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Abstract.— Traditionally, phylogenetic analyses over many genes combine data into a contiguous block. Under this concate-
nated model, all genes are assumed to evolve at the same rate. However, it is clear that genes evolve at very different rates
and that accounting for this rate heterogeneity is important if we are to accurately infer phylogenies from heterogeneous
multigene data sets. There remain open questions regarding how best to incorporate gene rate parameters into phyloge-
netic models and which properties of real data correlate with improved fit over the concatenated model. In this study, two
methods of accounting for gene rate heterogeneity are compared: the n-parameter method, which allows for each of the
n gene partitions to have a gene rate parameter, and the or-parameter method, which fits a distribution to the gene rates.
Results demonstrate that the n-parameter method is both computationally faster and in general provides a better fit over the
concatenated model than the a-parameter method. Furthermore, improved model fit over the concatenated model is highly
correlated with the presence of a gene with a slow relative rate of evolution. [AIC; gene rates; phylogenetic integration;
phylogenomics; rate heterogeneity.]

The use of multigene data sets in phylogenetic anal-
ysis is imperative in order to resolve evolutionary rela-
tionships over large taxon sets and deep phylogenetic
divergences. Multigene data sets have the advantage of
providing greater resolution—with more information it
is possible to find trees that more accurately reflect evolu-
tionary history (see, for instance, Gontcharov et al, 2004).
However, the heterogeneous nature of the data does
present problems. When there are many genes present
in the analysis, it is necessary to account for the fact
that different genes undergo different selective pressures
and that the degree of site rate heterogeneity within
a gene may vary from gene to gene. The incorpora-
tion of data under different evolutionary pressures (as
found in different codon positions, or different genes)
should be taken into account when calculating likeli-
hoods (Bull et al., 1993; Yang, 1996; Huelsenbeck et al.,
1996; Pupko et al., 2002; Bapteste et al., 2002; Nylander
et al., 2004; Cranston and Rannala, 2005).

Determining how best to incorporate gene rates in a
maximum likelihood (ML) context is a relatively unex-
plored area of phylogenetics research. When incorpo-
rating gene rates into maximum likelihood phylogeny
estimation there are two approaches that can be taken.
The first approach involves using a single rate for each
gene (hereafter referred to as the n-parameter method)
as initially proposed for DNA sequences by Yang (1996)
and extended to protein data by Pupko et al. (2002). This
approach to accounting for gene rate heterogeneity has
been shown to lead to both an improved model fit ac-
cording to the AIC (Yang, 1996; Pupko et al., 2002; Bevan
et al., 2005) and better topologies (Bevan et al., 2005).
The second approach involves integrating out over all
possible rates for a given gene using a discrete ap-
proximation to a continuous distribution (hereafter re-
ferred to as the a-parameter method; Felsenstein, 2001,
2004).

Both approaches to accounting for gene rate hetero-
geneity assume that a gene evolves at a particular rate of

evolution. However, the n-parameter method does not
allow for any uncertainty in the rate for a particular gene
but assumes that it is valid to use ML estimates of the
rate to account for gene rate heterogeneity. Conversely,
the a-parameter method does account for uncertainty in
the rate estimate for a gene through integration over all
possible values that a rate might take. Although assum-
ing a single rate for each gene is computationally faster
than integrating, it could potentially suffer from the dif-
ficulty of infinite parameterization when many genes are
used in the analysis (thus overfitting the data). Although
the n-parameter method has been tested and found
to lead to significant improvement in maximum like-
lihood phylogeny estimation (Yang, 1996; Pupko et al.,
2002; Bevan et al., 2005), the a-parameter method has
yet to be investigated.

In addition to determining how best to incorporate
gene rate parameters, the question remains of which
features of the data correlate with improved fit over
the concatenated model. This paper has two goals: (i)
to determine whether the computational effort required
by the a-parameter method is justified according to the
Akaike information criterion (AIC) and cross-validation
information criterion (CVIC); and (ii) to determine the
properties of the data that lead to an improved fit when
accounting for gene rate heterogeneity in phylogenetic
models.

MATERIALS AND METHODS

The n-Parameter Method
The n-parameter method is well studied and has

been shown to lead to higher likelihood for a par-
ticular topology than the concatenated model (Yang,
1996; Pupko et al., 2002; Bevan et al., 2005). Consider
n genes G\,..., Gn. Let R\,..., Rn denote the relative
rates of evolution of G\,..., Gn, let 9 denote the pair
{T, A.} where T is a tree topology and I a set of branch
lengths. Also let as be the parameter for the distribution
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accounting for rates across sites. Here as is used instead Combining (1) and (3) with the assumption of indepen-
of a in order to differentiate between rates across sites dence between genes, the log-likelihood over all sites is
and rates across genes. The likelihood is computed as: calculated as:

log[Ln(.9,as,Ri,...,Rn

= P(Gl,G2,.,Gn \G,as,Ri Rn)

= P ( d | 0, as, RdP(G2 | 9, as, R2)-- P(Gn \ 9, as, Rn)
(1)

The rates R\,..., Rn have mean 1.0. The parameter 9 may
also include other parameters (such as the proportion of
invariant sites). The formula in Equation 1 makes the
assumption that the rates of evolution of distinct genes
are independent.

Let Ggij denote site i in gene g. For this site the likeli-
hood is
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likelihood of the concatenated data set with no gene rates
(or equivalently computing the likelihood with Rs = 1.0
for all genes g). The only additional computational time
required is optimizing over the gene rates R\, ..., Rn.
However, with good starting estimates, such as those
found with the DistR method (Bevan et al., 2005), this
time is not too significant.

7=1
(2) Tfoe cx-Parameter Method

Define 0 = {A, T} for branch lengths A. and a topology
where S is the number of categories used to approxi- T a n d as a s t h e parameter for the rates across sites dis-
mate the probability density function of the r distribu- tribution. Also let co be the parameter for the rates across
tion [/ = r(«s/ 1)] for site rate heterogeneity, f, is the genes distribution ^ Then the likelihood of gene g under

J . as . , , x ° 7 y the a-parameter method is calculated as
site rate for category ;, and p(ry) is the probability of this
site rate category. It is possible to have one as over all
sites in all genes. It is also possible to have one as for
each gene (or aSl,..., aSn). In both cases the likelihood of
a site is calculated in the same way.

This model assumes that branch lengths for different _ / ua? \ ,*w(r \ a ™ P U P (A\
genes vary only by a constant scale factor. In effect, the
branch lengths are multiplied by a value proportional to
the evolutionary rate of the gene and the evolutionary
rate of a site.

Because the sites are assumed to be independent, the
likelihood for an entire gene L,hg is calculated from the
product of the site likelihoods (2) for all sites / in gene g
(i.e., sites i e g) as:

-paramete
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(3)
where C is the number of categories used to approxi-
mate the probability density function h with parameter
co. Probabilities p(Rk) are used to approximate h with
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rates kk, where h is a density function that describes the
distribution of gene rates. The best choice of distribu-
tion h will be discussed later; however, the mean of the
distribution must be 1.0.

In (4) we integrate over the parameter co, thus com-
puting the likelihood of the data Gg for infinitely many
gene rates, weighted by the probability of the gene rate.
The approximation (5) of the integral by a summation
is made in order to reduce the number of computations
involved in integrating. This involves approximating h
with a discrete version of the distribution with C cat-
egories and rates ki,..., RQ. Without such an approx-
imation the integration would not be computationally
feasible. The equivalence between (5) and (6) is obtained
because all sites i in gene g are assumed to be indepen-
dently evolving. The equality of (6) and (7) exists because
site rate heterogeneity is accounted for as in Equation 2.
As with the n-parameter method, it is possible to have
one F distribution describing site rate heterogeneity, or
it is possible to have n F distributions, one describing the
site rate heterogeneity in each gene.

Because the genes are independent, the overall likeli-
hood is

La(9, as,co | G i , . . . , Gn)
= Lax(0, as, co | G\) • • • Lan(9, as, co I Gn)

Computing the log-likelihood log[La(0 | G\, Gi,..., G „)]
for the a-parameter method is more complex, due to
the summation over a product. See Appendix 1 for de-
tails. Under the a-parameter method it is possible to
approximately compute the probability of gene g evolv-
ing at a particular rate kk, using the F distribution as a
prior over the possible rates as P(kk \ Gs,9,as) % P(GS |
JRjt, 9, as)P(Rk) (which does not account for the probabil-
ity of the data P(Gg)). This can provide a sense of whether
the ML rate estimate is a meaningful parameter to de-
scribe the data. Additionally, if the unnormalized prob-
abilities are uniform, accounting for rate heterogeneity
for the gene of interest may not provide an improved fit
over the concatenated model.

The F distribution.—The F distribution is used to de-
scribe gene rate heterogeneity. Under the a-parameter
method, reasonable starting values are chosen based
upon the ML fit of the F distribution to initial gene rate es-
timates. In phylogenetic analyses, the expected rate over
multiple genes is 1.0. Under the F(a, fi) distribution this
is accomplished by setting fi = \, since the expectation
of the distribution is then a^ or 1. A log-normal distri-
bution could also be used here (Felsenstein, 2001).

The DistR Approach
Under both the n-parameter and a-parameter meth-

ods, using good initial estimates for the gene rates will
help reduce the computation time to find maximal like-
lihood estimates of the gene rate parameter(s) in each
method. In the case of the n-parameter method, initial

estimates of the gene rates can be used directly. In the
case of the a-parameter method, initial estimates of the
gene rates can be used to find a maximum likelihood
estimate of the a parameter of the F distribution. These
initial parameter estimates (either the gene rates or the
initial ML estimate of a) are then further optimized to
determine the maximum likelihood values.

Here, initial estimates of the gene rates R\,..., Rn are
computed beforehand using the DistR method (Bevan
et al., 2005). Initial pairwise distances for the method
were estimated using ML distances from PHYML
(Guindon and Gascuel, 2003), with the JTT model of evo-
lution, a proportion of invariant sites, and F distribution
for site rate heterogeneity with 8 categories.

Improved Fit over the Concatenated Model
To determine the improvement, if any, of the a-

parameter and n-parameter methods over the concate-
nated model, the Akaike information criterion (AIC)
(Akaike, 1974) and cross-validation information criterion
(CVIC) (Smyth, 2000) were used. The AIC provides a
measure of the expected Kullback Leibler distance be-
tween the model of interest and the actual true model.
The CVIC does not rely upon data independence like
the AIC (Smyth, 2000). It applies the cross-validation
principle to obtain a penalized likelihood. However, it is
much more computationally demanding and thus was
only used on two of the smaller data sets to validate the
results.

The LRT was not used because the concatenated
model is not nested within either gene rate heterogene-
ity model (when gene rates are accounted for using the
n-parameter or a-parameter method) when each gene
has a separate F distribution for site rate heterogeneity.
The concatenated model is nested within the gene rate
heterogeneity model (both n-parameter and a-parameter
methods) with one-F for site rate heterogeneity. How-
ever, the LRT does not follow a x2 distribution because
the alternative and null models are equivalent when
some parameters are fixed at the boundary of param-
eter space (i.e., when the value of a in the a-parameter
method tends towards a large value such as 100).

Calculating the AIC and CVIC.—The AIC is calculated
based upon correcting the log-likelihood by some func-
tion of the number of parameters in the model of inter-
est. Under the n-parameter method, the parameters are
the gene rates for each gene, the site rate heterogeneity
parameter(s), the tree topology, and the proportion of in-
variant sites. The a-parameter method has a similar set
of parameters. However, rather than one rate parame-
ter for each gene, it has a parameter for the distribution
that describes gene rate heterogeneity. The concatenated
model has the same set of parameters but no gene rate
parameters and it does not allow for each gene to have
separate parameters for site rate heterogeneity.

The AIC is the sum of the negative log-likelihood
of the model plus the difference in a function of the
number of parameters used in each model multiplied
by two. Thus, the difference in AIC between the rates
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based model and concatenated model is calculated as:
AAIC = lLr - 2LC + 2(Ap) where Lc and Lr are the log-
likelihoods of the concatenated and gene rates hetero-
geneity models, respectively. Here Ap is the difference
in a function of the number of parameters in the concate-
nated model and the gene rates model (e.g., either the
n-parameter method or a-parameter method) and thus
will be a negative number. The first-order AIC does not
account for sequence length and thus a second-order AIC
was used where the number of parameters is defined as:
(,7-̂ "-D (Burnham and Anderson, 2003) where n is the
sequence length and K the number of parameters in the
model of interest.

The cross-validation information criterion is useful to
confirm the results of the AIC since the AIC makes the as-
sumption of data independence. Although the concate-
nated model conforms to this assumption, the gene rates
models do not. Under the gene rates model, each site
in a gene is assumed to be under the same rate of evo-
lution, which violates the independence assumptions of
the AIC. The CVIC was designed to determine the cor-
rect number of clusters to use in a probabilistic clustering
framework (i.e., components in finite mixture models)
(Smyth, 2000). Thus, the CVIC does not rely upon the
assumption of data independence.

The CVIC for a data set is calculated by dividing the
data into two subsets. The model of interest (concate-
nated or gene rates) is evaluated on one subset, obtaining
ML estimates of all parameters of interest. These ML es-
timates are used to evaluate the likelihood of the data on
the second subset under the same model. This process is
repeated b times (in this case 50), and the CVIC for model
m is calculated as CVIC,,, = ^ £^=i Li,m- Here Li,m is the
likelihood of the second subset of data, evaluated under
the ML estimates obtained from the first subset of data.
Thus the AC VIC is defined as AC VIC = CVICr - CVICC
where r and c denote the gene rates and concatenated
models, respectively.

If the model accounting for rate heterogeneity is pre-
ferred as a better fit to the data (versus the concatenated
model), the change in AIC or CVIC between the two
models (or A AIC, A CVIC) will be positive; otherwise,
it will be negative.

Data Analyzed: Empirical Investigation of Gene Rates
Under the a-parameter method it is important to

choose a distribution that accurately reflects the gene
rates found in empirical data. To determine if the F distri-
bution accurately reflects empirical rate estimates, gene
rates were calculated over a number of data sets using
the DistR method (Bevan et al., 2005). The data sets used
for analysis consist of: 41 data sets of size 20 to 40 species
per gene (Harlow et al., 2004); a multigene data set con-
sisting of 133 genes over 44 species (Brinkmann et al.,
2005); another multigene data set over 37 species with
146 genes; and a 14 species data set with 106 genes (Rokas
and Carroll, 2005). The first data set was prepared using
automatic homology testing over 144 species, which is
an extension of the analysis from Harlow et al. (2004).

The other data sets were hand curated (i.e., proteins
were hand selected for analysis). In both cases initial dis-
tance estimates provided to the DistR procedure were
estimated using pairwise ML distances, with eight cat-
egories for the F distribution, a proportion of invariant
sites, and the JTT model of evolution.

Data Analyzed with n-Parameter and oc-Parameter Methods
Six protein data sets were used for analysis: a fun-

gal mitochondrial data set with 29 species and 15 genes
(Bevan et al., 2005); a eukaryotic data set with 44 species
and 133 genes (Brinkmann etal., 2005); the modified
Madsen alignment of placental mammals with 4 genes
and 28 species (Madsen et al., 2001; Pupko et al., 2002);
the modified Murphy alignment of placental mammals
with 6 nuclear genes and 46 species (Murphy etal.,
2001; Pupko et al., 2002); an animal mitochondrial data
set with 12 genes over 56 species (Pupko et al., 2002);
and a fungal nuclear data set with 8 species and 106
genes (Rokas et al., 2003). The data sets used here are
available form the first author's website (http://www.
mcb.mcgill.ca/rachel/RatesIntegrate/) and as supple-
mentary material (http://systematicbiology.org).

For each data set a modified version of PHYML was
run with the default BIONJ starting tree. The JTT model
of evolution was used with an estimated parameter for
the proportion of invariant sites. Site rate heterogene-
ity was accounted for using either one F distribution
for all sites (hereafter denoted one-F) or a separate F
distribution to describe site rate heterogeneity for each
gene (hereafter denoted gene-F). In both cases, four cat-
egories were used in the discrete approximation to the
distribution. Gene rate heterogeneity was accounted for
using either the n-parameter or the a-parameter method
as outlined above. Six equiprobable categories were used
in the discrete approximation to the gene rates distribu-
tion in the a-parameter method. Gene resampling was
performed on the data set over 8 fungal species and 106
genes by randomly selecting 50 gene sets of size 3, 50
gene sets of size 5, and 50 gene sets of size 10.

RESULTS AND DISCUSSION

The n-Parameter Method Versus the oc-Parameter Method
Five diverse data sets with differing numbers of genes

and species were analyzed to determine which approach
to gene rate heterogeneity results in the greatest im-
provement over the concatenated model based on the
AAIC. Table 1 and Figure 2 indicate that with more
genes under analysis, there is a greater average AAIC
favoring a model that accounts for rate heterogeneity.
However, based upon these data there is no clear corre-
lation between the spread of the data (i.e., the 1st and 3rd
quartiles, or a value under the a-parameter model) and
improved model fit over the concatenated model. This
is likely complicated by the fact that the data sets are of
varying size in terms of the number of genes and species
under analysis.

It is evident that there is no advantage to using the
a-parameter method over the n-parameter method to
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TAB LE1. A AIC values for five data sets with differing numbers of genes and species. For the Madsen and Murphy data sets, the A C VIC was
calculated. It is given on the second line, after the A AIC values. One-F and gene-F refer to the number of gamma distributions used to account
for site rate heterogeneity: either one for the entire data set or one for each gene, respectively. Q refers to the first and third quartiles and a to the
value of the a parameter for gene rate heterogeneity under the a-parameter method with one-F. A AI C and &CVIC values are calculated with
respect to the concatenated model. Madsen-PT refers to analysis of the Madsen data set on the preferred topology. In this case, all the parameters
were optimized over, except for the topology which was held constant. Madsen-nT refers to analysis of the Madsen data set on the best topology
found under the n-parameter method with gene-F (the best topologies differ when searching tree space when one-F versus gene-F are used
with the n-parameter method). Madsen-aT refers to analysis of the Madsen data set on the best topology found under the a-parameter method
(the topology for with one-F and gene-F is the same under the a-parameter method when searching topology space).

Data set
Fungal A AIC
Eukaryotic A AIC
Madsen A AIC

ACVIC
Madsen-PT A AIC

ACVIC
Madsen-nT A AIC
Madsen-aT A AIC
Animal A AIC
Murphy A AIC

ACVIC

No. genes
15

133
4

4

4
4

12
6

No. species
29
44
28

28

28
28
56
46

Q

0.75-1.07
0.83-1.14
0.81-1.16

0.82-1.16

0.82-1.17
0.81-1.17
0.81-1.21
0.39-1.23

n-Parameter

One-r
1027.77
1529.21
154.57
49.86

163.77
49.79

149.32
153.33
248.87
188.88
28.58

Gene-r
1152.25
2474.07
427.80
119.83
436.82
121.41
422.10
426.29
378.14
293.71

55.72

a

6.284
8.707
4.408

4.473

4.465
4.457
3587
1.187

a-Parameter

One-r
893.06
1298.84

149.80
13.72

152.64
50.16

140.73
142.37
221.21
186.48
21.60

Gene-r
1010.45
2199.74
423.33

80.09
426.62
119.03
414.45
415.87
321.0
281.90
42.83

find a better fit to the data. According to the A AIC
(Table 1), the n-parameter method has the best fit com-
pared to the concatenated method for all data sets ana-
lyzed. This is true for both one-F and gene-F analyses.
Thus there is no reason to prefer the n-parameter model
or a-parameter model as a better fit to the data according
to the AIC. When the CVIC was calculated on the two
smallest data sets (Madsen and Murphy), the results ob-
tained under the AIC were confirmed (Table 1). This pro-
vides independent corroboration that the a-parameter
method does not provide a better fit to the data when
compared to the n-parameter method. Differences in
CVIC for the gene rates model versus the concatenated
model are not expected to be as large as the A AIC be-
cause of the way the CVIC is calculated.

This is especially interesting considering the time
to find the tree under each method (Table 2). The n-
parameter method takes longer than the concatenated
model primarily due to optimization of the ML gene
rates. Notably, the a-parameter method takes 2 to 3 times
longer than the n-parameter method (Table 2).

When the inferred maximum likelihood (ML) topolo-
gies of the a-parameter and n-parameter methods (with
gene-r) were compared, four out of the five data sets
had different topologies. The ML trees from the eukary-

TABLE 2. Time for analysis using the gene rate heterogeneity and
concatenated models, with the one-F to account for site rate hetero-
geneity. For each data set the analysis for the different models was
performed on the same desktop machine. However, times across data
sets are not comparable because the different data sets were all ana-
lyzed on different computers.

Data set

Fungal mtDNA
Eukaryotic
Madsen
Animal mtDNA
Murphy

tt-Parameter

62 min 25 s
29,866 min 57 s
23 min 14 s
120 min 59 s
33 min 24 s

a-Parameter

220 min 10 s
6996 min 18 s
112 min 44 s
347 min 53 s
88 min 10 s

Concatenated

12 min 4 s
337 min 0 s
7 min 32 s
50 min 0 s
13 min 41 s

otic data set did not have different topologies; however,
it is known to be a problematic data set in terms of long
branch artifacts and heterotachy (Brinkmann et al., 2005).
Thus, even when the A AIC indicates that there is little
difference between the model fit (Table 1), it is possible
that the a-parameter and n-parameter methods find dif-
ferent ML topologies (Fig. 1).

Further investigation of the Madsen data set with
gene-F (Table 1) shows that for both methods much
of the topology agrees with the topology of Murphy
et al. (2001), a topology currently supported by molecular
data (Fig. 1; Springer et al., 2004) However, the group-
ing within the Laurasiatheria does not correspond to
the currently supported molecular hypothesis (Figs, la
and b; Springer et al., 2004). The a-parameter method
gives the topology for the Laurasiatheria that is closest
to the Murphy topology (in terms of SPR moves), only
grouping Pangolin incorrectly with flying fox/round
eared bat rather than cat/dog. The n-parameter method
incorrectly groups horse/rhino and dog/cat into a
monophyletic group with flying fox/round eared bat
an in-group. Pangolin is also grouped incorrectly in this
topology (Fig. la).

Although the n-parameter method finds a slightly bet-
ter fit according to the AIC, care must be taken when
evaluating which method finds the best tree topology.
Neither method finds the preferred Murphy topology,
but this is likely because only four genes were under
analysis for 28 species. More data are needed to correctly
resolve the phylogeny. Furthermore, when the topology
found under the a-parameter method is used to evaluate
the data under the n-parameter method (and vice versa),
according to the AIC the a-parameter method finds a bet-
ter tree (Fig. 1, Table 1, Madsen-aT and Madsen analy-
ses under n-parameter method; Madsen-nT and Madsen
under a-parameter method).

When the Madsen data were analyzed on the Mur-
phy topology, optimizing for all other parameters, the
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(a) n-parameter method
Kangaroo
Opossum
Pangolin
Whale
Hippo
Cow
Pig
Flying Fox
Round Eared Bat Laurasiatheria
Rhino
Horse
Dog
Cat
Mole
Hedgehog
Rabbit
Rat
Capybara
Tree Shrew
Flying Lemur
Galago
Human
Elephant
Dugong
Hyrax
Ardvark
Elephant Shrew
Sloth

(b) a-parameter method
Kangaroo
Opossum
Tree Shrew
Galago
Human
Flying Lemur
Rabbit
Capybara
Rat
Dog
Cat
Rhino
Horse
Pig
Cow
Whale Laurasiatheria
Hippo
Flying Fox
Round Eared Bat
Pangolin

i — Hedgehog
1 — Mole

Elephant
Dugong
Hyrax
Ardvark
Elephant Shrew
Sloth

FIGURE 1. Final topologies found for the Madsen data set (Table 1), where branch lengths are not depicted, (a) ML topology found using
the n-parameter method with gene-F. (b) ML topology found using the a-parameter method. The two methods find different groupings for the
Laurasiatheria species.

a-parameter method does not find a better fit to the data
than the ^-parameter method (Table 1, Madsen-PT) ac-
cording to both the AAIC and AC VIC. Thus, although
PHYML searches the topology space of trees differently
under the a-parameter and rz-parameter methods, nei-
ther method is preferred as a better fit to the data under
the Murphy topology.

Figure 2 gives the AATC values for the resampled
genes data sets. These results demonstrate that (i) both

methods of accounting for gene rate heterogeneity find
approximately equivalent improvement over the con-
catenated model; (ii) there are some data sets for which
accounting for gene rate heterogeneity does not lead to
an improved fit (Fig. 2). Figure 2a is particularly impor-
tant because there is one data set for which accounting for
gene rate heterogeneity using the a-parameter method
gives a worse fit than the concatenated model (AAIC =
-161.319, one-F for site rate heterogeneity), whereas the
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FIGURE 2. Box plots of AAIC values comparing the gene rates in-
corporated model to the concatenated model. AAIC values were cal-
culated for (a) 3 genes; (b) 5 genes; (c) 10 genes. In each case the genes
were sampled randomly from 106 genes, 50 times.

n-parameter method gives an improved fit (AAIC =
63.132, one-F for site rate heterogeneity). This is because
under the a-parameter method C. albicans is incorrectly
grouped as a sister taxa to S. mikatae, whereas under
the n-parameter method the preferred tree topology (see

Fig. 5a) is found. This indicates that in some cases the a-
parameter method has difficulty converging to the pre-
ferred topology in PHYML. Furthermore, both Phillips
et al. (2004) and Collins et al. (2005) have shown that de-
viations from stationary base composition cause trouble
for this data set at the nucleotide level, and there is evi-
dence from Foster (2004) that nucleotide base composi-
tional effects translate to the amino acid level. Thus there
are other properties of the data that may lead to difficulty
in phylogenetic inference in addition to rate effects.

Empirical Rate Distribution—Does the P Distribution
Describe the Empirical Distribution of Gene Rates?

The a-parameter method does not find a better fit to
the data than the n-parameter method. Thus, it is impor-
tant to determine if it is valid to assume that the gene
rates are distributed according to the unimodal P distri-
bution. To test this assumption, the distribution of gene
rates across many multigene data sets was determined
in order to avoid the problem of sampling error. Because
DistR estimates have been shown to approximate ML
gene rate estimates, a large number of DistR estimates
taken from multiple data sets are likely to approximate
the true distribution of gene rates.

Figure 3a shows the distribution of all the gene rates
estimated over a number of data sets. The rates were esti-
mated using the DistR method (Bevan et al., 2005), with
varied size data sets in terms of number of species, num-
ber of genes, and number of missing distances. The max-
imum number of missing pairwise distances was about
50%, which is fairly substantial.

The P distribution provides an excellent fit to the data
over many data sets (Fig. 3a). Thus, it is reasonable to
assume that the rate of gene evolution is distributed ac-
cording to a P distribution. It should be noted, however,
that even in the case of large data sets with many genes
it is possible that the P approximation will not be accu-
rate (Fig. 3b). In such cases it might be better to use a
mixture of P distributions over gene rates (as has been
done for site rates in May rose et al., 2005). It is pos-
sible that using a better distribution will cause the a-
parameter method to find a better fit to the data than
the n-parameter method. However, this option was not
explored in the current analysis. It is also possible that
using a better method to approximate the P distribution
will lead to more improvement of the fit under the a-
parameter method. Laguerre integration was also used
to approximate the distribution; however, in some cases
this method had difficulty optimizing (data not shown).
For the data sets that were successfully analyzed, this
approach did not cause the a-parameter method to find
a better fit to the data than the n-parameter method (data
not shown).

DistR estimates versus ML estimates.—DistR estimates
are used as initial approximations to the gene rates in
the n-parameter method and to find an initial estimate
of a in the a-parameter method. Thus it is important to
determine how accurate these initial estimates are. Fig-
ure 4 shows the initial DistR estimates versus the final ML
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FIGURE 3. Density of estimated gene rates versus best fit of T dis-
tribution, (a) Density of gene rates estimated using DistR (solid line)
versus best fit of F distribution (dashed line) for data described in
Methods, (b) Density of gene rates estimated using DistR (solid line)
versus best fit of F distribution (dashed line) for 133 genes over 44
species.

estimates from the five data sets in Table 1, estimated us-
ing the n-parameter method with gene-P. There is strong
correlation between the two (Pearson's one-tailed corre-
lation 0.904, P < 2.2<r16), and the final ML parameter
estimates are quite close to the starting DistR estimates.
Furthermore, the initial DistR estimates appear to be un-
biased with respect to the final ML estimates (i.e., the
DistR rates are both over- and underestimates of the ML
rates). Hence the DistR estimates provide an excellent
starting point for the n-parameter method. This is espe-
cially important when many genes are involved in the
analysis because less time needs to be spent searching
the parameter space when good starting estimates are
used.

In general, the initial a-parameter estimates were also
quite close to the final estimates under the a-parameter
method with gene-F. As expected, when more genes
were present in the analysis, the initial estimate was
more accurate. For example, both the fungal and animal
mtDNA data sets have more than 10 genes, with rela-
tive errors of 0.0354 and 0.0263, respectively, between the

CD

0.5 1.0 1.5

Initial Gene Rate

FIGURE 4. Correlation of the initial DistR gene rate estimate with
the ML gene rate estimates. Maximum likelihood gene rates were esti-
mated using the JTT model of evolution with a site rate F distribution
for each gene and a proportion of invariant sites. Estimates are based
on data sets in Table 1.

initial and ML estimates of the a parameter. Conversely,
both the Murphy and Madsen data sets have fewer genes
(Table 1). The respective relative errors of the initial a es-
timates are 0.1871 and 0.1898. The relative error does not
seem to be affected by the number of species since the an-
imal mtDNA data set has the greatest number of species
but the smallest relative error.

Topology Resolution under n-P ammeter
and oc-Parameter Methods

Given that the a-parameter and n-parameter meth-
ods give potentially different ML topologies, even when
there is little difference in the improved fit over the con-
catenated model, it is important to determine at what
point the two methods provide congruent answers. Fig-
ure 5 shows the best (or favored) topology along with
the branchings that prove difficult to resolve (in the data
set of Rokas et al, 2003).

The different methods of accounting for gene rates
leads to different bootstrap support. Additionally,
adding more genes leads to an increase in support as
shown by Rokas et al. (2003). The recovery of S. bayanus
as sister to the in-group and S. castellii as sister to S.
bayanus and the in-group was the most consistent in
terms of improved bootstrap support with more genes
for both the n-parameter and a-parameter methods. Con-
versely, the other two branches had inconsistent results
across the two methods (Fig. 5). For example, when us-
ing 3 genes, the S. mikatae-S. paradoxus-S. cerevisiae clade
starts with low support under the n-parameter method
and then quickly reaches 90% support at 5 genes and
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FIGURE 5. Bootstrap support for 8 fungal species under the n-parameter and a-parameter methods, (a) The correct tree topology. The branches
that are difficult to resolve are labeled with *, **, and ***. (b) Bootstrap support for three branches for 3 genes, 5 genes, and 10 genes sampled 50
times each from 106 genes in total.

100% support at 10 genes. For the a-parameter method
the opposite is true: at 3 genes the clade has 90% boot-
strap support, which drops to just above 80% support
with 5 genes and increases to 100% support with 10
genes. It should be noted, however, that these results may
be due to model violations unrelated to gene rates, such
as amino acid composition deviations from stationarity.

Evidently, in order to obtain a consistent ML tree be-
tween the two methods, more data are necessary. Thus,
lack of data is one explanation for the inconsistent topolo-
gies found by the two methods (e.g., for the data in
Table 1). This problem is exacerbated when more species
are under analysis (as opposed to the 8 species used in
this experiment). However, even with sufficient data, if
model assumptions of the gene rates models are not valid
(i.e., the model is misspecified with respect to true se-
quence evolution) then topology resolution artifacts can
occur, even with sufficient data (see for instance Philippe
etal.,2005).

Correlation of Gene Rates with Improved Fit under
n-Parameter and ot-Parameter Methods

The gene resampling experiment on the 106 gene
Rokas data set not only provides information on how
much data are necessary for both methods to pro-
vide congruent ML topologies, but it also demon-
strates that for some data sets the gene rates methods
have little or no improvement over the concatenated
model (Fig. 2).

To determine what leads to an improved model fit of
the gene rates model over the concatenated model, we
calculated the correlation between the AAIC and three
values: the rate of the slowest evolving gene in the data
set; the rate of the fastest evolving gene in the data set;
the difference between the rates of the fastest and slowest
evolving genes in the data set. In order to compare gene
rates properly across all resampled gene data sets, the
gene rates were estimated over all 106 genes.
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0.5 3.0

FIGURE 6. Correlation of the gene-F site rate heterogeneity parame-
ter with the maximum likelihood rate of the gene. Maximum likelihood
gene rates were estimated using the JTT model of evolution with a site
rate F distribution for each gene and a proportion of invariant sites.
Estimates are based on data sets in Table 1.

Correlation was tested only on the n-parameter and
a-parameter methods with one-F distribution for site
rates. This allows for the influence of the gene rates on
the AAIC to be tested without the influence of separate
F distributions for site rate heterogeneity for each gene.
Results are given for the n-parameter method. Results
based upon the a-parameter method were identical ex-
cept in one data set where the concatenated model was
preferred (Fig. 2).

Results (Table 3) demonstrate that it is not only the
number of genes in the analysis which affects the im-
provement of the rates incorporated model over the
concatenated model. Both the minimum rate in the anal-
ysis and the difference between the maximum and min-
imum rates also have a strong effect. Correlation values

TABLE 3. Correlation of AAIC of the n-parameter method of ac-
counting for gene rate heterogeneity with: the minimum gene rate
(Min(GR)); maximum gene rate (Max(GR)); the difference between the
minimum and maximum gene rates (Max(GR) — Min(GR)). Gene rates
were estimated globally over the 106 genes from which the data sets
were sampled. As the number of genes under analysis increases, so
does the correlation of the AAIC with the minimum gene rate. Con-
versely, both the maximum gene rate and the difference between the
two become less correlated with the AAIC. AAIC values are based
upon accounting for gene rate heterogeneity using the n-parameter
with one-F distribution for site rate heterogeneity.

3 Genes 5 Genes 10 Genes

Statistic p P-value p P-value p P-value

Max(GR)- 0.812 4.008e"13 0.662 8.407e"8 0.485 1.185e"4

Min(GR)
Max(GR) 0.464 3.398*r4 0.244 4.376<r2 0.144 0.1595
Min(GR) -0.682 2.537e-8 -0.723 1.055e~9 -0.774 2.111e-n

show that with fewer genes both the difference between
the maximum and minimum rates, and the maximum
rate are positively correlated with AAIC. Conversely,
the minimum rate is negatively correlated with AAIC
(Table 3). However, as the number of genes increases,
correlation of AAIC with the maximum gene rate de-
creases and becomes statistically insignificant (Table 3).
Correlation of the AAIC with the difference between the
maximum and minimum rates also decreases, as does the
statistical significance. Interestingly, the negative correla-
tion of the AAIC with the minimum gene rate increases,
as does the significance of the correlation (Table 3). Thus,
although the difference between maximum and mini-
mum rate (i.e., the degree of rate heterogeneity) is im-
portant for improved fit, it is not as important as the
minimum rate of the gene under analysis.

The results indicate that it is the minimum gene rate
that is the primary variable that determines whether
there is improved model fit when using a model that
accounts for gene rate heterogeneity. Indeed, a slower
global minimum rate indicates that a higher improve-
ment in the fit of the model to the data are likely when
accounting for gene rates. This is partially due to the fact
that a slower global rate will likely lead to a slower rela-
tive rate in the data set under analysis, and thus greater
gene rate heterogeneity. However, if gene rate hetero-
geneity were the only factor influencing improved fit,
we would expect to see that the correlation of improved
fit with maximum rate would remain high (or at least sig-
nificant) with more genes under analysis. This is because
a faster global rate should also lead to greater gene rate
heterogeneity. However, the maximum rate does not cor-
relate with improved fit when there are more genes un-
der analysis. Conversely, the minimum rate has a higher
correlation with improved model fit when more genes
are under analysis. Thus, the minimum rate of the gene
has an effect upon the improved model fit, independent
of the fact that a slower gene will likely lead to greater
gene rate heterogeneity.

When the relative rates of the genes are used to test
for correlation, the slowest evolving gene under analysis
has an even more significant negative correlation with
AAIC (-0.857, P-value of 1.064e"15 for data sets with
10 resampled genes). This correlation indicates that the
DistR method can be run to test initial gene rates, and
if there are very slow rates a much higher improved fit
under the gene rates model can be expected.

Some analyses focus on eliminating fast sites/genes
from phylogenetic analysis since these sites typically vio-
late model assumptions or lead to long branch attraction
(LBA; Hirt et al, 1999; Brinkmann and Philippe, 1999;
Dacks et al., 2002; Brinkmann et al., 2005). It has also been
noted that invariant sites can cause problems in phylo-
genetic reconstruction (Lockhart et al., 1996; Hirt et al.,
1999; Dacks et al., 2002), leading to the removal of these
sites from the analysis. This analysis indicates that prop-
erly accounting for the slow genes is quite important. Per-
haps accounting for the slow genes correctly causes the
invariant sites to no longer violate model assumptions
by shortening the branch lengths, and thus increasing the
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probability of no change over the branches. Conversely,
given the low correlation of fast genes with improved
model fit, fast sites which violate model assumptions
(i.e., are saturated) probably continue to violate model
assumptions.

Although correlations were tested over only one re-
sampled data set, with few species, these results provide
a preliminary indication that the more heterogeneous the
data, the more likely an improvement will occur when
accounting for the heterogeneity. This is especially true
with few genes under analysis. However, as the number
of genes increases this becomes less important than the
evolutionary rate of the slowest gene.

Correlation of Gene Rate with Site Rate Heterogeneity
Given that accounting for site rate heterogeneity sep-

arately for each gene leads to a much better model fit,
the question arises of whether or not there is any correla-
tion between the rate of evolution of a gene and the ML
estimate of the a parameter accounting for site rate het-
erogeneity. Figure 6 shows the gene rate versus the ML
estimate of the a parameter estimated over the data sets
in Table 1. The positive correlation (Pearson's one-tailed
correlation 0.432, P = 1.887e~14) is significant.

This result demonstrates that it is not evident that
independently accounting for both gene rates and site
rates within a gene is the best way to model the rate
heterogeneity of all the sites. The rate of a site is here
modeled based on both the site and gene rate heterogene-
ity. Yet there is only one absolute rate at which a given
site evolves, ignoring rate heterogeneity through time.
Clearly modeling this rate separately through site rate
heterogeneity and gene rate heterogeneity is not com-
pletely correct. The correlation between the a parameter
for site rate heterogeneity with the rate of evolution of the
gene supports this conclusion. The gene rate parameter
and the a parameter of the F distribution are depen-
dent. Thus, to a certain extent the different parameters
are modeling the same information in the data, even
though the parameters are estimated independently of
one another. Perhaps it is possible to use a model that
will account for the correlation between the two, in or-
der to find even better improvement of the model fit to
the data.

CONCLUSIONS

In conclusion, given the current analysis, there is no
reason to prefer the a-parameter method over the n-
parameter method in phylogenetic inference. This is a
promising result since it means that it is not necessary to
use much additional computation time to find a good
fit of a model with gene rates to the data. However,
these analyses also suggest that there is further work
to be done in improving rate heterogeneity modeling
in maximum likelihood methods. Because there is no
guarantee of an improved model fit, even with an in-
creasing number of genes, and there is high correlation
between a estimates of site rate heterogeneity and gene
rate estimates, clearly there are problems with current
approaches.
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APPENDIX

Calculating the Log-Likelihood of a Gene when
Integrating over Gene Rates

The computation of likelihood in the or-parameter approach is criti-
cally sensitive to numerical error. Here we outline the approach taken
to avoid round-off error. All calculations are for gene g. Let LogLaik be
the log-likelihood of gene g for category k of the probability density
h over gene rates from (7). There are C categories that approximate

distribution h. Scale factor SF is used to prevent overflow and under-
flow errors. SF is the maximum of the log-likelihoods {LogLa,k) over
all categories k e C. SLogLak is the LogLa,k of gene g for category k,
scaled by both the scale factor SF and the log of the probability of rate
category &*. SLg is the total scaled likelihood of gene g and LogSLg is
the total scaled log-likelihood of gene g. Overall, the likelihood of gene
g is computed as follows:

Compute LogLa,k = Log(Lg) where Rg = £* is 3 for each category C,
using all sites i in gene g. This results in Log LaA,..., LogLaiC- Next cal-
culate SF = max* LogLQik and SLogLa,k = LogLatk — SF-\ + log p(&*)
for k = 1, . . . , C. This scaling is performed in order prevent over- and
underflow errors. Thus,

SLogLa.k = log ( 8 )

from Equation 7.
From (8) compute eSLogLo* in order to calculate the scaled likelihood

for every category k = 1,. . . , C. Thus, the total scaled likelihood is

The scaled log-likelihood for gene g is computed from (9) as

LogSLs = - log(eSF+1) (10)

Solve for the log-likelihood of gene g from Equation 10 as

log(Lg) = LogSLg + SF + 1

Note that the smallest scaled log-likelihood LogSLak value possible
that will not result in over- or underflow is approximately —707 (where
the smallest signed number than can be expressed with a double is
2.225074c-308). Thus when the scaled log-likelihood is less than -707, it
is set to —707, essentially setting the likelihood for this rate category to
0. This means that for that particular gene rate category, the probability
of the data, given the rate and other parameters, approached 0.
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