition A,|A4,|--- |4, if and only if
g(A,1A4,]--- | 4,) € X. The inference rules of [7] involving partitions can
therefore be reduced to inference rules involving quartets, giving addi-
tional motivation for studying sets of quartets.

We prove that for any partition A,|A,|--- [A4,, the set of quartets
q(A,| A, | 4,) is closed. In order to do so we consider quartet sets of
graphs that are not necessarily trees.

LEMMA 1. Let G be any connected graph and let L be a set of labelled
vertices in G. Define

a, b, c, and d are distinct elements of L }

9(6) = {ablcd: no path from a to b intersects a path from c to d

The g(G) is consistent and closed.

Proof. We can assume that every vertex in G is on a path between two
elements of L, since removing these vertices does not change the set g(G).

Consider first the case when G is acyclic. Suppose that G has an
internal vertex labelled a. If we attach a new leaf adjacent to this vertex
and transfer the label @ from the internal vertex to the leaf a, then g(G)
will not change. Repeat this procedure until all labelled vertices of G are
leaves. If we now delete those vertices that have only two remaining
adjacent vertices and identify their incident edges then we obtain a
phylogenetic tree T with g(T) = g(G). Hence gq(G) is consistent and
closed.

Suppose now that G is not acyclic. Let 7 be a spanning tree of G. Now,
r is acyclic so g(r) is the quartet set of some phylogenetic tree. If
ablcd € g(G) then no path from a to b intersects a path from ¢ to d in G
and because 7 is a subgraph of G, the same applies for 7. Hence
g(G) c q(7) and so q(G) is consistent.
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A| Az

A

o

Fic.3. The graph G with the same quartet set as A,|A,|-** |A4,.

Let 9 be the collection of spanning trees of G. We will show that

a(G) = N q(7)

red

and therefore g(G) is closed by Proposition 5. If ablcd & g(G) the there is
a path P, from a to b that intersects a path P, from c to d. Let x be the
first vertex on the path P, that is also on the path P,. Let y be the last
vertex on the path P, that is also on the part P,. Construct the subgraph
of G containing all of P, the part of P, going from ¢ to x and the part of
P, going from y to d. This subgraph is an independent set of the graph
matroid so can be extended to a spanning tree 7 of G for which
ablcd & q(7) [19, Chap. 1]. Hence ablcd & N, c-q(7). 1

Unfortunately not every consistent closed set is ¢(G) for some graph G,
a counterexample being the set {ablcd, ablef}.

PROPOSITION 7. If A||A,| -+ | A, is any partition then q(A,|A,|-++ 14,)
is consistent and closed.

Proof. Consider the graph G of Fig. 3. Clearly g(G) = q(A,|4,|-+- |4,)
so, by Lemma 1, the set of quartets is consistent and closed. [}

3. CLOSED SETS: ROOTED TRIPLES

Determining consistency is much easier for sets of rooted triples than
for sets of quartets. The former can be checked in polynomial time [2]
while the later problem is NP-complete [14]. The differences between the

——d ) .. -
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a.c
de a,f

e

FiG. 4. The graph [R, S] for R = {ablc, beld, belc, af g, felb, bfla, bfIc, cdla, cd! f, cglb}
and S = {a, b, c,d, e, f}. The triples in R with a leaf g are ignored when constructing the
graph because g & S.

two cases are reflected by a number of properties that hold for sets of
rooted triples, but not for sets of quartets. We begin by presenting a
graphical characterization of consistency for sets of rooted triples.

Graphical representation of rooted triples: R, S — [R, S]

Let R be a set of triples and let S be a subset of #(R). We define an
edge-labelled graph [R, S] (see Fig. 4) as follows. Take the vertices of the
graph to be the elements of S. Add an edge between two vertices a and b
if there are any triples in R of the form ablc, where a,b,c € S. Label
each edge (a, b) with the set of leaves {x : ablx € R, x € S}.

Every label on every edge of the graph represents a unique triple in R. .
Hence removing triples from R will corresponds to removing labels and,
perhaps, edges from [R, S]. We summarize this observation as follows.

PROPOSITION 8. If R’ is a subset of R and S is a set of leaves, then [R', S]
is a subgraph of [R, S). Consequently, if T is any rooted tree consistent with R,
then [R, S is a subgraph of [r(T), S].

This graphical construction is closely related to the algorithm ONETREE.
The algorithm returns a tree if and only if the input set of rooted triples is
consistent, giving rise to the following important characterization of consis-
tency for rooted triples, which we will use frequently.

THEOREM 2. A set of rooted triples R with leaf set L is consistent if and
only if for each subset S C L with at least three elements, the graph [R, S] is
disconnected.

vn—J“-."*r. ) -- - - w--. A
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Proof. If R is consistent then there is a tree T such that R C r(T). Let
S c L, |S| > 1, and consider the subtree T'|g, which has a greatest element,
say M. Each direct descendent x of M determines a subset of S given by
those leaves that are descendents of x. The collection of these subsets
partitions S into two or more blocks (see Fig. 5).

If a and b are elements from different blocks of this partition then
there is no ¢ € S such that ab|c € R. Therefore there is no edge in [R, S]
between elements in different blocks of the partition, and so [R, S] is
disconnected.

Conversely, suppose that R is inconsistent. The algorithm ONETREE will
return a null tree when applied to R. The algorithm acts recursively on
different subsets 4 of Z(R) and constructs a graph with the same vertices
and edges as the graph [R, A]. It only returns a null tree when for some
leaf set A, | A| > 3, the graph is connected. |

LEMMA 2. If R is a consistent set of rooted triples and R U {ablc} is
inconsistent then {a, b, c} CZ(R) and there is a leaf set S :|S| > 3 such that
graph [R, S] has exactly two components, one containing a and the other
containing b.

Proof. Let T be a rooted tree compatible with R. If any of a, b, or ¢ is
not in Z(R) then we can always add these extra leaves to T to give a tree
compatible with R U {ablc} contradicting the inconsistency of R U {ab|c}.

By Theorem 2 there is a set S with [S| >3 such that the graph
[R U {ablc}, S] is connected. The graph [R U {ab|c}, S] is the same as the
graph [R, S] with one extra edge connecting a and b and labelled by c.
Hence [R, S] has at most two components, and, since R is consistent, the

FiG. 5. Given the rooted tree on the left take S = {c, f, k, i, k, [}. The induced subtree on
the right has the corresponding partition {{c, f},{n, i}, {k, I}}.
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graph must have exactly two components. Adding the edge (a, b) gives a
connected graph, so a and b must be in different components of [R,S]. 1

Closed Sets of Rooted Triples

Closed sets and inference rules of rooted triples are defined in the same
way as for quartets. The closure of a consistent set R is

R= () r(T).

Te(R)

All of Proposition 4 holds for closed sets of rooted triples, and every closed
set R of rooted triples can be written R = r(T,) N r(T,) N --- N r(T}) for
some trees T, T,,..., T, (Proposition 5).

Dekker [7] observed that if sets of rules are applied to a set of quartets
and a contradiction results, then the set of quartets is inconsistent. This is
also true for sets of rooted triples. We prove that, in the rooted triple case,
if we apply all possible rules then the converse of Dekker’s observation is
also true (Proposition 92) below).

PROPOSITION 9. 1. If R is a closed set of rooted triples containing no triple
with the leaves {a, b, ¢} then R U {ablc}, R U {ac|b}, and R U {bcla} are all
consistent.

2. If all possible rooted triple rules are applied to the consistent subsets of
a set R of rooted triples then a contradiction (e.g., ablc AND acl|b) is derived
if and only if the set R is inconsistent. »

3. If R is a set of at least three rooted triples and every proper subset of R
is consistent and closed, then R is consistent.

Proof. (1) Suppose that one of R U {ablc}, R U {ac|b}, and R U {bc|a}
is inconsistent, say R U {ab|c}. By Lemma 2, there is S:[S| > 3 such that
[R, S] has exactly two components, with a and b in different components.

If ¢ is in the same component as a then [R U bcla, S] is connected so
R U bcla is inconsistent (Fig. 6). Since R U ablc is also inconsistent we
have, by elimination, that every tree compatible with R is also compatible
with ac|b. That is, ac|lb € R. Similarly, if ¢ is in the same component as b
then bcla € R. In either case we obtain a contradiction.

(2) If R is consistent then R is also consistent, so applying all possible
rules to R will give a consistent set that contains no contradictions.

Conversely, suppose that R is inconsistent. Let R, be a maximal
consistent subset of R and choose ablc in R\ R,. Then R, U {ablc} is
inconsistent, so by (1) either aclb € R,, in which case R, F aclb, or
bcla € R, and R, - bcla. In both cases we derive a contradiction with
ablc.

. .. .
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FiG. 6. The components of [R, S]. The dotted lines indicate the components of [R, S 1(D).
If we add an edge between a and b, (2), or between ¢ and b, (3), then we get a connected
graph. Hence, the only triple with these leaves that is consistent with R is aclb (4).

\

(3) Let ablc € R. Then R\ {abl|c} is consistent and closed. Every
subset of R is consistent, so R contains at most one of ablc, aclb, bcla.
Hence aclb & R\ {ablc} and bcla & R\ {ablc} so R\ {ablc} U {ab|c} is
consistent by part (1). §

Note that (1) does not hold for the quartet case. For example, if
0 = {12136, 2345, 14156}

then Q U 13|24 is inconsistent. We were unable to determine whether (2)
was true for quartets.

Let R be a consistent set of m triples. The closure of R can be found in
polynomial time. There are at most 3m different leaves in #(R). Consider
each subset of Z(R) with three leaves, say {a, b, c}. There are O(m?) such
sets. Test the consistency of R U {ablc}, of R U {ac|b}, and of R U {bc|a}
using the algorithm ONETREE. If exactly one set is consistent then the
corresponding triple is in R; otherwise there is no triple in R with leaves
{a, b, c}. Checking each set of triples takes O(m?) time [2]. Hence the
entire process takes O(m*) time. It is reasonable to expect that a far more
efficient algorithm could be found—our aim here is simply to show that
the problem can be solved in polynomial time.

We now characterize closed sets of rooted triples in terms of the
graphical representation.

2

PROPOSITION 10. Let R be a consistent set of rooted triples. R is closed if
and only if for each set S, |S| = 3 for which [R, S] has exactly two compo-
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nents. These components are cliques and the label set of each edge contains
every label in the other component.

Proof. Suppose that R is closed. Let S be a subset of Z(R) such that
[R, S] has two components. Choose any a and b in one component and
any ¢ in the other component. Both [R U {ac|b}, S] and [R U {bcla}, S]
are connected, so by Theorem 2, both R U {ac|b} and R U {bcla} are
inconsistent. By elimination R + ablc. Since R is closed, ablc € R so
there is an edge between a and b with c in its label set. The result follows.

Conversely, suppose that R is not closed. There is ab|c not contained in
R, even though R  ablc. Now R U ac|b must therefore be inconsistent,
so by Lemma 2 there is § € Z(R), |S| > 3, such that [R,S] has two
components, with @ and b in one component and ¢ in the other. But since
ablc is not in R, the edge from a to b does not have c in its label set. [

If a set R of rooted triples is consistent and closed and every subset of
R is also closed then we say that R is fully closed. A characterization of
fully closed sets stems directly from the preceding proposition, as follows.

PROPOSITION 11. A4 consistent set R is fully closed if and only if for all
S C.A(R) with |S| = 4; the graph [ R, S] has at least three components.

Proof. Suppose that for all § €. Z(R) with |S| > 4 the graph [R, S] has
at least three components. Let R € R and § € #(R) with |S| > 3. Now R
is consistent so if |S| = 3 then either [R’, S] has no edges and hence three
components, or [R’, S] has one edge, labelled by the vertex in the second
component. If |S| > 4, then [R, S], and hence [R’, S], has at least three
components. By Proposition 10, R’ is closed. We conclude that R is fully
closed.

Conversely, let R be fully closed. Consider any subset S €. 2(R) with
|S| > 3. R is consistent, so by Theorem 2, [R, S] has at least two compo-
nents. Suppose that [R, S] has only two components. Either both compo-
nents have exactly two vertices, or one component has at least three
vertices. In the first case both components have exactly one edge and this
edge is labelled by the two vertices in the other component (Fig. 7(1)).
Removing one triple from R that has leaves in S will remove one of the
labels from one of the edges, giving a set that is not closed by Proposition
10 (Fig. 7(3)). In the second case (Fig. 7(2)), removing an edge will still
leave a graph with two components that corresponds to a subset of R that
is not closed (Fig. 7(4)). In either case, R is not fully closed. |

We apply these results to an example that we use in the next section.

ProposITION 12. Let A ={ay,a,,..., ap}, B ={by,b,,..., bq}, and
C = {c,,¢y5- - -, ¢,} be disjoint sets of leaves. Let R be any set of rooted triples

—— W » - - - -
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(45}

)
b c a de b d
cd ab b.d.e fe ab.c
a d ’ c [3
b c 3 de b d
c ab bde abc
a d

c

o

3) (C)

Fic. 7. If R is closed and [R, S] has two components, the either both components have
two vertices (1), or one component has three or more vertices (2). In (3) we have removed the
triple abld from R giving a set that is not closed. In (4) we have removed both bcld and bcle,
giving a subset of R that is not closed.

each of which are of the form a;a;|b, or b;bjlc, or c;c;|a, and which have the
further property that for each z € A U B U C, there is at most one triple in R
of the form xy|z. Then R is consistent and fully closed.

Proof. The tree T in Fig. 8 is compatible with R, so R is consistent.
We will use Proposition 11 to show that R is fully closed. Let S be a
subset of Z(R) with |S| > 4. Consider three cases.

Case 1. S contains at least one element from each of A, B, and C. Now
R c r(T) so [R, S]is a subgraph of [r(T), Z(T)] (Fig. 8). The elements in
A, B, and C must be in different components of [R, S]. Therefore [R, 5]
has at least three components.

Case 2. S intersects exactly two of A, B, and C. By symmetry, we can
assume without loss of generality that S is contained in 4 U B. The graph
[R, S] has at least two components because R is consistent (Theorem 2).
Suppose that [R, S] has only two components. As in Case 1, the elements
in A and the elements in B are contained in different components of
[R,S]. As [R, S] has only two components, the vertices in § N A are
connected and the vertices of S N B are connected.

If there is more than one vertex in § N B then there is an edge in this
component. However, any such edge would be labelled by a vertex from C,
giving a contradiction. On the other hand, if there is only one vertex in the
S N B component, then there must be at least three vertices in the § N A
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a a ..
12

abb.. C
p 1 2 q 1 2

Fic. 8. The tree T on the left is compatible with the set R from Proposition 12, so that R
is consistent. On the right is the graph [r(T), #(T)], consisting of three disjoint cliques on p,
g, and r vertices, respectively. Note that [R, S] is a subgraph of [+(T), AT)] for any S
(Proposition 8).

component, since |S| > 4. Hence there are at least two distinct edges in
the S N A component. We required R to have the property that for each z
in ZA(R), there is at most one triple in R of the form xy|z. Each of these
edges in § N A are therefore labelled by a different element of S N B, a
contradiction. We conclude that [R, S] has at least three components.

Case 3. S is a subset of A, B, or C. Without loss of generality, assume
that S € A. If [R, S] has less than three components, then there must be
an edge in [R, S], simply because S has at least four elements. However,
all edges connecting vertices in A are labelled by vertices in B, so S must
contain an element of B as well, a contradiction.

In all three cases, R is fully closed by Proposition 11. [

4. THE EXISTENCE OF IRREDUCIBLE RULES OF
ARBITRARILY HIGH ORDER

Dekker [7] describes a third-order rule that cannot be derived through
repeated application of second-order rules. After studying rules with
orders three, four, and five he conjectures that for any n, there exist rules
of order n that cannot be derived from rules involving fewer than n
quartets. We prove this conjecture, first for rooted triples and then for
quartets. Our strategy is to construct a set of n triples or quartets that is
not closed, even though every proper subset of it is closed.

e d” W . L -
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We actually construct three sets of rooted triples:

R, :

¢i¢5lay, ce5la,,.
am+ lbllcm+ 1}’
Ry = {a1‘12|b27 a,a;bs,

b1b2|6‘1 > bzbSICZ,

¢ ¢5lay, cycsla,, ..

am+ 1bllcm+1}’
R, = {‘h“z‘bn a,a;|b,,

b,b,lc,, bybslc,,

ci¢lay, e c5la,,. ..

am+lbllcm}’

{a,a,1b,, a,a,lb,, . ..

b,b,lc,, b,bslc,, ...

’amam+1|bm’
7bm—-lbmlcm71’
"’cmcm+1|am’

m>1,

""amam+1|bm+1’

coisbyby qlCms
 r ConCmt 110
m>1,
wesa,a, b,
eeisb,_1bylC 15

’cm~1cm|am—l’

m > 2.

LEMMA 3. Foreachi = 0,1,2, the set R, is consistent. Furthermore, if S
is a proper subset of Z(R)), |S| > 4,i = 0,1,2, then [R;, S] has at least three

components.

Proof. We prove the case of i = 1. The remaining cases are proved in a
similar way. Let R = R,. The tree in Fig. 9 is compatible with R so R is

aa.a. b b2 v o€ €

FI1G. 9.

a| <
b2 €
a
? b
3
a3
€2
a
m
b c
m+t 1
Cc a
m+l m+l
c
m+1

the graph [R, #(R)] and the associated edge labelling.

-

———d

m+l

c

m+}

The tree on the left is compatible with R, so that R is consistént. On the right is
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consistent. Let A ={a;, a5,...,a,,1), B=1{by,by....0,, 1}, C=
{Cc1,ChpennsCopatl

By Proposition 12, the set R\{a, ,b;lc, .} is fully closed, so by
Proposition 11, the graph [R\ {a,,, ,b,lc,, .}, S]has at least three compo-
nents. If one of a,,, ;, b; or ¢, is not in S then [R, S]is the same graph
as [R\{a,,, 1b,lc,, 1}, S] and so it also has three components.

Assume that {a,,, |, b,,c,,,} € S. Since S C#(R), the graph [R, S]is a
subgraph of [R, #(R)] (see Fig. 9). The eclements of § N C and the
elements of S N (A4 U B) are in different components in [R, Z(R)], so
they are in different components of [R, S]. Because § contains elements of
both A U B and C, the graph [R, S]has at least two components. Suppose
that [R, S] has only two components. Then all of the vertices in § N (4 U
B) are connected and all the vertices in § N C are connected.

There are at least four elements in S, so there is at least one additional
element x in § other than a,, . ,, b; and c,, ;. Consider the cases of
x€A,x€B,and x € C.

Case 1. x € A. Let x = a,. The vertices a; and a,,, are in the same
component of [R, S], so there is a path in [R, S] going from q; to a,,. ;.
Now the only path in [R, #(R)] (Fig. 9) from a; to a,,,, passes through
@;,@; 415+, ay and a,, . Since [R, S] is a subgraph of [R, Z(R)], the
only possible path from a; to a,,,, in [R, S] passes through these same
vertices. Therefore a;,a;,,...,a,,4,,, and the labels of the edges
connecting them in [R, S] are also in S. In particular, the edge connecting
a, and a,,,isin[R,S],s0 b, €S.

But b, is in the same component of [R, S] as b, and a;. Therefore
there is a path in [R,S] from b, ,, to b,. Referring to the graph
[R, Z(R)], we observe that the only path from b, to b, in [R, Z(R)]
and, hence, in the subgraph [R, S], passes through every vertex of B.
Therefore, all the vertices in B are also in S, as well as the labels of the
edges connecting them in [R, S]. In particular, the edge connecting b, and
b, isin [R, 8], s0 ¢; € S.

But c, is in the same component of [R, S] as c,, , ;. Therefore there is a
path in [R, §] from ¢, to c,,, ;. All the vertices in C are also in S, as well
as the labels of the edges connecting them in [R, S]. In particular, the edge
connecting ¢, and ¢, is in [R, S], so a, € S. Therefore, there is a path
from a, to a,,,; in [R, S]and all the vertices in A4 are also in S. We have
now shown that § =.%(R), giving a contradiction.

Case 2. x € C. Let x = c;. The vertices c; and c,,,; are in the same
component of [ R, S]. Therefore, there is a path in [R, S] from c; to ¢, , -
This is only possible if ¢;, ¢;, ¢,--.,c,, and the labels of the edges connect-
ing them in [R, S] are also in S. In particular, the edge connecting ¢, and
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Cm+y isin[R,S]), so a, € S. Hence a,, ., is not the only element of A4 in
S. Referring to the first case we obtain a contradiction.

Case 3. x € B. Let x = b,. The vertices b, and b, are in the same
component of [R, S]. Therefore there is a path in [R, S] from b, to b;.
This is only possible if b,,bs,...,b, — 1 and the labels of the edges
connecting them in [R, S] are also in S. In particular, the edge connecting
b, and b, isin [R, S], so ¢, € S. Hence, ¢, ., is not the only element of C
in S. Referring to the second case we obtain a contradiction. |

We define the set R(n) for n > 3, as follows:
If n = 0[mod3] then put m = n/3 and R(n) = R,.
If n =1 [mod3] then put m = (n — 1)/3 and R(n) = R,.
If n = 2 [mod 3] the put m = (n + 1)/3 and R(n) = R,.
In all three cases, R(n) has n triples.

THEOREM 3. Given any n > 3 there is a consistent set of n rooted triples
that is not closed even though every proper subset is closed. Thus there is a
rooted triple rule of order n that cannot be derived by repeated application of
rules of order less than n.

" Proof. Put R =R(n) and let R' be any proper subset of R. We use
Proposition 11 to prove that R’ is fully closed. Let S C.Z(R):(S| = 4.
Note that Z(R') CZ(R).

Suppose that Z(R’) # Z(R). By Lemma 3 the graph [R, S] has at least
three components. Now [R', S] is a subgraph of [R, S] with the same
vertices, so it must also have at least three components.

In a similar way, if Z(R') =Z(R) and § #.Z(R’) then [R’, §] has at
least three components.

Finally, if Z(R) =(R) and § =%(R’) then [R’, §] is a subgraph of
[R, #(R)] with the same vertices. Examining the diagram of [R, Z(R)] in
Fig. 9 reveals that any such subgraph has at least three components.

By Proposition 11, R’ is fully closed. Now R is consistent by Lemma 3.
We show that R is not closed. The graphs [R U {a,c,|b,}, Z(R)] and
[RU{b,c,la;}, #(R)] are both connected so by Theorem 2 the sets
R U {a,c,|b,} ad R U {b,c,la,} are inconsistent. Hence R + a,b|c,, even
though a,b,lc, & R.

It follows that R + a,b,lc, is a rule that cannot be reduced to repeated
application of rules to subsets of R. |

Theorem 3 can be reformulated in terms of quartets, thereby proving
Dekker’s original conjecture [7]. First we introduce an important link
between sets of rooted triples and sets of quartets.

Suppose we have a rooted tree T. Let 7, denote the unrooted tree
obtained by adding a new leaf adjacent to the root. This procedure gives a
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bijection between rooted trees and unrooted trees with a leaf p. Using the
same principle with a rooted triple ablc if and only if 7, is compatible with
ab|cp. This correspondence has a number of useful properties.

PROPOSITION 13. Let R be a set of rooted triples. Let Q be the associated
set of quartets:
0 = (lzp: iz €R).
Then

1. (Q) ={T,: T € (R}

2. Q is consistent if and only if R is consistent.
3. If Q is closed then R is closed.

4. If Q + ablcp then R + ablc.

Proof. For (1) and (2) we observe that a tree T is compatible with R if
and only if 7, is compatible with Q.
(3) If Q is closed then, by Proposition 4, there are binary trees

1 k
T,....T, such that

v

0 = (1) 0 -0 a(})

Now, for any rooted tree T, r(T) = {ablc : ablcp € q(T,)}. Because all the
quartets in q(T)) N -+ N q(T}) share leaf p it follows that Q =
{ablcp : ablc € r(TY) N -+ N r(T*)}. Hence,

R=r(TY N - nr(TH

and so R is closed by Proposition 4.
(4) If Q + ablcp then ablcp € ¢(T) for all T, € (Q). Hence by 1),
ablc e (T)VT € {(R),and so R +ablc. 1

Thus, if a set of quartets all share one leaf, one can convert the set into
a corresponding set of rooted triples and determine in polynomial time
whether or not the quartets are consistent.

To extend Theorem 3 to quartets, we take the set of rooted triples R;
used to prove the rooted triple case and convert it into a set of quartets
Q,, as described in Proposition 13. Unfortunately the unrooted analogue of
Theorem 3 does not follow directly because the converse of Proposition
13(3) is not true. For example, {ablc, ab|d} is a fully closed set of rooted
triples, but {ablcp, abldp} is not a closed set of quartets.

Instead we use a further property of rooted triples.

LEMMA 4. Let R be any consistent set of rooted triples‘and suppose that
R U {ablc} and R U {ab|d} are both consistent. The R U {ablc, ab\d} is also
consistent.
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Proof. Let S be any subset of #(R) U {a, b, ¢, d}. The sets R U {ablc}
and R U {ab|d} are both consistent, so by Theorem 2 the graph [R U
{ablc}, S] and the graph [R U {abld}, S] are both disconnected.

If a ¢ S or b & S then the graph [R U {ablc, abld}, S] is the same as
the graph [R, S]; so it is disconnected (Theorem 2).

If ¢ ¢ S then the graph [R U {ablc, abld}, S] is the same as the graph
[R U {abld}, §]; so it is disconnected. By symmetry, if d & S then [R U
{ablc, abld}, S] is disconnected.

Finally, if a, b, ¢, and d are all in S, then the graph [R U {ablc, abld}, S]
is the same as the graph [R U {ab|c}, S] with and an extra label d on the
edge (a, b), so the graph is still disconnected. In any of these five cases, the
graph [R U {ablc, abld}, S] is disconnected. Hence, R U {ablc, abld} is
consistent by Theorem 2. |

THEOREM 4. Given any n there is a consistent set of n quartets that is not
closed, even though every proper subset is closed. Thus there is a quartet rule
of order n that cannot be derived by repeated application of rules of order less
than n.

Proof. When n = 1,2 the proof is trivial. If n =3 then a suitable
example is {ablcd, ablef, celdf} [7].

When #n > 3, let R = R(n), where R(n) is defined just before Theorem
3, and construct the set of quartets

Q = {wlzp:xylz € R}.

For example, when n = 1 [mod 3],

Q= {a1a2|b2 P, a2a3lbyp,..., 8y o 1lby sy P,
b,b,lc, p, b, bslc, p,..., b,b,, . \lc,, p,
cicalay pieycslay py..o s CpCiilay p,

am+]b1|cm+l p}

By Proposition 13, Q is closed. We claim that every proper subset of Q is
closed.

Let Q' be a proper subset of Q and let R’ be the corresponding subset
of R. Consider any four leaves a, b, ¢, and d in Z(R’). No two triples in
R have more than one leaf in common so there is at most one triple in R
and, therefore, in R’, with all its leaves in {a, b, ¢, d}. If there is such a
triple in R’ we assume, without loss of generality, that this is the triple
ablc. Hence, there are no triples in R with leaves {a,c, d}, {b,c,d}, or

™
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{a, b, d). Of course, this also applies if there is no triple in R’ with leaves
in {a, b, c, d}. By Proposition 9(1) we have

(1) R U {cdla}, R U {cd|b} are both consistent and

(i) R U {ad|c}, R U {ad|b} are both consistent.

Applying Lemma 4 to (i), the set R’ U {cdla, cd|b} is consistent, so by
Proposition 13(2), the set Q' U {cdlap, cd |bp} is consistent. But
{cdlap, cd|bp} + cdlab, so Q' U {cd|ab} is consistent.

By Lemma 4 and (i), the set R’ U {ad|c, ad|b} is consistent, so by
Proposition 13 the set Q' U {adlcp, adlbp} is consistent. But
{ad|cp, ad|bp} + adlbc, so Q' U {ad|cb} is consistent. Hence, there is no
quartet with leaves {a, b, ¢, d} in the closure of Q.

Thus, to prove that Q' is closed we only need to show now that there are
no quartets of the form ablcp in the closure of Q' that are not already
contained in Q'. If Q' + ablcp then by Proposition 13(4), R’ i ablc. As R’
is closed, this implies that ablc € R', and so ablcp € Q'.

Hence, Q' is closed. We show that Q itself is not closed. Recall from the
proof of Theorem 3 that R + a,b,c,. By Proposition 13(4), Q + a;b,lc, p.
It follows that Q + a,b,lc, p is a rule of order n that cannot be derived
through repeated application of rules with order less than n. |

Remark. An earlier attempt at proving Theorem 3 led to a related
result that for any k > 1 there exists a set of rooted triples that is
inconsistent, even though every subset of size at most k is consistent and
closed. Of course, by Proposition 9(3), if every proper subset of a set of
rooted triples is consistent and closed then the entire set is consistent, so
we cannot expect a full analogue of Theorem 3 to apply here.

Let m = 3k + 1 and put

R3 = {dla2|b1, aza3|b2, ceay am_lamlbm_l,
b,b,lc,, bybslcy,... b, _1b,lc, 1,
ci65lay, cpcslay, . cpiCpla, 1,

a,,b1b,,, bcilc,,}-

m>~m

The structure of R, is revealed by the associated graph [R;, Z(R;)],
represented in Fig. 10.

Using arguments similar to the proofs of Lemma 3 and Theorem 3, it
can be shown that every subset of R of R, with [Z(R')| < m is both
consistent and closed. Hence, every subset of R, with k or fewer triples is
also consistent and closed, and yet the set R, is inconsistent, by Theorem
2 (and Fig. 10). It follows that the set of rooted triple rules of order k or

— X% . . .
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a bm-l ¢ b % m1

m b 1 Cm

FiG. 10. The graph [R5, #(R;)]. The edges are labelled in italics. The graph is connected,
so R, is inconsistent by Theorem 2.

less
but

10.

11.

is insufficient to determine not only the closure of a set (Theorem 3),
also the consistency of a set. This proves another conjecture of [7].
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