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TANDEM REPEATS PARSING PROBLEM

A. A. MATROUD 1,2,∗, M. D. HENDY 3, C. P. TUFFLEY 1, AND D. BRYANT 2,3

Abstract. In tandem repeats, the placement of the boundaries of the repeating mo-

tif is ambiguous when some of the repeating motif extends into the flanking regions.

We refer to alternate boundary placements as alternate parsings of the tandem re-

peat. In the case of approximate tandem repeats, the variations in the motif copies

allow us to estimate a Duplication History Tree (DHT) which describes the possible

evolution of the tandem repeat from a single ancestral motif, undergoing processes

of motif duplication (and possibly deletion) together with nucleotide substitutions.

However different parsings can lead to different DHTs, so we could discriminate

among alternate parsings by selecting the parsing which minimises the parsimony

score of the resulting DHT. We develop a criterion here which acts as a surrogate for

the parsimony score so that the optimal parsing may be selected before the DHT is

derived.

1. Introduction

Several studies have proposed different mechanisms for the evolution of tandem

repeats Weitzmann et al. (1997), Wells (1996). In the case of approximate tandem
1



repeats it is possible to infer their duplication history tree (DHT). This is an impor-

tant step to understand the duplication mechanism that generate them. A number of

algorithms to reconstruct DHT have been introduced in the last ten years Bertrand

et al. (2008); Lajoie et al. (2007); Rivals (2004); Chauve et al. (2008). A crucial ele-

ment in the DHT reconstruction process is to identify the repeat pattern boundaries.

In the literature, researchers used alignment score to decide on the boundaries of the

motif.

Comparing tandem repeats (also called Mapping minisatelites) is the problem of

pairwisely aligning and comparing DNA sequences containing tandem repeats. this

problem was addressed by Sammeth and Stoye (2006); Berard and Rivals (2003);

Behzadi and Steyaert (2003). In order to align two tandem repeats, the repeat

boundaries should be determined previously. Different parsing decisions may lead to

different conclusions. To date, alignment programs arbitrary decide on the parsing.

Example 1 Consider the following sequence which contains an approximate tan-

dem repeat with periodicity 4:

(1) GACCACGAACGTACGAACGTATTA.

There are 4 possible parsings. For each parsing we define a mode motif to be a

sequence where the i−th nucleotide is a most common nucleotide at the i−th site
2



among the segments. If we set the boundary after GACC we obtain

GACCACGAACGTACGAACGTATTA,

with mode motif ACGA. If we shift the frame one nucleotide to the left we obtain

GACCACGAACGTACGAACGTATTA,

with mode motif AACG. In Figure 1 we see minimal DHTs for both these parsings.

Hence, having a criterion that biologically sounds to suggest tandem repeat pattern

boundaries is crucial in the analysis process. We refer to the problem of selecting a

preferred boundary as the parsing problem of tandem repeat pattern. In general

there can be n possible parsings, where n is the motif length.

The flanking region contains repeat copies that contains high number of mutations.

This flanking region misleads in deciding where is the start and the end of the

repeated region. In case a tandem repeats contains n copies with the first and the

last copies are in the flanking region (we are able to observe only a part of the pattern

because of mutations). If these parts of the patterns happen to be the starting part

of the last copy and the ending part of the first copy then the alignment score will

consider n − 1 copies starting at middle of the flanking region (the first copy) and

ending in the middle of the flanking region (the last copy).

In Benson and Dong (1999), the authors suggest a method to select a possible

boundaries base on his model of duplication which consider dynamic boundaries
3



ACGA

GACC ATTA

single duplication
ACGA ACGA

substitution
ACGA ACGT

double duplication
ACGA ACGT ACGA ACGT

(a)

AACG
single duplication

AACG AACG
substitution

CACG AACG
double duplication

CACG AACG CACG AACG
substitution

CACG AACG TACG AACGGAC TATTA

(b)

Figure 1. The DHTs inferred from the two parsings of Example 1.

The parsing (a) has a DHT with two duplications and a single sub-

stitution, whereas parsing (b) the DHT has two duplications and two

substitutions. (In both cases we see these number of events is minimal

for that parsing.) We use the parsimony principle to prefer parsing (a)

over parsing (b) as its DHT requires fewer mutational events.

(duplications may occur on different boundaries). In this paper, we present a new

criterion to select the pattern boundaries base on the assumption that the boundaries

are fixed during the whole duplication process Fitch (1977).

2. Tandem repeats

An exact tandem repeat is a string comprising two or more contiguous exact copies

of a substring X, called the tandem repeat motif.
4



We obtain an approximate tandem repeat by allowing approximate rather than

exact copies of the template motif X. We will refer to each homologous copy of the

motif as a segment. When there is variation among the segments it may be possible

to infer the duplication tree. If the rate of substitution (per segment) is lower than

the rate of duplication, then we should expect some of the segments to be identical.

We take a mode motif (consensus pattern), as being a segment where at each site,

the most common nucleotide at that site among all segments is chosen.

3. Duplication model

Tandem repeats are modeled as a consequence of duplication events interspersed

with single nucleotide substitutions, single nucleotide indels and deletions of one or

more copies of the motif. A duplication event occurs by introducing an additional

copies of the motif from copying of one or more copies of the motif. The number of

motifs copied is referred as the size of duplication. In the simplest case these copies

remain contiguous and oriented in the same direction in the genome.

Example 1:

Consider the following sequence which contains tandem repeat.

(2) TATGTCATGGTTATGGACATGGTTATGGACACGCTCACGCTTATGGTCAAGGTCACGGTCAATA
5



which for the parsing displayed, is an approximate tandem repeat with modal motif

CATGGT. There are six motif variants, in order as ababccdef where

a = CATGGT, b = TATGGA, c = CACGCT, d = TATGGT, e = CAAGGT, f = CACGGT.

In Figure 2 we see a DHT. On each edge we identify a substitution as a pair iθ,

where the substitution θ ∈ {α, β, γ} is applied at site i ∈ {1, · · · , 6}. (Here, following

Kimura, the substitution types are

α = A↔ G, C↔ T; β = A↔ T, G↔ C; α = A↔ C, G↔ T.)

This tree represents the DHT of Figure 2. Each duplication is identified by the

segment to be duplicated enclosed in a rectangle, When the duplicated segment

encloses more than one copy of the motif, the descendant motifs alternate as shown.

The approximate repeat is fully described by duplication tree T with 5 duplications,

the ancestral motif at the root (CATGGT), and the 5 substitutions on the edges of T .

4. Parsing problem

Let x[i] = xixi+1 . . .xnx1 . . .xi−1 be the ith cyclic permutation of motif x, where

n is the length of x, and let S = s1 . . . (xixi+1 . . .xnx1 . . .xi−1)li . . . sm, be a string

containing li copies of motif x[i].

We are interested in answering which of the ith cyclic permutation of x is the best

estimation of the ancestral segment parsing.
6
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Figure 2. We obtain a maximum parsimony tree of the 9 segments.

When we place the root on the edge (arrowed) and order the tips as

ababccdef we obtain the duplication tree, descending from the consen-

sus motif a. There are 6 duplications, with the rectangles enclosing the

segments being duplicated.

In example 1, each of the other parsings leads to a duplication tree requiring

6 substitutions and 7 substitutions. Using a parsimonious criterion, we can use a
7



parsimony or information content criterion to discriminate among different parsings

of approximate tandem repeats.

5. Heuristic methods to estimate the parsing point

Consider large and long tandem repeats, obtaining the maximum parsimony du-

plication history tree of the motif copies can be computationally expensive, and some

cases the maximum parsimony tree cannot be expressed as a duplication tree [refer-

ence to be added]. It may be preferable to avoid these constructions when comparing

different parsings.

We describe below an easily determined measures which we can use as surrogates

for the comparisons. These rules are intended as a guide to discriminate between

alternate parsings. It will often be the case that there remain several alternate equally

good parsings, in which case either external information may offer some guide, or an

arbitrary choice is required.

Pair of substitutions. In this method we identify all neighboring mutations that

are less than the repeat length apart. In Figure 3, all duplication that can occur on

two adjacent segments are listed. 3(a,c,e) show the results of different duplication

when the pair of substitutions XY are not separated by the boundaries. 3(b,d,f)

present all duplication event on two adjacent segment and the pair XY is separated

by the boundaries of the two segments.
8



XY

XY XY

(a) Single duplication (right segment)

XY

XY Y

(b) Single duplication (right segment)

XY

XY

(c) Single duplication (left segment)

XY

X XY

(d) Single duplication (left segment)

XY

XY XY

(e) Double duplication

XY

X Y X Y

(f) Double duplication

Figure 3. All possible duplication events on two adjacent segments,

in (a) a single duplication on the right segment results in doubling

the pair XY, where the same duplication in (b) does not change the

number of occurrences of XY. In (c) and (d) a single duplication on

the right segment results in no changes on the pair XY. In (d) and (e)

a double duplication has the same impact on both case.
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...

... X

... X ... ... X

... XY ... ... X

... XY ... X ... XY ... ... X

Figure 4. A duplication tree, the dash line represent a series of du-

plication events.

For example,

tatGCATGGTtATGGaCATGGTtATGGaCAcGcTCAcGcTtATGGTCAaGGTCAcGGTCAata

The neighbor pairs are t, a at sites (11, 16), (23, 28), and c, c at (31, 33), (37, 39).

This suggests the natural segment boundary should not separate them, leaving the

most favoured parsing of segments of length 6 starting at site 5. This gives rise to

the same parsing as before.

Repeat variants. Tandem repeat copies slightly differ from each other by point

mutation (substitution or deletion of a single character) resulting in variants of the

ancestral copy. The number of distinct variants depends on the rate of mutation.

High rate of mutation results in high number of variants.
10



The pair of mutations XY in Figure 3 is a result of two mutation happened in

the past, namely X happen first then Y occurs sometime later. As a result, at the

present time, three variants are obseved; a variant with no mutations; we may also

observe another variant with only X mutation; and a third variant with XY pair of

mutations. By setting the boundaries between the pair of mutation XY, this might

results in observing four variants containing one of the following four mutations {X,

YX, Y, variant with no mutation}.

However, base on the model of duplication we consider in Figure 3, we may observe

a variant containing only mutation Y only if this mutation happened parallel to the

mutation XY or as a result of another mutation on X that change it back to its

original character.

length of the variants minimum spanning tree. In this section we consider

calculating the minimum spanning tree as a method to distinguish between different

parsing. The minimum spanning tree of the variants is calculated for each parsing

and the parsing which gives the minimum length is chosen.

6. Results

We have implemented the three methods in section 5 and run them on synthetic

tandem repeat. We have tested 100 tandem repeats where the size of the patterns

are 40 bp. The number of repeated copies in each tandem repeats are around 100.
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Figure 5. A Comparison between the three methods. The x-axis

represent the rate of mutation. This graph shows the number of times

the true parsing is one of the suggested parsing points.

Figure 6. A Comparison between the three methods. The x-axis

represent the rate of mutation. This graph shows the number of times

the suggested parsing point is correct and unique.

A comparison between the three methods above is shown in Figure 5. Each method

might suggest more than one parsing point. In Figure 5 the correct parsing point is

one of the suggested points.

Figure 6 shows the number of times each method is suggesting only one correct

parsing parsing point.
12



Figure 7. A Comparison between the three methods. The x-axis

represent the rate of mutation. This graph shows the number of times

the suggested parsing point is not the right parsing

7. Discussion
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