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1 Introduction

Spatial structure has played a fundamental role in the evolutionary history of most
organisms and any attempt at reliable phylogenetic inference needs to take this into
account. The real problem is how to do this in practice: how to incorporate sam-
ple locations, present and past geography, and the effect of spatial correlations into
phylogenetic inference. Integrating geography with phylogeny leads one quickly to
a quagmire of difficult modeling and methodological issues, many of which remain
unresolved.

It will come of no surprise to computational biologists that one of the first pa-
pers to develop methodology for model-based phylogeography is by David Sankoff.
His 1972 paper, Reconstructing the History and Geography of an Evolutionary Tree

[28] was, in many ways, 30-40 years ahead of its time. It describes a stochastic
model incorporating both genetics and geography and shows how both geography
and phylogeny can be estimated simultaneously from data. Sankoff’s model cap-
tures important features of a dynamic spatial structure without being bogged down
in a mass of geographic and environmental data. Curiously, the paper has been sel-
dom cited, and almost entirely only within the field of lexicostatistics. It appears
to have been completely missed by the phylogeographers. Our opinion is that the
novelty of ideas and models places this work among the classic early papers of
model-based phylogeography.

In this chapter we review Sankoff’s article and argue that this paper merits revis-
iting. First we consider the problem of modeling geography, outlining the model in
Sankoff’s paper and demonstrating some links with related models. We then con-
sider the interaction of genetics and geography. Sankoff introduces an appealing
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method for reconstructing phylogeographic patterns, one which has analogues in
Markov random field theory. We compare this approach compares to some contem-
porary approaches to phylogeography. We argue that Sankoff’s approach is gen-
uinely different and that it is not without its advantages.

2 Modeling Geography

2.1 Background

There are two key design decisions to be made in any model integrating geography
and genetics [13]. The first is the statistical unit of analysis: does the model describe
individuals, family units, villages, populations, species, or something in between.
The second is the effect of geography on movement between these groups, or more
correctly, on the gene flow between these groups.

The theoretical foundation for the most commonly used migration models in
population genetics is provided by the island models of Wright [32], the stepping
stone models [15] and their generalization to arbitrary migration matrices [3]. Under
these models, the ‘islands’ or subpopulations are fixed a priori. The rate of migration
or gene flow between different islands might be different for each pair, or equal to
a constant, or capturing some aspect of the geographic structure. In many cases
the choice of migration rates is governed more by mathematical convenience than
biological realism.

We note that there are several models which do not break the population up into
discrete chunks but instead consider a distribution of individuals in space. These
have had far less impact than the island-based models. One important reason for
the discrepancy is that it is straight-forward to set up a working discrete popula-
tion model, whereas continuous space models have hidden difficulties. The contin-
uous space model of Malecot [23] appears, at least superficially, to be quite reason-
able and conservative. It is nevertheless internally inconsistent, as demonstrated by
Felsenstein [12].

2.2 A joint model for phylogeny and geography

In Sankoff’s 1972 paper, the (sub)-populations are represented as vertices in a pla-
nar graph or, equivalently, as regions in the plane. Migrations occur at a fixed and
constant rate between populations connected by an edge. There is, however, a ma-
jor difference between Sankoff’s model and others based on networks on the plane:
Sankoff’s model is dynamic. The model includes not only the migration patterns
between contemporary populations; it also describes how these connections change
over time.
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Fig. 1 The splitting processed studied by Sankoff. Initially there is a single region, here repre-
sented by a single region A (on the left) or a single vertex in the adjacency graph (on the right). At
each splitting, a region is subdivided by selecting two edges and joining them with a new boundary
line. The corresponding adjacency (dual) graphs appear on the right.

Initially, there is one region, corresponding to population at the root of the tree.
After each population split (divergence/speciation) the corresponding region is sub-
divided, thereby adding one new vertex to the dual graph describing adjacencies
(Figure 1). This process continues until we obtain one region for every contempo-
rary population. In a way, the model describes a process of successive allopatric
speciations.

A splitting is carried out as follows. A region is chosen uniformly at random.
Two of the edges bounding that region are picked uniformly, and the region is split
in a way that subdivides both edges. In the case that there was only one region,
the boundary of that region is subdivided twice and the points of subdivision are
joined by a new edge, creating two regions (Figure 1). There is considerable scope
for different selection schemes, and Sankoff says as much in his paper.
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One splitting process is illustrated in Figure 1. Initially there is a single region A.
This is subdivided to give two regions A and B. Then B is subdivided, giving three
regions A,B,C, and a further splitting of B gives a map with four regions A,B,C,D.
The adjacencies between these regions are represented by the graph on the right.

One aspect of the model that is not completely clear from the paper is whether
the external region could be split. The process would still be well defined, and these
splittings could model expansion into new territory which lies outside the bound-
ary of the original region A. The adjacency graph would be modified to include a
specially marked vertex representing the external region, with edges to every region
adjacent to the exterior boundary.

In either case, the process captures many aspects of connectivity relating to spa-
tial structure. What is surprising is how much it leaves out. It contains no infor-
mation about region size, or different environments, or even (beyond adjacency)
the shape of the regions. This sparsity of information could turn out to be particu-
larly useful. The model is clearly more believable than, say, models of populations
distributed on a torus, or populations with no spatial structure at all. The model is
clearly less ‘realistic’ than those incorporating landscape simulators and small-scale
geographic niches. However realism in any model is only relative, and a hyper-
realistic model is useless if it is not tractable.

2.3 Properties of splitting

Sankoff’s splitting process produces random planar adjcency graphs. The first nat-
ural question is whether there is anything special about the particular graphs pro-
duced.

To answer this, we start by looking not at the graph, but at the configurations of
regions (or cells) produced by subdivision. Observe that the faces of the adjacency
graph correspond to places where more at least three regions meet at a point, and
that every time this happens, exactly three regions meet at that point. As a conse-
quence all of the faces of the adjacency graph, except perhaps the external face,
are triangular. It is not hold to show that this will always be the case, provided the
number n of regions is at least three.

In the second version of the splitting model we permit splittings of the external
vertex. In this case, all faces of the adjacency graph will be triangular, so that the
adjacency graph (as a drawing) is a planar triangulation. There has been a great deal
of work on these triangulations due to their application in surface visualization [14],
finite element methods [5] and spatial data analysis [22]. The splitting operation of
Sankoff corresponds exactly to vertex splitting; the reverse operation is called edge

contraction.
An edge is said to be contractible if contracting that edge produces a valid trian-

gulation. It can be easily shown that an edge e is contractible if and only if

• e does not lie on any triangle of the graph which is not a face of the graph; and
• The triangulation is not K4 embedded on a sphere.
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Steinitz and Rademacher [30] proved in 1934 that every triangulation of the sphere
(assuming n ≥ 4) can be converted into K4 by a sequence of (valid) edge contrac-
tions. As a consequence, we have that the graphs produced by this version of the
splitting process are exactly the triangulations: planar graphs with triangular faces.

We now turn to the version of the splitting process where splittings of the external
region are not allowed. This change makes the analysis a little more complicated.
The adjacency graph is still planar, and every face except the exterior face is triangu-
lar. The problem of finding valid edge contractions in this case is known as polygon

reduction, a problem with applications to 3D graphics in the gaming industry [24].
Conditions for a valid edge contraction in this instance were established by [14]:

• e does not lie on any non-facial triangle; and
• the triangulation is not K3 embedded in the plane.

An analogue of Steinitz and Rademacher’s result for this version follows from Theo-
rem 3 of [14] (which establishes that the triangle is a subdivision of a triangulation)
and Lemma 4 of [14] (which shows that a subdivision of these triangulations can
be obtained by edge contractions). Hence the adjacency graphs produced by this
version of Sankoff’s process are exactly the plane graphs with all triangular faces
except the exterior face (also called simplicial surfaces [14]).

There are many more avenues for mathematical investigation here. The splitting
model generates a distribution on triangulations; what is that distribution? Is it pos-
sible to compute, in polynomial time, the probability of a given planar triangulation?
This question has a similar flavor to analyses of processes generating random trees
[29].

3 Modeling Genetics

3.1 The model

The genetic model described in Sankoff’s paper is essentially the infinitely many

alleles model, first introduced by [15]. It assumes a set Γ of genetic sites, and at
each site the populations (regions) have a particular state (allele). Every mutation
produces a new and unique type, and the only information available is whether two
individuals carry the same type of allele at a site. There is a further assumption that
there is no variation within each region (polymorphism). This is akin to assuming
that the population sizes are small so that any mutant is quickly lost or fixed. A
similar assumption is made by [27].

There are three distinct processes contributing to gene dynamics in the model.
First, mutation: for each region, mutations occur at a fixed rate, and each mutation
creates a new and distinct genetic type. Second, migration: at a fixed rate the type
of a region is transferred from one of the adjacent regions. Random processes of
this form are examples of Markov random fields, and appear in numerous guises
in fields ranging from statistical physics to epidemiology. Kindermann and Snell
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[16] credit the first work on Markov random fields to mathematicians in the former
Soviet Union (e.g. [10]). Their appearance in the West coincided roughly with the
publication of Sankoff’s paper.

Of course the connection with Markov random fields only applies between split-
ting times, when the adjacency graph remains constant. This third process, splitting,
adds a fairly novel twist to the analysis (compare the ‘splitting operator’ of [31]).

For the moment, consider the dynamics of an individual site. The relevant state
information at a time t is then just the partition of the populations into types. We
can analyze the model as a Markov chain with a state space equal to the set of par-
titions. A mutation takes a population and puts it into a class by itself. A migration
(borrowing) transfers a population from one class to another. A splitting duplicates
an element contained in one of the classes.

3.2 Dynamic similarity

The approach taken by Sankoff is to bypass computations over the space of parti-
tions, and instead concentrate on the dynamics for pairs of populations. The result-
ing calculations are still exact and take account of all populations simultaneously,
they just don’t capture all of the higher-order dependencies between populations.

Let Xt ,Yt be two populations at some time t in the past, where t ranges from
t = 0 (the present) to t = −T (time of the first splitting). Let s(Xt ,Yt) denote the
proportion of sites at which Xt and Yt share the same state. Sankoff’s calculations
assume that the set Γ of sites is large enough that s(Xt ,Yt) coincides with the prob-

ability that the populations have the same type at a particular site, or equivalently
that s(Xt ,Yt) is the expected proportion of sites at which the two populations have
the same state.

A system of differential equations can be derived for s(Xt ,Yt) by means of a
case-by-case analysis. For the moment, just consider time periods between popula-
tion splits, so that the only processes to analyse are mutations and migrations. For
each region X , let NX denote the set of neighboring vertices (excluding X itself) and
let k(X) = |NX|. Let r denote the rate of mutation (loss) of an allele at a single locus
and a the rate at which a region X adopts a type (borrows) from one of its k(X)
neighbors.

We then have
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ds(Xt ,Yt)

dt
=−2rs(Xt ,Yt) (1)

+(1− s(Xt ,Yt))a(1/k(X)+1/k(Y)) (2)

+
a

k(X)−1 ∑
Z∈NX−{Y}

(1− s(Xt ,Yt))s(Yt ,Zt)− s(Xt ,Yt)(1− s(Yt ,Zt))

(3)

+
a

k(Y)−1 ∑
Z∈NY−{X}

(1− s(Xt ,Yt))s(Xt ,Zt)− s(Xt ,Yt)(1− s(Xt ,Zt)).

(4)

Here (1) corresponds to the loss of identity following mutation in X or Y ; (2) follows
from the gain in identity when X or Y obtain a state from each other; (3) corresponds
to the event when a state is transferred from a neighbor of X to X which either
restores or removes identity1; while (4) is the symmetric case for Y. Unaware of
Sankoff’s work, Bryant re-derived analogous equations in [6], a paper modeling
network breaking in the Polynesian languages.

Sankoff showed that if we are provided with the adjacency graph at time 0 (the
present) as well as the quantities s(X0,Y0) for all X,Y, the entire history of split-
tings can be reconstructed. The proof works by induction on the number of popula-
tions. Let U,V be the regions created in the most recent split, and suppose that this
occurred at time τ . We then have

• s(Uτ ,Vτ) = 1;
• s(Xτ ,Yτ)< 1 for all X ,Y not resulting from a split at time τ;
• s(Xt ,Yt)< 1 for all t > τ and all X ,Y including U,V.

The case of multiple splittings at exactly the same time can be dealt with by picking
one pair arbitrarily.

The values s(Xt ,Yt) can be computed for t ≥ τ by solving the initial value prob-
lem (1)–(4) with initial values s(X0,Y0). In this way, U,V and τ can be identified
as well as all of the values s(Xτ ,Yτ). Replacing U and V by a single population we
continue to obtain the second most recent splitting, and so on.

The analysis in Sankoff’s paper assumes that the rate of mutation r and the rate
of adoptions a are known. It is clear that we cannot identify both parameters given
just the similarity values s(X0,Y0): if we scale the rates and times simultaneously
we can obtain identical similarity values. In fact, the situation is even more difficult.
It was shown in [19] that in some cases one of these rates cannot be identified even
though the other is known.

Sankoff makes the convenient (and acknowledged) assumption that the probabil-
ities of identity s(Xt ,Yt) are known without error. Any serious application of the
approach to real data will require some degree of uncertainty quantification. In a pa-
per on Polynesian languages [6], Bryant used parametric bootstrapping to estimate
variance in parameter estimates. Unfortunately, parametric bootstrapping is compu-

1 A typo in Sankoff’s original version of (3) was pointed out, rather excitedly, by [11].
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tationally inefficient, and it can be problematic when faced with substantial model
error on top of sampling error.

3.3 Multiway similarities

One way to potentially address the problem of parameter estimation and uncertainty
quantification is to follow the lead of Markov random field theory (e.g. [16, pg 76])
and compute probabilities of identity for not just pairs, but triples and larger sets of
regions.

Let Rt denote the set of regions present at time t. For Xt ⊆ Rt we let s(Xt)
denote the probability that all of the regions Xt ∈ Xt have the same state at a site.
Hence s({Xt ,Yt}) = s(Xt ,Yt) for all pairs Xt ,Yt . We note that if we define

δ (X ) = 1− s(X )

for all subsets X then (for generic t) the function δ satisfies the properties of a
diversity [7], that is, δ (X )≥ 0, δ (X ) = 0 if and only if |X |= 1 and

δ (X ∪Z )≤ δ (X ∪Y )+δ (Y ∪Z )

whenever Y �= /0. This gives us access to a small, but growing, set of tools and
theorems to aid analysis and computation.

Our main observation here though is that Equations (1)—(4) translate quite ele-
gantly to this new context. Instead of computing probabilities for pairs of regions,
we compute s(Xt) for a set of regions Xt , this being the probability that all regions
in the set have the same type of allele at time t. It is now a straightforward matter to
derive the differential equations for the probabilities s(Xt).

ds(Xt)

dt
=−|Xt |rs(Xt) (5)

+(1− s(Xt)) ∑
X∈X

∑
Y∈NX

a
1

k(X)
s

�
(Xt \{X})∪{Y}

�
(6)

s(Xt) ∑
X∈X

∑
Y∈NX−X

a
1

k(X)
(1− s

�
(Xt \{X})∪{Y}

�
. (7)

Here, (5) captures the rate at which mutations occur within Xt ; (6) captures the rate
by which a migration removes a dissimilar element from within Xt , thereby making
all regions have the same allele type; (7) captures the rate at which migrations from
outside Xt introduce non-identical allele types.

A convenient property of (5)–(7) is that the equation for ds(X )
dt

involves only vari-
ables s(X �) with |X �| ≤ |X |. Extending Sankoff’s approach to triples or quadru-
ples of regions will not generate an exponential explosion in complexity.
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4 Alternative methods for analysis

4.1 The structured coalescent

Given that 40 years have passed since Sankoff’s model was published, we might
expect dramatic progress in the tools we can bring to the analysis. Here we briefly
consider the range of modern approaches which we might use to carry out inference
with the splitting model.

Perhaps the biggest methodological breakthrough in population genetics is due
to coalescent theory, originally published by Kingman [17] but greatly advanced by
a large number of mathematicians and statisticians. Let S denote the sequence data,
G the geography (adjacency graph and splittings) and T the genealogical tree for
a particular site. The tree is affected by both splittings and borrowings. Using the
structured coalescent (e.g. [25]) one obtains a distribution P(T |G) of the tree given
the adjacency graph and splittings. Following a Bayesian analysis, one uses Monte
Carlo algorithms to simulate values from the joint posterior distribution

P(G,T |S) ∝ P(S|G,T )P(G,T )

= P(S|T )P(T |G)P(G).

The posterior distribution P(G|S) follows directly.
One open problem is the calculation of P(T |G): given a splitting process and the

resulting adjacency graph, what is the distribution for a genealogical tree. If the rate
of borrowing or migration is low, then P(T |G) will primarily reflect the tree formed
from the splittings themselves. As the rate of borrowing increases, the distribution
will become more diffuse.

It may be useful to combine the multi-way similarity method of the previous
section with the structured coalescent. Consider a subset X of regions and let L(X )
be the length of a gene tree with tips corresponding to these regions. The probability
of all regions sharing the same trait is the probability of no mutation along the length
of this tree, or e

L(X ). Hence for a random gene tree,

s(X ) = E[eL(X )].

This connection could, for example, be used to check convergence when sampling
gene trees.

4.2 Stochastic diffusion methods

The stochastic diffusion strategy [20, 21] is to rearrange the conditional probabili-
ties, to give
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P(G,T |S) ∝ P(S|G,T )P(G,T ) (8)
= P(S|T )P(G|T )P(T ). (9)

The difference is that we now have to calculate P(G|T ) instead of P(T |G). This
method has been widely used, including several high profile applications (e.g. [4,
26]. The accompanying software produces beautiful graphics depicting phylogenies
on maps.

In itself, (9) is, of course, completely correct, and is a simple consequence of
conditional probabilities. The problem is the computation of P(G|T ). In [20] it is
assumed that computing P(G|T ) is a simple matter of adapting standard algorithms
for phylogenetic characters. Kühnert et al. [18] dub these ‘mugration’ models since
they analyze migrations using models designed for mutations.

They, and a large number of earlier likelihood-based analysis, have made a crit-
ical error in their probability calculations. When they calculate the probability of
the geographic locations on the tree, they assume that the same conditional inde-
pendence underlying likelihood calculations for genetic data also applies for geo-
graphic characters. However by conditioning on a tree they are making an implicit
assumption that all lineages survive to the present.

If you consider an ancestral lineage, the rate of migration to a given island is one
thing, the rate of migration conditional on survival to the present is another. If the
islands (or regions) are small then any lineage is likely to be either lost or fixed.
Hence if one lineage in the tree occupies a particular island it is highly unlikely that
any other lineage will occupy the island at the same time. This conflict breaks down
the conditional independence that is so critical for the calculation of phylogenetic
likelihoods. Furthermore, ignoring these conflicts is essentially equivalent to ignor-
ing the interplay between geographic structure and drift, assuming infinite effective
population sizes within each region.

4.3 Approximate Bayesian Computation

Approximate Bayesian computation (ABC) [2, 8, 9] has grown immensely in popu-
larity, partly because it (at first glance) doesn’t require much specialist mathematical
knowledge to implement and partly because it is possible to set up analyses for ex-
tremely complex models fairly simply.

The general idea is to use simulations in place of likelihood calculations, and
it can be proven that, with sufficient iterations and sufficient summary statistics,
the approach provably converges to the correct posterior distribution. The approach
has a simplicity and transparency which makes it especially attractive. There are,
unfortunately, serious issues in higher dimensional space, though recent techniques
have a great deal of potential [1]. Until these issues are resolved, we suspect that
we will not have the computational power to do more than infer, roughly, even the
smallest splitting history.
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5 Future work

We see two principal methodological advances made in Sankoff’s work. The first is
the idea to model adjacencies not by a single graph, but by a sequence of vertex split-
tings generating a graph. The model uses an abstraction of the spacial component, in
the sense that the vertices in the graph are not given specific geographic locations.
The potential advantage of this could be tractable inferential methods which still
capture aspects of geography essential to phylogenetics.

The second advance is the method for computing pairwise similarities. [3] had in-
vestigated this problem for a general migration matrix, but only derived approximate
results. Sankoff’s approach computes exact probabilities incorporating all regions
simultaneously. We have shown that this extends beyond pairwise comparisons, and
that the approach has not been supeceeded by modern developments, though many
practical computational and statistical problems remain.
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22. Jesús A. De Loera, Jörg Rambau, and Francisco Santos. Triangulations: Structures for Algo-

rithms and Applications. Springer, 2010.
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