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5.1 Introduction

The marginal likelihood is central to Bayesian model selection. It is the nor-
malizing constant in Bayes’ formula, and the Bayes factor used to compare two
models is a ratio of marginal likelihoods. The marginal likelihood is defined
as the expected value of the likelihood with respect to the prior. Methods for
accurately estimating the marginal likelihood in phylogenetics were developed
only recently (Lartillot and Philippe, 2006a; Xie et al., 2011; Fan et al., 2011;
Arima and Tardella, 2012). Two of these methods—thermodynamic integration
(TT; Lartillot and Philippe, 2006a) and the stepping-stone method (SS; Xie
et al., 2011)—allow marginal likelihood estimation when the tree topology
varies, but the most efficient methods to date—generalized stepping-stone
(GSS; Fan et al., 2011) and the inflated density ratio method (IDR; Arima,
and Tardella, 2012)—have thus far remained restricted to estimating marginal
likelihoods for a fixed tree topology. This chapter is concerned with updating
GSS to allow variable tree topology, and the chapter by Wu et al. (Chapter 6)
is concerned with updating the IDR. method to allow variable tree topology.

5.2 The generalized stepping-stone (GSS) method

The goal of the GSS method (Fan et al., 2011) is to estimate the marginal
likelihood,

p(y) = /Q p(y|0)p(6)d6,

where 8 = (6,: g =1,--- ,ng) is a vector of substitution model parameters,
QeR™,andy = (y;: j=1,--+,ny) is a vector of site patterns y; = (y; :
l=1,.--,n) where y;; represents the single nucleotide state observed at site

J for taxon I. The GSS method works by recognizing that estimating p(y) is
equivalent to estimating the ratio c1/cy, where cg is the normalizing constant
for a power posterior distribution of the form

(0) = ©(0) _ [p(y10)p(0)]” po(9)' =7
ca cg '

bp

Note that c; is the marginal likelihood of interest and ¢y is the normalizing
constant for the arbitrary reference distribution po(8). In the GSS method,
¢o = 1 because py(0) is assumed to be proper.

The ratio r = ¢1 /¢ is equivalent to following product of ny ratios,

Lo _ [ Chuy1 (_%) <Cﬁ>
co CBup1 ) \Chup_a s ) \cpo )’
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where By = k/nk, k=0, -+, ng. Each individual ratio cg, /cp,_, composing
this product can be estimated accurately using importance sampling, w1’rh
¢p,_, serving as the importance distribution. Given MCMC samples { Bm .
i=1,---,n} from pg, ,(6), r = cs,/cp, ., may be estimated as follows (Fan

et al., 2011):
; Br—Br—1
(r (i}
g [l )
Po (9;(31] .)
Numerical stability is improved by factoring out the largest term,

(i) (
P (Y|g{i‘¢ 1) (9;;1, 1)
N = max
1<i<n o (B}i: )

yielding the following estimator of the log marginal likelihood:

k=1
Z (B — Br—1) log k]

i‘f’g Ly (oo ()
1t

=1 NiPo (9,3‘ ,)

In Fan et al. (2011), the topology was fixed and po(@) had the same form
as the joint prior distribution, with individual components adjusted so that
their means and variances matched the corresponding sample means and
variances from a pre-existing posterior sample. For example, two parameters
may be estimated for the K80 model applied to just 2 sequences: the transi-
tion/transversion rate ratio, x, and the edge length, v (evolutionary distance
between the 2 sequences). Assume that the joint prior density is a product of
two Gamma densities (one for v and the other for ). If the marginal posterior
distribution of ¢ has sample mean = 0.02 and sample variance = 0.0002, and
the marginal posterior distribution of k has sample mean = 4.0 and sample
variance = 0.2, the reference distribution density would be a product of a
Gamma(2.00, 0.01) density (for ) and a Gamma(80.00, 0.05) density (for ).
Here, we generalize GSS further by incorporating the tree topology into the
reference distribution.
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5.3 Reference distribution for tree topology

In the previous discussion, 6 included all model parameters, including edge
lengths. The fact that edge lengths are specific to a particular tree topology T
requires modification of notation: v is now a vector of edge length parameters
specific to tree topology T', and 6 now includes all other model parameters.
The total parameter space Q € R™ ™™  where n, is now the number of
non-tree-specific model parameters and, for unrooted tree topologies with n,
tips,
(2 —5)!

273 (1 —3)1

ng = 2n;—3 (edge lengths/tree topology).

ng (number of tree topologies),

The GSS method achieves its greater efficiency (over the SS method described
by Xie et al., 2011) by using a reference distribution that is closer to the
posterior distribution than the prior. As pointed out by Fan et al. (2011),
maximum efliciency is obtained if the reference distribution equals the posterior
exactly, in which case 1 MCMC sample is sufficient for estimating the marginal
likelihood. While this maximum efficiency requires exact knowledge of the very
quantity being estimated (the marginal likelihood) and is thus unobtainable, it
is desirable to choose a reference distribution that is as similar to the posterior
as possible. In addition to being close to the posterior, the reference distribution
must be normalized because the GSS method assumes that ¢y = 1. Finally,
the reference distribution should ideally allow direct sampling (rather than
requiring Metropolis-Hastings updates).

In the next section, we describe a reference distribution that possesses
all of these desirable properties, and we present an algorithm for sampling
trees from this reference distribution. The proposed reference distribution,
po(T,vr,8) = n(T)f(vr|T)f(0), is parameterized using a sample from a
preliminary MCMC analysis, called the pilot run, exploring the posterior
distribution. The goal is a distribution that samples trees roughly in proportion
to the posterior distribution but does not rule out trees not visited in the pilot
run. The general approach is:

1. draw a tree topology, T, from a distribution, =(T), over all n;
bifurcating topologies (Section 5.3.1);

2. draw vr, a vector of n, edge lengths, from f(vr|T) (Section 5.3.2);
and

3. draw substitution model parameters, 8, from f(6) (Fan et al., 2011).

5.3.1 Tree topology reference distribution

Let a tree topology T' = (V, E) comprise a set of vertices, V = {v : v =
1,--+,L}, where L = 2(n; — 1) for unrooted and L = 2n; — 1 for rooted trees,
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and a set of edges, E = {(3,7) : 1,7 € V,i < j}, where i and j are the vertices
at the ends of the edge (4, j). Vertices are ordered such that for each edge (%, 5),
j is the parent (i.e., closer to the root) of i. For unrooted trees, the vertex
chosen to represent the root is arbitrary and may even be a vertex of degree 1
(i.e., a leaf vertex).

The procedure for generating the topology requires the specification of
a focal tree topology, T%, and split probabilities for every split in 7. This
collection of splits will be denoted S(T™), and the split probability for split s
will be denoted p(s).

In practice, T* will be a fully resolved tree topology with high posterior
probability based on the pilot run — the MAP (maximum a posteriori) tree,
for example. If 0 < p(s) < 1 for every split in T, then the procedure outlined
below will specify a probability distribution over all n; possible tree topologies.
To guarantee this, we can base p(s) on the frequency of split s in the pilot run.
For example, if split s was sampled n, times out of a total pilot run length n,
and if s partitions the n; taxa into two subsets of size n1 and ny (n1 +ng2 = ny),
then

« 20y —3)! (2n, — 3)!
s T gm2(y, —2)l | 2 2(ny — 2)1
s+ (05 /1 )e
p(s) = -ﬁa (5.1)

where € is a small fraction of the MCMC sample size (e.g., € = 0.0ln) and
n%/n; is the induced prior on split s given a prior distribution that places
equal weight on all possible unrooted tree topologies.

5.3.1.1 Tree simulation

Algorithm TopoGen describes how to generate a tree topology using the
focal tree T and split probabilities for every split in S(7™). The algorithm
chooses which of the splits in S(7™) to add. Because the splits are mutually
compatible, they can be combined into a (possibly unresolved) tree. Finally, all
polytomies are resolved by drawing a topology for their subtree, and rejecting
any resolution of that portion of the tree that includes splits found in S(T™).

Figure 5.1 illustrates simulation of a 6-taxon tree topology using the
TopoGen algorithm. In the example illustrated, S(T™*) comprises 3 splits,
2 of which, by chance, are included in S(T, )}, leaving T,, with a single polytomy
of degree 4 at node v. The 4-taxon unrooted tree whose tips are vertices in A(v)
has 3 possible resolutions, which are shown along the bottom of Figure 5.1.
One of these possible resolutions (left) is invalid because it contains a split in
T*. One of the 2 remaining trees would be returned by the TopoGen algorithm
with probability 0.5.
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Figure 5.1: An example application of the TopoGen algorithm for a 6-taxon
case.

5.3.1.2 Tree topology reference distribution

Let S(T) be the set of splits displayed by T that are members of the set S(T™*).
Let T,, denote the (potentially nonbinary) tree that displays only those splits
that are in S(T,,) (see TopoGen line 5). The probability of the tree topology
component of the reference distribution is

m(T) = Pr(T|p, S(T*)) = Pr(Tulp, S(T*)) Pr(T| T, S(T™)). (5.2)

The first term, Pr(Ty,|p, S(T*)), corresponds to lines 1-5 of the TopoGen
algorithm, and equals the product of the probabilities of selecting each of the
non-trivial splits found in T;, multiplied by the product of the probabilities of
not selecting the other splits. For split s, let I,es(r,) = 1 if s € S(T,) and 0
otherwise. Then, we have

Pr(T,|p,S(T*)) = H p(s)Tresmu (1 — p(s))r ~sescru), (5.3)
s€S(T™)

From the fact that € > 0 and the definition of p(s) in (5.1), 0 < p(s) < 1 and
therefore 0 < Pr(T,|f) < 1. The independence of the probability terms in (5.3)
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Algorithm 1 TopoGen: Generate a tree topology using split selection proba-
bilities.
Require: S(T*), a set of compatible splits, and function, p, that maps each
split in S(T*) to a probability that the split will be included in the tree.
S(Ty) « 0
for all s € S(T™) do
With probability p(s), add s to S(Ty,)
end for
: Produce the tree T that displays the splits in S(7T.,) (This tree, without
the modifications below, will be referred to as T),.)
- while T is not fully resolved do
7. Randomly select a vertex, v, from T that is not fully resolved (deg(v) > 3).
Let A(v) be the set of vertices that are adjacent to v; ie., A(v) =
{a:(i,7)e B,ae{i,j},vedij},a#v}

8:  Treat the vertices in A(v) as leaves and randomly choose tree topology,
T A(v), for them from a uniform distribution over all fully resolved un-
rooted trees with | A(v)| leaves (thus replacing the polytomy, v, with a
set of vertices each of degree 3).

9: If any of the newly added splits (splits that correspond to internal
edges in T 4()) are in S(T*), then collapse T4,y back into a polytomy
(returning the tree to its original state before T 4(,) was added).

10: end while
11: return T as the simulated tree and S(Ty,) as the set of splits from S(T™)
which are displayed by T

A

2]

reflects the fact that split selection in line 3 of the TopoGen algorithm does

not depend in any way on splits already chosen to be included in set S(T3,).
The second term in #(T), Pr(T\T,,, S(T™)), corresponds to lines 6-10 of

the TopoGen algorithm. Let V(T,,) denote the set of unresolved vertices in T,:

V(T,) = {v:veT,,deg(v) > 3}.
Let A(v) denote the vertices that are adjacent to vertex v:
A(w)={a:(i,j) € E,a e {i,j},ve{i,j},a#v}.

For each vertex v in V(T,,), we can easily identify the set of vertices A(v). For
z € A(v), let z* be the corresponding vertex in T*.

Let Tj‘(v) denote the tree that would be obtained from T™ by deleting
vertices and edges such that A(v) is the leaf set of the new tree. The rejec-
tion step in TopoGen guarantees that the polytomy-breaking portion of the
algorithm is equivalent to drawing from a discrete uniform distribution of all
of the trees with leaf-set A(v) that share no splits with T7,,. Bryant and
Steel (2009) provide an algorithm for computing ¢,(T"), the number of fully
resolved unrooted trees that share exactly s splits with tree topology T'. Using



102 Bayesian Phylogenetics: Methods, Algorithms, and Applications

their notation, the number of trees with leaf-set A(v) that share zero splits
with Tj\(v) is qg(Tz(v)). The algorithms presented below as “Preprocessing For
Count Max Diff” and “Count Max Diff” were devised by one of us {DB); they
provide a more efficient method of calculating qg(Tj(U)).

Algorithm 2 Preprocessing for Count Max Diff: Preprocessing steps for
algorithm “Count Max Diff.”

Require: T is a binary tree with n leaves rooted at an internal vertex vy,
{Pre-processing}

1 b[0] « 1

2 for k=1,2,...,(n—-3) do

3 blk] <= (2k 4+ 1)blk — 1] {b[k] = number of binary trees on k + 3 leaves}
4: end for

5. for v in a post-order traversal of T do

6: if v is a leaf then

7 nlv] + 0

8: else

9: let vq,vo be the children of v

10: n{v] < n[vi] + n[va]+ number of children of v that are internal
11: {n[v] is the number of internal edges below v}

12:  end if

13: end for

N (T, T*) is the number of trees that are resolutions of T}, and contain no
splits in S(T™) other than the splits S(T},) that can be found by considering the
products of the number of all relevant resolutions around the set of unresolved
vertices, V(T,,):

N(TuT)= [] o@i, (5.4)
1€V(T.)

Because the TopoGen algorithm chooses uniformly from these trees,

1
P ST = Ny (5.5)
Substituting into (5.2) yields:
sopiey P(8)TeEsC (1 — p(s)) 1 Leesrrn
Pr(T|f, S(T*)) = HsEb(I )P( ) ( p(s)) | -

N(T,,T*)

To evaluate the probability of an arbitrary tree, T', (a tree for which T, is not
available beforehand), let T,, equal the strict consensus of T' and T*.

An example calculation of the probability of a 6-taxon tree T is illustrated
in Figure 5.2. Tree T, represents the strict consensus of T' and T*, and tree
T:t( » equals T* with all vertices pruned except those corresponding to vertices

in A(v) and rooted at internal node v. Results of applying the algorithms
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Algorithm 3 Count Max Diff: Count the number of binary trees at the
maximum RF distance from a focal tree

1: for vertex v in a post-order traversal of T do

2:  if v is internal with no children that are internal then
3: flv,0] «1

4: else if v has one child v; that is internal then

5 fl,0] < = Sk flor, )

6: for k =1,2,...n[v] do

7: v k] < 2k + 1) flvr, k — 1]

8: end for

9: else if v has two children vq, vy that are internal then
100 F e Y g, g

11: Fy « Y0 £y, 4]

12: flv,0] « F1 x Fy

13: for k=1,2,...n[v] do

14: flv, k] <0

15: end for

16: for k=1,2,...(n[v] + 1) do

17 flv, k]  flv, k] — Fy x flva, k —1] x (2k + 1)

18: end for

19: for k=1,2,...(nfvi] +1) do
20: flv, k] < flv, k] — F2 x flo1,k — 1] x (2k + 1)
21 end for
22: for k1 =1,2,...(nfvi] +1) do

23: for kg = 1,2,...(nfvp] +1) do

24; k<« ki +ky

25: flo k) flo, k] + flor, by — 1] % flva, ks = 1] X g
26: end for

27 end for

28: end if

29: end for

30: return ‘ZZ[__US] flvo, k]’

“Preprocessing For Count Max Diff” and “Count Max Diff” are shown beside
internal nodes of T::t( ) and the calculation of the probability of tree T is given
at the bottom.

5.3.2 Edge length reference distribution

An edge length reference distribution can be constructed using a sample from
the MCMC pilot run. Let B = {s : 15 > Nnin} be the set of splits having
sample size at least Ny in the pilot run. The probability density of the edge
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5 6
\// split 1234156 in T

CIle S ET3C S ——

split 1231456 not in T =

N(T, T7) = [[v,0] + fl, 1] =2
Pr(Tolp, S(T*)) = (0.9)(0.8)(1 ~ 0.7) = 0.216
=1 Pr{T|T,)) = 1/N(T\, T*) = 0.5

fl;{-“i” Y Pr(Tp, S(TT)) = (0.216)(0.5) = 0.108 1

Figure 5.2: Calculation of Pr(T'[p, S(T™)) for a 6-taxon example.

length v, corresponding to split s is

Fvs) = Gamma(as, by) if s e B,
* 71 Gamma(a.,b.) otherwise,

where a, and b, are split-specific shape and scale parameters of a Gamma
distribution fit to the marginal posterior distribution of v, from the pilot run,
and a. and b. are the shape and scale parameters of a Gamma, distribution fit
to the marginal posterior distribution of edge lengths v. associated with any
split not in B. (The choice of a Gamma distribution here is arbitrary, and could
be replaced by a Lognormal distribution, or any other univariate probability
distribution with support (0,00).) The edge length reference distribution
f(vr|T) may now be defined as:

frlD) = ] fw.).
seS(T)

The value Npin should be chosen large enough to provide reliable estimates of
s and oy.

5.3.3 Comparison with CCD methods

Larget (2013) and Hohna and Drummond (2011) use conditional clade distri-
butions (CCDs) to provide approximations to marginal posterior distributions
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of tree topologies. Both approaches use a preliminary sample from the poste-
rior distribution to estimate CCDs and, from those, allow estimation of the
marginal posterior probability of an arbitrary tree topology. Larget’s method
improves upon Hohna and Drummond in being more accurate and not requiring
normalization. The reference distribution reported here differs from both of
these CCD methods in allowing simulation and calculation of the probability
of tree topologies having conditional clade relationships not sampled in the
preliminary pilot run. Our method is far less accurate than Larget’s approach
in general, but reference distributions used for stepping-stone can provide
efficiency for marginal likelihood estimation even if not providing the most
accurate approximation to the posterior distribution of trees. Nevertheless,
development of an approach based on Larget (2013) that allows construction
of an irreducible Markov chain is well worthy of future effort.

5.4 Example

Lewis and Trainor (2011) obtained rbcL chloroplast DNA sequences of 6 green
algae in the genus Protosiphon and two closely related genera in order to identify
the lone surviving green alga in soil kept dry for 43 years. The phylogeny
of these 6 taxa provides a good test of variable-topology marginal likelihood
estimation methods because the posterior distribution is not dominated by a
single tree topology.

5.4.1 Model details

A general time reversible (GTR) substitution model (Lanave et al., 1984; Tavaré,
1986) allowing invariable sites (Reeves, 1992) and discrete-gamma among-site
rate heterogeneity (Yang, 1994b) was used to model evolution of DNA sequences
along edges of the tree. The GTR model has 8 free parameters (3 equilibrium
relative nucleotide frequencies and 5 exchangeability parameters), with 2
more parameters added to model among-site rate heterogeneity (proportion
of invariable sites and discrete gamma shape parameter). Restrictions were
placed on these 10 parameters to create a total of 12 different models. An
additional 12 models resulted from partitioning the data by codon position.
Noninformative Dirichlet distributions were used as priors for relative nucleotide
frequencies and exchangeabilities, with a noninformative Beta distribution
used for the proportion of invariable sites. An Exponential(1) distribution
was used as the prior for the discrete gamma shape, and each edge length
was assigned an independent Exponential prior distribution with mean 0.1.
The prior probability for each tree topology was 1/105, where applicable (i.e.,
discrete uniform distribution over all possible unrooted tree topologies). For
partitioned models, a noninformative relative rate distribution (eq. 3 in Fan
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Protosiphon_bolryoides UTEX_B461_JN880464

Protosiphion_botryoides UTEX 47_JN8B0O466
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Protosiphon_botryoides_f_parieticola_UTEX_46_JN880465

Chlamydopodium_vacuolatum_EF113426

0.01

Figure 5.3: Tree topology with maximum marginal likelihood.

et al., 2011) was used as the prior for subset relative rates. In this study, all
parameters of the relative rate distribution equaled 1, resulting in the constant
relative rate density 2pipe = 2/9 (where p1 = 1/3 and py = 1/3 are the
proportions of sites in the 1st and 2nd position subsets, respectively).

5.4.2 Brute-force approach

It is not possible to simulate sequence data with a known marginal likelihood,
and it is not possible to compute the marginal likelihood analytically for
phylogenetic datasets of any reasonable size or complexity, so we must resort
to other approaches to test the accuracy of particular estimation methods.
Because estimating the marginal likelihood with GSS has been demonstrated
to be accurate when the tree topology is fixed, one way to test the method
proposed here is to estimate the total marginal likelihood from individual fixed
tree results. The total marginal likelihood for this 6-taxon example may be
written
105

p(y) = ZP(YIC’})I)(E),

where T; is the ith tree topology (out of the 105 tree topologies possible for 6
taxa), p(T;) = 1/105 (discrete uniform prior distribution), and

p(y|T:) = / p(y|T;, 0)p(6IT:)d6

is the conditional marginal likelihood given tree T;.
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Figure 5.4: Box plots showing mean, 256%, and 75% quantiles and extremes for
the 105 log marginal likelihoods estimated for each of the 24 models.

Figure 5.4 provides box plots of log p(y|T;) across the 105 tree topologies
for each model. Partitioning sites into three subsets according to codon posi-
tion provides the most dramatic increase in model fit; however, adding rate
heterogeneity (+I, +G, or +I4+G) to any unpartitioned model also substan-
tially improves its fit relative to the base model (JC, HKY, or GTR). Despite
differences in fit, the tree topology in Figure 5.3 (and Fig. 4 of Lewis and
Trainor, 2011) was best according to log marginal likelihood for every one of
the 24 models tested.

With estimates of all 105 conditional marginal likelihoods, it is possible to
very accurately estimate the tree topology posterior distribution:

po(Tly) = Py T)p(T)
ply)

Figure 5.5 is a bar plot of the tree topology posterior distribution ordered left
to right by Robinson-Foulds symmetric difference (RFSD) distance (Robinson
and Foulds, 1981) from the best tree. The best tree has posterior probability
0.584, the 6 tree topologies 1 nearest-neighbor interchange (NNT) away from
the best tree (RFSD distance = 2) collectively contributed 0.304 posterior
probability, the 24 tree topologies 2 NNI swaps away (REFSD distance = 4)
collectively account for 0.112 posterior probability, and none of the 74 tree
topologies with the maximum RFSD distance (6) from the best tree topology
contributed appreciably to the posterior.
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Figure 5.5: Bar plot of the tree topology posterior distribution. The 105-tree
topologies are grouped by their Robinson-Foulds symmetric difference (RFSD)
distance from the best tree (first bar on left). Groups are separated by vertical
dotted lines, and number indicate the RFSD distance for each group.

5.4.3 GSS performance

The variable-topology GSS method performed well over all 24 models tested.
Table 5.1 ranks models from best to worst according to their (brute-force)
marginal likelihood estimates. For each model, the GSS estimate is given
alongside the brute-force estimate, and the column labeled A is the difference
(GSS estimate minus brute-force estimate). Most absolute differences are less
than 0.1 log unit.

Not surprisingly, the accuracy of both the GSS and brute-force approaches
depends on the quality of the samples obtained during the stepping-stone
MCMC simulation, and both can deviate by several log units from the correct
value if care is not taken to ensure that autocorrelation is minimized for
all parameters and for all 8 values. One benefit of using GSS over SS is
that in GSS the MCMC simulation crawls between the posterior and the
reference distribution, which is similar to the posterior in many respects. The
expectation is that an MCMC simulator tuned to the posterior still mixes
well when exploring the reference distribution. In contrast, SS crawls from the
posterior to the prior. Given that the prior is typically much less informative
than the posterior, considerable adjustments must be made to the tuning of
the MCMC simulator as the analysis proceeds. Proposals that are bold for
the posterior represent tiny steps as the MCMC nears the prior. Despite our
expectations, we found that some adjustment to tuning was necessary even
for GSS. The reference distribution used is essentially the prior fit to samples
drawn from a pilot study of the posterior. This approach matches means and
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Table 5.1: Comparison of marginal likelihoods for 24 models estimated using
the generalized stepping-stone (GSS) and brute-force approaches. A is the
difference between brute-force and GSS marginal likelihood estimates. “From
best” is the difference in the brute-force estimate from that of the best model
(GTR+I+G*). Models indicated by an asterisk () partitioned sites by codon
position. All other models used a single model for all sites.

Model GSS Brute force A From best
*GTR4+I+G —2534.57 —2534.66  0.09 0.00
*GTRAHI —2535.59 —2535.57 —0.02 0.91
*GTR+G —2536.69 —2536.75  0.06 2.09
*HKY+I4+G  —2544.49 —2545.04 0.55 10.38
*HKY+I —2546.78 —2546.75 —0.03 12.09
*HKY+G —2548.20 —2548.16 —0.04 13.50
*GTR —2551.09 —2551.10 0.01 16.44
*HKY —2561.10 —2561.13 0.03 26.47
*JCH+I+G —2667.09 —2667.19 0.10 132.53
*JC+I —2668.35 —2668.38  0.03 133.72
*JC+G —-2668.94 —2668.99  0.05 134.33
GTRA+I+G —2680.21 —2680.29 0.08 145.63
GTRA+I —2681.01 —2681.00 —0.01 146.34
*JC —2681.83 —2681.79 —0.04 147.13
GTR+G —2682.38 -2682.73  0.02 148.07
HKY+I4+G  —2712.18 —2712.30 0.12 177.64
HKY+I —2713.28 -2713.31 0.03 178.65
GTR —2714.22 —2714.20 -0.02 179.54
HKY+G —2716.83 —2716.87 0.04 182.21
JC+I+G —2743.19 —2743.56  0.37 208.90
JC+I —2744.48 —2744.59 0.11 209.93
HKY —2747.01 —2746.99 -0.02 212.33
JC+G —2747.44 —~2747.44 0.00 212.78
JC —2776.58 —-2776.52 —0.06 241.86

variances from the posterior in constructing the reference distribution, but fails
to capture correlations among parameters. Such correlations are particularly
strong between certain edge length parameters, and between edge lengths and
rate heterogeneity parameters. As a result, many values sampled from the joint
reference distribution may be quite improbable with respect to the posterior,
and we found that increasing the boldness of some proposals as a function of
5 helped keep autocorrelation low.
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5.5 Summary

This chapter describes a method for generalizing the generalized stepping-stone
(GSS) method to accommodate varying tree topology. The GSS method as
originally described (Fan et al., 2011) was designed for estimating the marginal
likelihood under a fixed tree topology. Systematists, in particular, use Bayesian
methods expressly to estimate the tree topology, and would therefore prefer
to base model comparison on p(y) rather than p(y|T) for some fixed tree
topology T'. The greater efficiency of the GSS method compared to SS (Xie
et al., 2011) is its use of a reference distribution that is close (as measured
by Kullback-Leibler divergence) to the posterior distribution. The SS method
instead uses the prior distribution as the reference distribution, and the prior
is usually quite different than the posterior, usually displaying a much greater
variance.

The primary contribution of this chapter is a proposed reference distri-
bution for trees (topology and edge lengths) that assigns high probability to
topologies containing splits deemed important by the posterior. In addition
to tree topology, edge length distributions are maintained separately for high
{posterior)-probability splits to improve the match between reference distribu-
tion and posterior distribution. The proposed reference distribution for trees
has a known normalizing constant, which is a requirement for any reference
distribution used within the context of GSS.

Marginal likelihoods were estimated for 24 models for a 6-taxon exam-
ple using the variable-topology GSS. The results compared well to marginal
likelihoods estimated using a brute-force approach that involved estimating
the marginal likelihood separately for each of the 105 possible unrooted tree
topologies, then combining these to give the total marginal likelihood. The
method proposed here applies to binary unrooted trees. Adapting the method
to rooted trees and analyses involving polytomous trees (see Lewis et al., 2005)
will require further work.

The GSS method described here is implemented in Phycas version 2.0
(freely available at phycas.org). Python and bash scripts for performing all
analyses reported here are available in the supplementary materials for the
book.
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