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Abstract.—Genome phylogenies can be inferred from data on the presence and absence of genes across taxa. Logdet distances
may be a good method, because they allow expected genome size to vary across the tree. Recently, Lake and Rivera proposed
conditioned genome reconstruction (calculation of logdet distances using only those genes present in a conditioning genome)
to deal with unobservable genes that are absent from every taxon of interest. We prove that their method can consistently
estimate the topology for almost any choice of conditioning genome. Nevertheless, the choice of conditioning genome is
important for small samples. For real bacterial genome data, different choices of conditioning genome can result in strong
bootstrap support for different tree topologies. To overcome this problem, we developed supertree methods that combine
information from all choices of conditioning genome. One of these methods, based on the BIONJ algorithm, performs well
on simulated data and may have applications to other supertree problems. However, an analysis of 40 bacterial genomes
using this method supports an incorrect clade of parasites. This is a common feature of model-based gene content methods
and is due to parallel gene loss. [BIONJ; conditioned genome reconstruction; consistency; gene content; logdet; supertrees.]

Variation in gene content makes it difficult to estimate
organismal phylogeny from nucleotide or amino acid se-
quences. Within a lineage, genes are often gained (for
example, by lateral transfer) and lost (by deletion). Both
lateral transfer (e.g., Doolittle et al, 2003) and differen-
tial loss of paralogous genes (e.g., Martin and Burg, 2002)
can mislead sequence-based phylogenetic estimation. In-
stead of viewing gains and losses of genes as problems for
sequence-based phylogenetics, we could estimate phy-
logenies from patterns of presence and absence of gene
families.

A gene family is the set of all genes belonging to
a group of repeated sequences, derived sufficiently re-
cently from a common ancestor (Graur and Li, 2000:264).
In practice, the level of similarity required for member-
ship of a gene family is somewhat arbitrary, and this
may have important consequences for analysis of such
data (Hughes et al., 2005). For brevity, we usually re-
fer to gene presence/absence in this paper, with pres-
ence meaning that at least one member of a given gene
family is present in a genome. The data used to esti-
mate phylogenies are presence/absence states for some
defined set of gene families; the choice of this set is a
central theme in this paper. The set of families present
in a genome is viewed as dynamic: there is a continuous
turnover of genes even when the total number of genes in
the genome remains roughly constant (Snel et al., 2002).
We assume that each gene family is independent. This
cannot be true because genes located close together on
a genome may be transferred or deleted together and
because there are functional relationships between gene
families. However, violation of this assumption is not
critical, because we focus on the marginal behavior of
an individual family. Similar assumptions are made and
violated in models of sequence evolution, especially for
RNA, and the consequences are not too severe (Tillier
and Collins, 1995). We also assume that lineages evolve

independently once they have diverged from their com-
mon ancestor. This implies that the loss of a family from
one lineage does not affect the probability that it can be
gained in another lineage. This cannot be strictly true be-
cause a family must exist in at least one lineage at a given
time in order to be transferred to another lineage. How-
ever, if the sampled lineages represent a small fraction of
those actually existing (as is certainly the case), gain or
loss in one lineage may have almost no effect on gain or
loss in another.

Most early analyses used either ad hoc distances or
parsimony (e.g., Fitz-Gibbon and House, 1999; Tekaia
et al., 1999; Snel et al., 1999; Montague and Hutchinson,
2000; Wolf et al., 2001,2002). Because these methods did
not take account of the relative rates of gene gain and loss,
they are likely to be unreliable. Distance estimates from
Markov models for the evolution of gene content (e.g.,
Gu, 2000; Gu and Zhang, 2004; Huson and Steel, 2004;
Zhang and Gu, 2004; Spencer et al., 2006) do take account
of these relative rates. However, the substantial variation
in genome size across taxa suggests that there may be
different rates of gene gain and loss in different parts of
the tree (Lake and Rivera, 2004). The distance measure
used in the SHOT program (Korbel et al., 2002; Dutilh
et al., 2004) attempts to deal with variation in genome
size and seems to perform well in practice, although it is
only an approximate evolutionary distance. Another and
more rigorous approach is to use logdet (also known as
paralinear) distances (Lake, 1994; Lockhart et al., 1994),
which do not assume the same Markov model on every
edge. Two recent studies have applied logdet distances
to gene content data (Lake and Rivera, 2004; Rivera and
Lake, 2004).

There is an important difference between gene content
data and sequence data. An unknown number of genes
exist or once existed but are not found in any sequenced
genome (Lake and Rivera, 2004). We will therefore
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FIGURE 1. A four-taxon tree with a conditioning genome. The taxa
of interest are w, x, y, and z, and c is the conditioning genome. The
node connecting c to the rest of the tree is k. Edge lengths are tk... tz.

underestimate the frequency of genes that are absent
from both members of a pair of taxa and will get the
wrong estimated pairwise distances. Numerical exam-
ples (available on request) show that this can lead to
inconsistency in topology estimation. There is no such
problem with sequence data. Lake and Rivera (2004) sug-
gested calculating conditioned logdet distances, using
only those genes present in a conditioning genome. The
conditioning genome is an additional taxon, which will
not be included in the estimated tree topology (for ex-
ample, node c is a conditioning genome for the four taxa
w, x, y, and z in Fig. 1). Rivera and Lake (2004) used
trees based on conditioned logdet distances to make in-
ferences about the relationships among the three king-
doms of life. In this paper, we use theory, simulations,
and real data to evaluate and improve the performance
of conditioned logdet methods.

OUTLINE

This paper is structured as follows:

• We first show that under some suitable assumptions,
conditioned logdet distances are tree-additive and
non-negative and thus permit consistent reconstruc-
tion of phylogenies for almost any choice of condi-
tioning genome. This appears to support the idea
that "the choice of the conditioning genome should
not significantly affect the outcome of the analysis"
(Rivera and Lake, 2004: Supplementary Data).

• We then show that for realistic sample sizes, the
choice of conditioning genome can have substan-
tial effects. Theoretical considerations suggest that a
large conditioning genome, far from any of the taxa
of interest, should be a good choice. We show that
this is true for simulated data.

• We evaluate the effects of the choice of condition-
ing genome on the bootstrap support for alternative
topologies in real bacterial genome data. Although
the size and location of the conditioning genome are
possible predictors of performance, it would be bet-
ter to avoid choosing a single conditioning genome.

• We then examine supertree methods by which we
can combine data from all choices of conditioning
genome into a single estimate of topology. One of
these methods, based on a modification of the BIONJ

algorithm (Gascuel, 1997a), performs well on simu-
lated data for 5-taxon trees. However, simpler meth-
ods do better in simulations on a 40-taxon tree.

• We apply the modified BIONJ algorithm to a real
40-taxon bacterial data set and discuss the problems
that may be caused by parallel gene loss in parasites.

MARKOV MODELS FOR GENE CONTENT AND
CONDITIONED LOGDET DISTANCES

We assume as above that gene families are indepen-
dent and that lineages evolve independently. We further
assume that the evolution of gene family states can be de-
scribed by a two-state Markov model in continuous time,
not necessarily time-homogeneous. We assume that the
same rates of gain and loss apply to all gene families in
a given genome at a point in time. This is unlikely to
be true, and in the Discussion we highlight the possible
consequences of violating this assumption.

Let Xx be the presence /absence state at node x, with
value 0 indicating absence of a gene and 1 indicating
presence. Let the probabilities of gene absence and pres-
ence at a node x be ?r{Xx = 0} = TT{

O
X) and Pr{Xx = 1} =

7i^ . Let n(x) be the diagonal matrix of state probabilities
at node x. Let F(ujx) be the matrix of pattern probabili-
ties, whose ijih entry /,-.• is the probability of observing
state i in w and state / in x. The standard (unconditional)
logdet distance between w and x is

dwx = - (1)

The initial constant 1/2 applies to two-state models.
More generally, scaling by the reciprocal of the number of
states means that the unconditional logdet distance can
be interpreted as the expected number of substitutions
for stationary models with equal frequencies of each state
(Lockhart et al., 1994).

The conditioned logdet distance between w and x, cal-
culated for genes present in a conditioning genome, is

(2)

Here, ¥Kwx), W(w\ and WM are defined as above, except
that they include only those genes present in the condi-
tioning genome.

When we use a conditioning genome, we have a non-
random sample of genes whose composition depends on
the location of the conditioning genome. The conditional
Markov model will generally be nonstationary even if
the unconditional model was stationary. This means that
the estimated distance between a pair of taxa depends
on the length of the path leading to the conditioning
genome (Fig. 2a). Because the model is conditional, it is
not obvious that the arguments used to justify it in Lake
and Rivera (2004) are applicable. Here we show that the
model can indeed be justified, for almost all choices of
conditioning genome.
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FIGURE 2. (a) Unconditioned (dashed line: Equation 1) and con-
ditioned (solid line: Equation 2) logdet distances d'wx between a pair
of taxa w and A: (see Fig. 1 for definitions of edge lengths). The con-
ditioning genome c is a distance tc = tk + tv from the path separating
the pair of taxa. (b) Approximate sampling variance o2{d'wx) (Equa-
tion 3) for unconditioned (dashed line) and conditioned (solid line)
logdet distances, assuming a sample of 1000 genes in each case. Other
parameters: tw = 0.1, tx = 0.2; instantaneous rate of gene gain 0.5625;
instantaneous rate of gene loss 4.5. Logdet distances were calculated
from the expected pattern frequencies.

Theorem 1 If gene families evolve independently of each
other, and independently along the edges of a tree according
to a two-state continuous-time Markov model, not necessarily
time homogeneous, but with the same gain and loss rates for
all genes, then conditioned logdet distances are tree-additive
and non-negative, so long as the conditioning genome is not
one of the taxa included in the tree or an internal node.

Proof Appendix 1.

Given these properties, we can obtain a consistent es-
timate of tree topology (Chang and Hartigan, 1991).

SMALL SAMPLES AND THE CHOICE OF CONDITIONING
GENOME

We showed in Appendix 1 that conditioned logdet dis-
tances are tree-additive for almost any choice of condi-
tioning genome. Nevertheless, for small sample sizes, the
choice of conditioning genome may be important. If the
conditioning genome is at or very close to an internal or
terminal node on the tree, the conditional probability of
gene absence at this node will be zero or almost zero. It
is unlikely that we will be able to calculate logdet dis-
tances in such cases, and if we can calculate them, they
will have large variance. An approximate sampling vari-
ance for the logdet distance between taxa w and x is

4s2n

h]_

1+47T
7t\X)

I.I
f sn

(u>) 1
7t\W)

(3)

where P is a sample estimate of the stochastic matrix
whose ijth entry pij is the probability that taxon x has
state ;, given that taxon w has state i, ft\ is the sample
estimate of the probability that taxon w has state i,s is
the number of states (in this case 2), and n is the num-
ber of observations (in this case, genes). Here, all these
estimates are conditional, calculated from the sample of
genes that are present in the conditioning genome. Equa-
tion 3 was derived by the delta method, using a similar
approach to Barry and Hartigan (1987).

Equation 3 contains the reciprocals of the state prob-
abilities. Therefore, for the same reason that the logdet
distance gets large as one or more state probabilities at
a node approach zero, the sampling variance gets large
(Fig. 2b). The consistency result implies that bias and
variance will both get small as the number of genes in-
creases, but both bias and variance could be relatively
large with small samples. We may therefore estimate the
wrong topology in some situations. If we want to min-
imize these problems, a large conditioning genome is
clearly a good idea. The arguments above also suggest
that a conditioning genome far from the taxa of interest
might perform better.

To illustrate this, we simulated gene presence/absence
data on the topology of Figure 1, with a stationary ho-
mogeneous continuous-time two-state Markov model.
Throughout the tree, genes were gained at an instanta-
neous rate of 0.625 and lost at an instantaneous rate of
2.5 per unit time. This gives a stationary probability 0.2
of gene presence. We varied the edge fo leading to the
conditioning genome and the edge tu separating inter-
nal nodes u and k, while keeping the sum of tu and tv
constant. This means that the unconditioned distances
between taxa other than c are constant. In each replicate,
logdet distances were calculated from 5000 genes. This
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is about twice the number of genes in the real data an-
alyzed by Rivera and Lake (2004). For the conditioned
case, this means that we had to simulate until 5000 genes
were present in the conditioning genome. This choice
of parameter values might be realistic. For example, the
COG database (Tatusov et al., 2003) contains 4873 gene
families, with an average of 1328 families present per
bacterial genome and an unknown number of families
absent from all genomes.

For the parameters we used, unconditioned logdet dis-
tances could be calculated in every replicate, and we
almost always recovered the correct topology for taxa
w, x, y, and z using least squares (mean 98%, mini-
mum 96% over parameter combinations). The outcome
is unaffected by the location of the conditioning genome,
because it has no effect on distances between the taxa in-
cluded in the tree. If we conditioned on presence of genes
in taxon c, sampling variability meant that we were of-
ten unable to calculate logdet distances. This was partic-
ularly likely if the conditioning genome was on a short
edge (Fig. 3a, small values of fjt). For cases in which logdet
distances could be calculated, the correct tree topology
was less likely to be recovered when the conditioning
genome was on a short edge and connected close to in-
ternal node v (Fig. 3b, small values of ^ and large values
of tu). This is the pattern we would expect if high sam-
pling variance reduces accuracy. Overall, the true topol-
ogy was recovered less often (mean 87%, minimum 63%
where conditioned logdet distances could be calculated,
mean 67%, minimum 2% over all replicates) than in the
unconditioned case, even though we used the same num-
ber of genes to calculate distances in each case.

EFFECTS OF THE CONDITIONING GENOME
FOR REAL DATA

To examine the effects of choice of conditioning
genome for real data, we analyzed four four-taxon sub-
sets of the 50 bacteria in the COG database (Tatusov
et al., 2003), downloaded 13 May 2004 from ftp://ftp.
ncbi.nih.gov/pub/COG/. The version we used contains
data on the number of members of 4873 gene families
in each genome. For all taxa, we scored the presence
or absence of at least one member of each gene fam-
ily. The mean number of gene families was 1328 (mini-
mum 362, maximum 2243, standard deviation 562). For
each four-taxon subset, we then used each of the 46 other
bacterial genomes in turn as a conditioning genome,
selecting only those gene families that were present in
the conditioning genome. We then bootstrap resampled
the gene families present in the conditioning genome
1000 times and recorded the number of times each of the
three possible unrooted tree topologies was estimated by
unweighted least-squares without constraints on edge
length. For comparison, we calculated least-squares trees
using SHOT distances (Korbel et al., 2002) on the same
data. The SHOT distance between two taxa w and x is
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FIGURE 3. Recovery of a four-taxon subtree using conditioned
logdet distances on simulated data, with a single conditioning genome,
(a) Proportion of replicates for which logdet distances could be cal-
culated; (b) proportion of such replicates for which the correct tree
topology (excluding the conditioning genome) was recovered by un-
weighted least-squares with no constraints on edge lengths. In all cases,
we simulated 1000 replicates and calculated distances from 5000 genes.
Parameters (see Fig. 1): tw = tx = ty = tz = 0.1; tu + tv = 0.02 (varying tu
between 0.01 and 0.02); tk between 0 and 0.01; instantaneous rate of
gene gain 0.625; instantaneous rate of gene loss 2.5.

where npp is the number of gene families present in both
taxa, and a and b are the numbers of gene families present
in w and x respectively. SHOT distances seem to give
good results in practice, although they are not based
on an explicit model of genome evolution. We used the
SHOT results and other biological information to decide
on the probable true topology in each case.

For subset a (Fig. 4a), the dominant topology was
(Synechocystis sp., Mycoplasma genitalium) \ (Escherichia coli
K12, Mesorhizobium loti), with mean 68% bootstrap sup-
port over all conditioning genomes, and maximum sup-
port 99%, when conditioning on Treponema pallidum. This
is probably the correct topology and was supported
by the SHOT method. The mean bootstrap support
for the true topology was not overwhelming, probably
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FIGURE 4. Bootstrap proportions of the three topologies wx, wy, and wz inferred using conditioned logdet distances and unweighted least-

squares for four-taxon subsets of a 50-taxon, 4873-gene-family bacterial genome database. Each point is from one choice of conditioning genome.
The vertices are 100% support for one topology, and open circles at the vertices indicate what we think are the correct topologies. The four-taxon
data sets were (a) w = Synechocystis sp., x = Escherichia coli K12, y = Mesorhizobium loti, z = Mycoplasma genitalium; (b) w = Bacillus subtilis, x =
Bacillus halodurans, y = Haemophilus influenzae, z = Pasteurella multocida; (c) w = Aquifex aeolicus, x = Yersinia pestis, y = Buchnera sp. APS, z =
Ureaplasma urealyticum; (d) w = Corynebacterium glutamicum, x = Lactococcus lactis, y = Salmonella typhimurium LT2, z = Campylobacter jejuni. In
each case, each of the remaining 46 bacterial taxa from the COG database (downloaded 13 May 2004 from ftp://ftp.ncbi.nih.gov/pub/COG/)
was used as a conditioning genome, and 1000 bootstrap replicates were run after conditioning.

because the internal edge is short. However, both of the
other topologies had substantial support from some con-
ditioning genomes. For example, pairing Synechocystis
with E. coli (mean support 20%) received 79% bootstrap
support when conditioning on Vibrio cholerae, and pair-
ing Synechocystis with M. loti (mean support 12%) re-
ceived 68% support when conditioning on Mycoplasma
pneumoniae.

For subset b (Fig. 4b), the topology (Bacillus subtilis,
Bacillus halodurans)\(Haemophilus influenzae, Pasteurella
multocida) was supported by a mean of 99.98% of boot-
strap replicates over all conditioning genomes. No con-

ditioning genome gave less than 99% support for this
topology. The two Bacillus species have the same pres-
ence/absence state for 89% of gene families and are al-
most certainly sister taxa.

For subset c (Fig. 4c), only two of the three topolo-
gies had high frequencies. The dominant topology was
(Aquifex aeolicus, Yersinia pestis)\(Buchnera sp. APS, Ure-
aplasma urealyticum) (mean support 65%, maximum sup-
port 100%, when conditioning on Nostoc sp. PCC 7120).
The second topology (A. aeolicus with Buchnera) had
mean support 34% and maximum support 99% (when
conditioning on Mycoplasma pulmonis). No conditioning
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genome gave more than 4% support for the third topol-
ogy. Two other model-based gene content methods, Gu
and Zhang's extended gene content distance (Gu and
Zhang, 2004) and a more complex Markov model (M.
Spencer, E. Susko, and A. J. Roger, 2006), also supported
the dominant topology. Nevertheless, all three methods
are probably wrong. Buchnera and U. urealyticum are both
members of a group of parasites and endosymbionts
with reduced genomes. The loss of a common set of genes
that are not required for an intracellular lifestyle misleads
most gene content methods (Wolf et al., 2001). The SHOT
method (Korbel et alv 2002), which treats the shared ab-
sence of a gene family as uninformative, grouped A. aeoli-
cus with U. urealyticum. A whole-genome method based
on average BLAST scores (Gophna et al., 2005) also ig-
nores shared absence of genes and groups A. aeolicus with
U. urealyticum.

For subset d (Fig. 4d), the dominant topology
was (Corynebacterium glutamicum, Lactococcus lactis)\
{Salmonella typhimurium LT2, Campylobacter jejuni) (mean
77% support, maximum 100% support with condition-
ing genomes Aquifex aeolicus and Mesorhizobium loti). The
SHOT method also supported this topology, in which the
proteobacteria S. typhimurium and C. jejuni are together.
Pairing C. glutamicum with S. typhimurium had mean 12%
and maximum 67% support (conditioning on Pasteurella
multocida). Pairing C. glutamicum with C. jejuni had mean
11% and maximum 72% support (conditioning on My-
coplasma pneumoniae). As in the first case, any of the three
topologies could receive strong bootstrap support from
some choices of conditioning genome.

We suggested above that a good conditioning genome
should be far from the taxa of interest and contain many
gene families. To test this, we did logistic regression anal-
yses (Agresti, 2002, chapter 5) of the four-taxon data sets.
We used the pairwise SHOT distance from the condition-
ing genome to the closest taxon of interest (rfSmin) and
the number of gene families in the conditioning genome
to predict bootstrap support for the dominant topology.
d Smin is a surrogate for the unknown true evolutionary
distance, which may introduce some extra variability.
However, we obtained similar results using distances es-
timated from a stationary Markov model of gene family
size (M. Spencer, A. J. Roger, and E. Susko, 2006). We
used a binomial logistic model with overdispersion, im-
plemented in R Version 2.0.1 (R Development Core Team,
2004). We did not analyze data set b, because the dom-
inant topology was almost always the only one found.
Table 1 summarizes the results. In all cases, the bootstrap
support for the dominant topology was significantly
higher for conditioning genomes further from the closest
taxon of interest. In all cases except data set a, bootstrap
support for the dominant topology was also significantly
higher for larger conditioning genomes. The P values
are probably underestimates for two reasons. First, the
residual deviance is very large. Second, we treated each
conditioning genome as an independent point, ignoring
the phylogenetic relationships among them. For data set
c, we analyzed support for the dominant topology, which
is probably wrong. Conditions that we would expect

TABLE 1. Logistic regression analyses of the data sets in Figure 4.

Estimate" Standard error P»

Data set a
dSc

min 5.10
Conditioning genome sized —6.93 x 10"5

Null deviance ' 20371
Residual deviance 15934

Data set c
rfsmin
Conditioning genome size
Null deviance
Residual deviance

Data set d

Conditioning genome size
Null deviance
Residual deviance

15.68
1.69 x 10"3

26068
8339

7.80
1.86 x 10"3

18318
11920

1.65
3.85 x 10"

2.13
4.18 x 10"

3 x 10-3

0.86

4 x 10~9

2 x 10""

2.10 6 x 10~"
4.35 x 10-" 1 x 10""

"The response is bootstrap support for the dominant topology. We assumed
a binomial logistic regression model with overdispersion. Entries are parameter
estimates on the logit scale. We did not analyze data set b because there was so
little variation in the dominant topology.

6In all cases, there were 45 null and 43 residual d.f.
CSHOT distance from the conditioning genome to the closest taxon of interest.
d Number of gene families in conditioning genome.

to improve performance (a larger conditioning genome,
further from the taxa of interest) instead increased sup-
port for the wrong topology. This is because the data
on shared absence of genes are positively misleading for
conditioned logdet distances among parasites. Figure 5
shows the corresponding univariate relationships (these
are easier to visualize than the full model, but the pa-
rameter estimates are similar). Overall, dSmjn seems to
be a more reliable predictor of support for the dominant
topology than conditioning genome size. In particular,
there are many large conditioning genomes in data set c
for which there is low support for the dominant topology
(Fig. 5e), even though the overall relationship is positive.
In all cases, there is a lot of unexplained variability. In
summary, the data provide some support for our sug-
gestion that a large conditioning genome, far from the
taxa of interest, might be a good choice. Nevertheless, it
may be difficult to choose a good conditioning genome
in practice, because there is a lot of unexplained vari-
ability, and we do not know the true location of each
genome.

SUPERTREE METHODS

In this section, we develop ways to avoid choosing a
single conditioning genome. We focus on methods that
we can show to be consistent. Intuitively, consistency is
important because our estimates should approach the
true values for very large amounts of data (Silvey, 1975).
However, there are other desirable properties, such as
simplicity and good performance on small samples. We
evaluate small-sample performance for several methods
using simulations. However, we have not included every
possible method. For example, we do not evaluate stan-
dard supertree methods such as matrix representation
with parsimony (MRP: Baum and Ragan, 2004) or aver-
age consensus supertrees (ACS: Lapointe and Cucumel,
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FIGURE 5. Logistic regression analyses of the data in Figure 4. a and d are data set a; b and e are data set c; c and f are data set d (we did not
analyze data set b). The upper three panels are relationships between dSm\n (SHOT distance from the conditioning genome to the closest taxon
of interest) and bootstrap support for the dominant topology. The lower three panels are relationships between size of the conditioning genome
and bootstrap support for the dominant topology. Circles are bacterial conditioning genomes. The fitted lines are logistic regressions, as in Table
1, except that only one predictor variable is fitted at a time for clarity.

1997). Our methods have some theoretical properties that
suggest they should perform well, but there is plenty of
scope for empirical evaluations of other methods.

We first show that simply averaging distance matri-
ces over all choices of conditioning genome (the ACS
approach) may not give a tree-additive distance matrix.
This suggests the need for more sophisticated methods.
We describe two: a least-squares approach and an ag-
glomerative supertree method based on BIONJ (Gascuel,
1997a). We evaluate the performance of these meth-
ods and others using 5-taxon and 40-taxon simulations.
Lastly, we use the agglomerative supertree method to
produce a tree for 40 real bacterial genomes.

Average Distance Matrices are not Generally Tree-Additive
For a set of m taxa, there are m possible choices of con-

ditioning genome and m — 2 estimates of each pairwise
distance. An obvious idea is to average the estimates of
each pairwise distance. We might hope that because the
distance matrix for any choice of conditioning genome
is tree-additive, the average distance matrix will also be
tree additive. Unfortunately, this is not generally so.

First, the expectation of the conditioned logdet dis-
tance between a pair of taxa depends on the choice of
conditioning genome. To understand why this is, con-
sider Figures 1 and 2a. Figure 2a shows that the expec-
tation of the conditioned logdet distance between a pair
of taxa (e.g., w, x in Fig. 1) depends on the condition-

ing genome distance (the distance from the condition-
ing genome to the path connecting the two taxa). Condi-
tioning on taxon c in Figure 1, the conditioning genome
distance is tv + t^. Conditioning on taxon z, the condition-
ing genome distance is tv + tu + tz, and the conditioned
logdet distance between w and x has a different expec-
tation. Furthermore, because the conditioning genome
distance is different for different pairs, distance matrices
from different choices of conditioning genome are not the
same up to a scalar. Consider the pairs (w, x) and (y, z)
in Figure 1, with conditioning genome c. The condition-
ing genome distance k + tv to (w, x) is not necessarily
the same as the conditioning genome distance tk + tu to
(y, z). Thus, even if tw + tx = ty + tz, the expectation of
the conditioned logdet distance between w and x may be
different from the expectation of the conditioned logdet
distance between y and z.

Second, we show that when different distance matri-
ces are not the same up to a scalar, the average of a set
of tree additive distance matrices is not necessarily tree-
additive. Let r(fc)* e r* be the true subtree for all taxa
other than k. Consider the kth. distance matrix D()c), which
is additive on r(fc)* and has x, yth element d^J, the condi-
tioned distance between x and y for conditioning genome
k. The kth row and column are missing, but we can extend
D w to a matrix C(/c) with no missing elements by subdi-
viding the appropriate edge on r(/c)*. In other words, we
attach taxon k at its correct position in r*, setting the
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unknown terminal edge length to zero. Any arbitrary
positive edge length would also work here, because we
will choose weights below so that distances involving
this edge are ignored. C(fc) is then additive on x*. Now
consider the weighted sum of squares

(5)
k xy

where f(p) is a function of the estimated overall edge
lengths pxy, and wxy are weights:

ry \ 1, otherwise (6)

The pXy that minimize f(p) are

Pxy = {k)Cik) (7)

which are simple weighted averages of the C^. This is
equivalent to averaging over the original D ^ for which
d£j was defined. All the C(fc) are in the same subspace C,
because they are additive on r*. If the weights did not
depend on the choice of x, y, then p would be a linear
combination of the C(k\ which would be in C and addi-
tive on T*. However, for our case, the weights are differ-
ent for different x, y (for fixed k, the weights are given by
Equation 6), and in general p will not be in C. Averaging
each distance over those matrices for which it is defined
is equivalent to the average consensus supertree method
(Lapointe and Cucumel, 1997) for the special case where
the /cth row and column are missing from the kth dis-
tance matrix. Lapointe and Cucumel (1997) noted that
the distance matrix obtained by ACS may not be addi-
tive even if all the input distance matrices are. Such cases
can be constructed for all topologies with more than five
taxa (details on request) and do occur for conditioned
logdet distances (for example, the expected distances in
the simulations described in Simulations below). This
means that ACS will perform poorly for some choices of
edge lengths. The inability to recover the correct topol-
ogy with increasing amounts of data also suggests poor
estimation with small samples. However, the lack of tree-
additivity at some edge length settings does not imply
this will be the case for all edge length settings. For some
trees, ACS might perform well, a conjecture worthy of
further investigation.

Summing over Subtrees
An unrooted full topology r for a set of m > 4 taxa

can be decomposed into a unique set of (m - l)-taxon
unrooted subtree topologies r(t) 6 T formed by deleting
each conditioning genome k = 1 ...m and the resulting
internal node of degree 2. For example, the full topol-

ogy (((in, x), c), (y, z)) of the tree in Figure 1 has the sub-
trees: (iu, x)\(y, z); (c, x)\(y, z); (c, w)\(y, z); (w, x)\(cf z);
and (w, x)\(c, y). None of the other 14 unrooted topolo-
gies for these five taxa has the same set of subtrees. We
show in Appendix 1 that given sufficient data we can
obtain a tree-additive distance matrix for any choice of
conditioning genome, so we can. consistently estimate
the topology of every subtree. Thus we can consistently
estimate the topology but not the edge lengths of the full
tree by estimating all the subtrees. With m < 4, r ^ is the
same for all three possible unrooted topologies, so we
cannot identify the full topology from the subtrees.

Suppose that we select the true subtree topology x(k)*
using

Ta)*=argmin/(-r(':)/D(':)) (8)

where f(x(k), D(/c)) is some objective function (such as the
sum of squares) of the subtree topology and the pairwise
distances D(fc) for all taxa other than conditioning genome
k. We minimize the objective function separately over
all possible (m — l)-taxon topologies. Then we can select
the full tree topology x* that has the minimum sum of
objective functions over all its subtrees:

r* = a r g m i n V f(x{k>,Vik)), x(k) e x
k

(9)

With the limiting logdet distances, the consistency result
implies that the sum of squares is zero on each subtree
topology formed by deleting one conditioning genome
from the true full topology and is greater than zero on
any other subtree topology (assuming that there are no
edges of length zero). The sum of these sums of squares
over conditioning genomes is zero on the true full topol-
ogy and on no other full topology. In principle, x runs
over all possible tree topologies (we do this in the 5-
taxon simulations below). In practice, a heuristic would
be necessary for all but the smallest numbers of taxa.

The consistency result implies that we could apply a
general purpose supertree method, such as quartet su-
pertrees (Piaggio-Talice et al., 2004) or MRP (Baum and
Ragan, 2004) to the partial trees constructed from each
conditioning genome. These methods have the disad-
vantage that the partial trees are constructed indepen-
dently of one another, so information from one choice
of conditioned genome only indirectly informs the in-
ference of trees for the other conditioned genomes. The
alternative we present here is a method that uses infor-
mation from all choices of conditioned genome directly
in the construction of a global tree. This suggests that
our method should perform better. It will be interesting
to see whether this is actually the case.

BIONJ for Conditioned Genome Reconstruction
Another approach is to adapt BIONJ (Gascuel, 1997a),

an improved version of neighbor-joining. BIONJ is a
good choice because it is sim pie, consistent, and fast. We
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obtain an overall topology for all taxa, but not an overall
set of edge lengths, from a set of m > 4 taxa. We first de-
scribe the original BIONJ algorithm, then explain how it
can be adapted. Agglomerative methods such as BIONJ
are easy to extend to supertree cases. We would have to
develop a completely different approach for optimality-
based methods such as minimum evolution.

The original BIONJ algorithm.—At each step of the orig-
inal BIONJ algorithm, we choose a pair of taxa i and ; so
as to minimize the criterion

ij = (r - 2)dij - Si - Sj (10)

where r is the number of taxa remaining, S, = ]^/i=i d\h,
and djj is the distance between taxa i and ;'. This criterion
is guaranteed to select a true pair given sufficient data
(Gascuel, 1997b; Bryant, 2005). We then replace i and j
with their common ancestor u and estimate edge lengths
from u to i and / using:

1
r-2

(11)

BIONJ now chooses a parameter A. so as to minimize the
sum of the variances of the new distances:

- 2)Vi
£ (vp, - vih) (12)

where u,y is the variance of dX] and 0 < A < 1. We use d,y
as an initial estimate of u,y (up to a constant that we do not
need to know). This is reasonable for many evolutionary
models (Gascuel, 1997a), including conditioned logdet
distances, provided the distances are not too large.

We then calculate the variances vch of the new distances
from each taxon h to the centre c of the cluster [i, j}, where
c is defined such that dCh = kd\h + (1 — A)dy/,:

(13)

and the new distances

- (1 - X)d )U (14)

We then decrease r by one and iterate until only three
nodes remain.

Adapting BIONJ to obtain a supertree from conditioned
logdet distances.—Our modified BIONJ algorithm con-
sists of three steps that are applied iteratively:

1. Identify a candidate pair to aggregate from each dis-
tance matrix

2. Select the best such pair over all distance matrices,
and aggregate the subtrees containing this pair in all
distance matrices

3. Update the distance matrices

Identifying a candidate pair.—Given a set of m distance
matrices, each from a different choice of conditioning
genome k, we can modify the BIONJ criterion (equation
10) to choose a candidate pair of taxa 0"w ^ k, j w ^ k) to
combine from each matrix. Because we have no informa-
tion about distances involving the conditioning genome,
we replace S, by

Ak) \~^ Ak)
ih (15)

!<*).where dih is the distance between i and h with condition-
(k)

ing genome k. We calculate S. similarly. The number
of taxa remaining under conditioning genome k at any
given iteration is r(fc). For m taxa, the initial value of r(/r)

is m — 1 for all k, because the fcth taxon is missing from
the distance matrix. At later aggregation steps, r(/c) will
either be r - 1 (if taxon k has not yet been aggregated) or
r (if it has). For all matrices in which r w > 3, we obtain
the candidate pair (i^k\ j^) that minimizes

(16)

Assume the distances are tree-additive; this is the case
for the limiting logdet distance. Then the choice O'^, j^k))
is consistent for tree-additive distances (Gascuel, 1997a,
1997b), so any such pair will be a true pair in the kth ma-
trix. However, the location of taxon k cannot be inferred
from the fcth matrix. We therefore need to check whether
the true pair in the overall topology is (z(fc), j{k)), (z(/c), k),
or (k, ;(fc)), using information from the other matrices.

If taxon k has already been aggregated, then the subtree
in which it is contained is represented in the Icth distance
matrix. Therefore, in this case (i^k\ j^k)) are a true pair
in the overall topology. If taxon k has not already been
aggregated, the true pair may be (z(fc), j^k)), (/(/c), k), or
(k, j^k)). With tree-additive distances, one of these must
be a pair of neighbors in the overall topology, if we have
sufficient data. We can establish which is the true pair by
examining all matrices k' in which fi\ j ^ k \ and k are all
present (i.e., k' ^ z(fc), fk\ k). We treat i(/c), ;'(fc), and k as
fixed. In the following three equations, the dependence
on k is implicit. We show in Appendix 2 that if a given
taxon i has a neighbor, the criterion Qjv for fixed i will
be minimized over all other taxa v at that neighbor j . For
fixed b, let

Ka\b =

1 Qab minimal among
•(k) -(k)

a = iKK), ]KK>,i

. 0 Otherwise

(17)

Also let

b\a7?v;w \nSkn> (18)
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where w(fc) is some suitable positive weight, discussed
later. Two of i^k), j{k), and k are true neighbors; with-
out loss of generality, assume it is i{k) and j { k \ Then for

,(*') >(*')large samples, R^j(k) = 1 and Rj{k)liik) = 1 for all k'. Thus
Rnvuk) = 2(m — 3)£\ , w{k'K For large samples, we also
have M̂,(A> = 0 for all k', because k is not the true neigh-
bor of i(/r). It is possible that Rj(2k = 1 for large samples,
but only if k does not have a true neighbor. Thus ifywj. <
(m - 3) £jp w*'1. By symmetry, R;<*)jt < (m - 3) ̂  w(/c)-
With estimated distances we therefore choose the pair

(a1, b') = argmax
ab

a,b = {k\ (19)

(k)(k)
We then set the indicator function Ia b = \\{a = a' ,b = b'
and 0 otherwise.

Selecting the best -pair overall.—Overall, we will choose
the pair (i,;') and aggregate the subtrees containing i and
/ in all distance matrices where i ^k, j ^ k, using

(/,;) = argmax V"
x,y ' ^

Z-^i xy (20)

We showed above that any candidate pair is a true pair
given a large sample size, so any choice of weights w^
will be consistent. However, a good choice of weight will
improve performance on small samples. We consider two
choices for the weights.

First, we could choose the pair that was selected as a
candidate pair from the largest number of distance matri-
ces with r(/c) > 3. This means w{k) = 1 (the vote-counting
method). We will break ties at random:

(z, /) = argmax
x.y

17(0,1/2) (21)

The uniform random number U(0,1/2) breaks ties with-
out changing the ranking of untied pairs.

This method does not account for differences in relia-
bility between distance matrices. Weighting each pair by
the inverse of the sum of all variances and covariances
between distances would account for such differences.
The variances of the distances are inversely proportional
to the size of the conditioning genome (Equation 3) and
increase as the distances increase (Figure 2). In BIONJ,
we assume that variances are proportional to distances,
and covariances are proportional to shared path lengths:

(22,
0 otherwise

(Gascuel, 1997a). The shared path length is zero unless
two pairs of taxa have a member in common, because

we are estimating covariances on a star tree for those
nodes that have not yet been aggregated. Under this
assumption, the row of the variance-covariance matrix
corresponding to dab sums to (rw — 'i)vfb\ This gives the
inverse-variance method for choosing a pair:

,(*)
(23)

where n(k) is the number of genes in the fcth conditioning
genome and the variances are summed over all taxa that
have not yet been aggregated. The term (r(/c) — 1) in the
denominator appears because the number of taxa not yet
aggregated may not be the same for every conditioning
genome.

Updating the distance matrices.—At each iteration, we
decrease r(/c) by one unless i =k or j =k. Where either
i or ; is the conditioning genome k, we do not make
any aggregation, the distance matrix remains unchanged
until the next iteration, and we do not decrease r(k). We

(it)

calculate distances diu to the new node under each con-
ditioning genome k as in Equation 11, using rf,-• ,Sj,Sj,
and r(fc). We estimate the parameter k^ for distances with
the fcth conditioning genome using:

1

and 0 < A.(/c) < 1. We are excluding variances vih where
h = k because we have no information on them. We sub-
stitute r^k\ X(/c), distances d^ and variances u(/r) intoEqua-

(k) (k)
tions 13 and 14 to get distances dul{ and variances vch
for each conditioning genome k, for all nodes h ^ k.

In some distance matrices, / and/or ; may already
have been aggregated into different subtrees at an ear-
lier iteration. In such cases, we aggregate the subtrees
containing i and j . For example, suppose that we ini-
tially have taxa w, x, y, z, c, and that at the first iteration
we chose to aggregate (y, z). These taxa will not be ag-
gregated in distance matrices (k = y and k = z) where
one of the pair is the conditioning genome. At the sec-
ond iteration, suppose that we chose to aggregate y and
w, based on votes from the distance matrices k = y and
k = z. In the other distance matrices, we will aggregate
((y, z), u;). Once a pair has been aggregated, it is replaced
by a new common ancestor node in every distance ma-
trix where both members are present. This means that no
distance matrix can vote for a pair that has already been
aggregated into the same subtree.

Once r(fc) < 3 for any k, this distance matrix makes no
further contribution to the choice of topology. The algo-
rithm terminates when r = 3. We then have an overall
topology in the global list of taxa. When every taxon has
been aggregated, r(/c) = r in every matrix. This means
that at every step with r > 4, there will be at least one
matrix k with r(k) > 4, so that we will always be able to
completely resolve the topology.
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1. Input a set of m m x m distance matrices, each with a different conditioning genome
k. Row and column k are missing from the /cth distance matrix D^fc .̂

2. Initialize the global number of taxa r <— in and the global list of taxa

3. Initialize the number of taxa in each distance matrix r^ <— (r — 1)

4. Initialize each variance matrix V ^ <— D ^

5. While the global number of taxa r > 3:

(a) Compute the sums SJ , 5- (equation 15) from each distance matrix T)W where
r(k) > 3

(b) Choose a candidate pair of taxa (i^k\j^) from each distance matrix D ^ where
r^ > 3, by minimizing equation 16

(c) Determine the true pair out of (i^k\j^k\ k) using equations 17-19
(d) Choose a pair (i,j) to aggregate in all distance matrices, by either the vote-

counting method (equation 21) or the inverse-variance method (equation 23)
(e) Aggregate the subtrees containing this pair in the global list of taxa
(f) For all distance matrices D ^ where k ^ i, j and r^ > 3:

i. Add a new internal node to which the subtrees containing i and j are con-
nected, and compute new edge lengths (equation 11 with variables for the
kth distance matrix)

ii. Compute A^ (equation 24)
iii. Update distances and variances using equations 13 and 14, and variables for

the kth distance matrix
iv. Reduce r^ by 1

(g) Reduce 7' by 1

6. Output the tree from the global list of taxa

FIGURE 6. The modified BIONJ algorithm, adapted from Gascuel (1997a).

The edge length estimates are specific to each distance recorded the number of times we correctly recovered the
matrix, and the edge length to the conditioning genome five-taxon topology using SHOT distances (Korbel et al.,
is missing in each case. We therefore cannot get edge 2002) and BIONJ. SHOT distances are not tree-additive
lengths on the overall tree. evolutionary distances and are not based on an explicit

The algorithm is outlined in Figure 6. The code for the model of genome evolution. Nevertheless, they include
modified version of BIONJ is available at http:/ / www. a correction for variation in genome size among taxa and
liv.ac.uk/~matts/. seem to perform well in practice.

We simulated data on the tree shown in Figure 7, with
Five-Taxon Simulations different expected genome sizes in different parts of the

TA7 , . , . , ,. , ^ , . , L tree. All the internal edges and the terminal edges lead-
We used simulated five-taxon data sets to evaluate i n g t 0 t a x a w n d y we

8
re the same length (0.1: the black

the performance of the summing-over-subtrees method J R ?) T h / j J a n d , d
and the modified BIONJ algorithm. We compared these . ? At A • V H\ • A \ a.

i.u A -..U tu • • i j-i.- J i J «. i.u J to taxa if and z (gray edges m Fig. 7) were varied together
m mnNn % T%

 f
 c o n d l t l ° n e d °§det method, b e t w e e n 0 ^ ^ 8 ^ ^ fid » h a d

using BIONJ on distances from each single conditioning , m m ,
genome. If we do not combine information from sub- t h e r a t e m a t ^ x Parameters qm = 0.2, qw = 0.8. The gray
trees, we can only claim a correct result that is indepen- edges had qw = 0.8 and qm from 0.1 to 1. We rooted the
dent of the choice of conditioning genome if all subtrees tree as shown in the figure and set the probabilities of
are correct. We therefore scored a correct result from the gene absence and presence at the root to their station-
original method only if it recovered the right four-taxon ary values, 0.8 and 0.2. We simulated 5000 genes, so the
subtree for every choice of conditioning genome. We also expected number of genes present at the root was 1000.
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root
FIGURE 7. Simulations for evaluating conditioned logdet distance

methods. All the internal edges (black) had length 0.1 and rate parame-
ters q^ = 0.2, q™ — 0.8. The edges tw and tz (gray) were varied together
from 0.1 to 1. The rate parameters on these edges were q™ from 0.1 to
1, q% = 0.8.

The longer the gray edges, the more strongly the distribu-
tions of absence and presence at w and z diverged from
those of the other taxa. We ran 1000 replicates of each
set of conditions but excluded any replicates in which
the conditioned logdet distances could not be calculated

for every conditioning genome. On average, conditioned
logdet distances could be calculated for 805 replicates per
set of conditions.

Averaging over all conditions, the summing-over-
subtrees method performed worst, giving the correct
topology in only 45% of replicates (Fig. 8c). Even though
we proved that this method is consistent, it may require
very large numbers of data in order to do well, so we
do not discuss it further. BIONJ on SHOT distances re-
covered the true topology in 61% of cases (Fig. 8a: the
average success rate and overall pattern of performance
for SHOT were unchanged if replicates where condi-
tioned logdet distances could not be calculated where
included). Separate BIONJ on conditioned logdet dis-
tances with each conditioning genome in turn gave all
4-taxon subtrees correct in 64% of cases (Fig. 8b). The
modified BIONJ algorithm with vote-counting gave the
correct topology in 78% of cases (Fig. 8d). Modified
BIONJ with inverse-variance weighting was by far the
best method, giving the correct topology in 92% of cases
(Fig. 8e).

10
9
8
7

5
4
3
2
1

a:SHOT

^ ^• •

b: separate BIONJ c: summing over subtrees

1 2 3 4 5 6
"W) "Z ^

7 8 9 10 1 2

10
9
8
7
6
5
4
3
2
1

d vote-counting

m ••
•

m 1t 1

1 2 3 4 5 6 7 8 9 10

3 4 5 6 7 8 9 10

10
9
8

-, 7

x 6
^ 5
'O

* 4
3
2
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e: inverse-variance

•1

1

2 3 4 5 6 7
*«,, t3 x 10

proportion correct

9 10

0.25 0.5 0.75

1 2 3 4 5 6 7
tw, tz x 10

8 9 10

FIGURE 8. Results of simulations for evaluating conditioned logdet distance methods. In each panel, the horizontal axis is the lengths of the
edges leading to taxa w and z, and the vertical axis is the rate of transition from absent to present on these edges. Methods were (a) BIONJ on
SHOT distances; (b) BIONJ on conditioned logdet distances from each conditioning genome separately (scored as correct if the correct subtree
was recovered from all conditioning genomes); (c) summing the sum of squares over subtrees; (d) modified BIONJ, using vote-counting; (e)
modified BIONJ, using inverse-variance weighting. The simulation setup is explained in Figure 7. Lighter values indicate recovery of the correct
topology from a higher proportion of replicates.
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(2)
When q0l is large and the edges tw and tz are long, taxa

w and z will tend to have much larger genomes than the
other taxa. All methods did worse in these conditions
(Figure 8, top right-hand corner of each panel), but the
modified BIONJ method with inverse variance weight-
ing was least affected. The SHOT method did very well
when tw and tz were short and q0^ was small but very
badly when tw and tz were long and q^ was large. In the
extreme case q™ = 1, tw = tz = 1, SHOT distances gave
the incorrect tree (x, ((z, w), y), c) from all replicates (240
where conditioned logdet distances could be calculated,
and 760 where they could not). BIONJ with SHOT dis-
tances gave the same incorrect tree even when distances
were calculated from the exact pattern probabilities, and
is therefore inconsistent for these parameters. In SHOT,
both the correction for multiple changes (which is impor-
tant with long tw and tz) and the correction for variation in
genome size (which is important with large q^ ) are ap-
proximate, so we expect to find cases where they do not
work. This is an example of long-branch attraction with
a mis-specified model (Susko et al., 2004). In contrast, all
the methods based on conditioned logdet distances gave
the correct tree when distances were calculated from the
exact pattern probabilities. This supports the claim that
these methods are consistent, although there may some-
times be strong small-sample effects.

The difference between vote-counting and inverse-
variance weighting in modified BIONJ (Fig. 8d and e)
is interesting. Both methods are consistent, but vote-
counting performs much less well on small samples be-
cause it does not take account of the reliability of each
distance matrix. For example, when q^ =\,tw = tz — \,
genomes w and z are both large and far from internal
nodes. This will tend to increase the reliability of dis-
tance matrices conditioned on presence of genes in w
or z relative to those from other taxa (Fig. 3). Weight-
ing by the reliability of evidence often improves the per-
formance of other super tree methods (Ronquist, 1996;
Bininda-Emonds and Sanderson, 2001).

Forty-Taxon Simulations
We also evaluated the performance of several differ-

ent methods on simulated data on a 40-taxon tree. We
used the set of 40 bacterial taxa from the COG database
for which all conditioned logdet distances were real. We
estimated the maximum likelihood tree topology for 16s
rRNA sequences (from the Ribosomal Database Project
II, release 9, http://rdp.cme.msu.edu/, downloaded 3
May 2006) using PHYML Online (Guindon et al., 2005,
http://atgc.lirmm.fr/phyml/, accessed 18 May 2006)
with discrete gamma rate variation, four gamma cate-
gories, and a general time-reversible model. There is lit-
tle correlation between the edge lengths on the 16s tree
and the numbers of gene insertions, duplications and
deletions in bacterial genomes (Hao and Golding, 2004).
We therefore generated uniform random edge lengths
on the interval [0.005,0.015]. For each of 1000 replicate
sets of edge lengths, we simulated presence-absence data

for 5000 gene families. We used Seq-Gen version 1.3.2
(Rambaut and Grassly, 1997) to generate nucleotide data
under the GTR model (parameters -f 0.4 0.1 0.4 0.1 - r
1 0 1 1 0 1), then recoded as presence/absence data
(A, G -+ 0, C, T —> 1). This gives a stationary probability
of 0.2 for gene presence. For each data set, we estimated
a tree topology using several methods: BIONJ with naive
logdet (conditioning on the set of genes present in at least
one taxon), BIONJ with SHOT, modified BIONJ with
inverse variance weighting, modified BIONJ with vote
counting, and the original conditioned logdet method
(as above, recording a success only if the correct subtree
was obtained for every choice of conditioning genome).
Conditioned logdet distances could be calculated for
every choice of conditioning genome in 686 replicates.
Naive logdet and SHOT gave the correct topology in
all replicates (including those where conditioned logdet
distances could not be calculated for every choice of con-
ditioning genome). We know that both methods can be
inconsistent, but here they performed perfectly. Modi-
fied BIONJ gave the correct result in 99% of cases where
conditioned logdet distances could be calculated for ev-
ery conditioning genome, with either inverse-variance
weighting or vote counting. Although we proved that
this method is consistent, it did not do as well as the
simpler methods in this case, perhaps because of high
variances (Rosenberg and Kumar, 2003). The lack of dif-
ference between inverse-variance weighting and vote-
counting may be because ties are less frequent with large
numbers of taxa. The original conditioned logdet method
gave the right topology for all choices of conditioning
genome in only 17% of cases.

We also simulated a heterogeneous case, with smaller
equilibrium genome sizes in the parasites (two Rick-
ettsias, Mycoplasma, Ureaplasma, Borrelia, and Treponema).
On the edges leading to these taxa, we changed the fre-
quency parameters to give a stationary probability of
0.03 for gene presence (-f 0.485 0.015 0.485 0.015). Con-
ditioned logdet distances could be calculated for every
choice of conditioning genome in only 113 out of 1000
replicates. Again, naive logdet and SHOT performed
well, with the correct topology in 99.9% and 97.9% of
cases respectively (100% and 96.5% of replicates where
all conditioned logdet distances could be calculated).
Modified BIONJ with inverse variance weighting gave
the correct topology in 93% of cases where all condi-
tioned logdet distances could be calculated. With vote-
counting, the correct topology was obtained in 92% of
cases. Original conditioned logdet did not give the right
topology for all choices of conditioning genome in any
replicate. The degree of heterogeneity in these simula-
tions was modest. The parasite genomes still contained
around 800 genes in most cases, compared to 1000 in the
other taxa. With longer edges leading to the parasites
or increased gene loss rate, conditioned logdet distances
could only be calculated in a very small proportion of
replicates.

From these results, it is clear that we can do much bet-
ter than the original conditioned logdet method. Naive
logdet and SHOT performed very well in these cases,
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but we know both can be inconsistent. Modified BIONJ
did not do quite as well, even though it is consistent for
this case. However, in real parasite genomes, only some
genes may show increased loss rates, in which case mod-
ified BIONJ may not be consistent.

Modified BIONJ Applied to Bacterial Genomes
We applied the modified BIONJ algorithm to the real

bacterial genome data analyzed above. We selected the
subset of 40 taxa for which all pairwise distances were
real. We then generated 1000 bootstrap pseudosamples
for these taxa from the gene families in the COG database.
We generated these by taking samples of size n with
replacement from the set of n gene families present in
at least one of the 40 taxa. For each bootstrap repli-
cate, we calculated conditioned logdet distances using
each conditioning genome in turn. If any distances were
not real, we discarded the replicate and sampled again.
We used the modified BIONJ algorithm with inverse-
variance weighting to generate a tree for each bootstrap
replicate, and obtained a majority consensus tree using
PHYLIP CONSENSE (Felsenstein, 2005). We did not at-
tempt to deal with rate variation among gene families.

Methods such as pattern filtering (Lake, 1998; Rivera and
Lake, 2004) may be useful here but are not yet well de-
veloped for gene content data.

Figure 9 shows the results. The most important fea-
ture is that the six parasite genomes (two Rickettsias,
Mycoplasma, Ureaplasma, Borrelia, and Treponema) form a
clade with 97% bootstrap support. This is almost cer-
tainly incorrect. As Figure 4c suggested, conditioned
logdet distances do not deal correctly with parallel
gene loss in unrelated taxa. There are several other
disagreements with commonly-accepted relationships.
Three taxa (Xylella fastidiosa and Pseudomonas aeruginosa
from the y-proteobacteria, and Ralstonia solanacearum
from the ^-proteobacteria) are not placed with the other
members of their major groups. The relative positions of
Vibrio cholerae and the (Haemophilus influenzae, Pasteurella
multocida) pair are reversed in a tree based on the con-
catenation of 205 proteins (Lerat et al., 2003). A sister
relationship between Sinorhizobium meliloti and Mesorhi-
zobium loti is not supported by a. synthesis of 34 gene
trees (Bapteste et al., 2005). Placing Aquifex aeolicus with
the e-proteobacteria and Thermoioga maritima with the
firmicutes is also controversial, but the usual placement

Actinobacteria
' Mycobacterium tuberculosis H37Rv

1Corynebacterium glutamicum

Cyanobacteria
/ Synechi

\^Nostocsp.PCC712\

Firmicutes

t *' Staphylococcus aureusN315

Lactococcus lactis

Streptococcus pyogenes Ml CAS

\ Streptococcus

,' Deinococcus radiodurans

! Rickettsia conorii
Rickettsia prowazehi

Treponema pallidum
Borrelia burgdorferi

Pasteurella multocida 100

Yersinia pestis

proteobacteria

streptococcus / , ' ^ *
pneumonlae TICR4 /* ' , * ' . ..

\ '.',' Haemophilus

<«. „ Salmonella typhimurium LT2

* * * - » . Escherichia coli Kl 2

Gamma proteobacteria'

Mesorhizobium loti
i Agrobacterium
\ tumefaciens strain

Neisseria % i C58 (Cereon)
meningitidis MC58 - ' - - - -

Alpha proteobacteria

, Neisseria meningitidis Z2491

Beta proteobacteria

FIGURE 9. Unrooted bootstrap consensus phylogeny for 40 bacterial genomes from the COG database, estimated using conditioned logdet
distances, modified BIONJ with inverse-variance weighting, and 1000 bootstrap replicates. Edge labels are the percentage of bootstrap replicates
supporting the edge. Edges are not drawn to scale.
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of these thermophiles basal to the other bacteria (e.g.,
Bocchetta et al., 2000) may also be an artefact (Brochier
and Philippe, 2002). Other than these discrepancies, the
major groups of bacteria appear as expected in the tree
and have strong internal bootstrap support (weakest for
the gram positives). Many edges have 100% bootstrap
support. This does not mean these edges are certainly
correct. Instead, it means that stochastic errors are neg-
ligible, while systematic errors may still be important
(Phillips et al., 2004; Jeffroy et al., 2006), as they almost
certainly are for the parasites.

DISCUSSION

We showed that we can obtain a consistent estimate
of tree topology from conditioned logdet distances, for
almost any choice of conditioning genome. Nevertheless,
sampling variance means that the choice of conditioning
genome will be important for real data. In our analyses of
real bacterial genomes, different choices of conditioning
genome resulted in strong bootstrap support for different
tree topologies.

Supertree methods that combine information from
all choices of conditioning genome are preferable. In
five-taxon simulations, our method based on a modi-
fied BIONJ algorithm with inverse-variance weighting
performed much better than the other approaches we
tried. There are some possibilities for further improve-
ment. BIONJ assumes that the distance matrix elements
have variances proportional to their magnitudes. We
could use the variance estimate in Equation 3 instead.
However, calculating the covariances between distances
would be more complicated, and we expect the gain in
performance would be small. In 40-taxon simulations,
our method did not do as well as simpler approaches
such as SHOT and naive logdet distances. This may be
because of higher variances, but there is scope for much
more work in this area.

Our method may have other applications. For exam-
ple, the average consensus supertree method (Lapointe
and Cucumel, 1997) attempts to obtain a supertree topol-
ogy from a matrix of average path lengths on a set of trees.
The average matrix is not generally tree-additive, so this
method may be inconsistent. Our modified BIONJ algo-
rithm is consistent, and although we only applied it to
the case where row and column i are missing from the
ith distance matrix, it might be adaptable to other cases
of missing distances.

Conditioned genome reconstruction does not correctly
place the parasites in a bacterial genome tree based on the
COG database. It is possible that other ways of defining
orthologs would give different results, because there is
strong evidence that phylogenies based on gene content
are sensitive to ortholog definitions (Hughes et al., 2005).
It will therefore be valuable to test conditioned genome
reconstruction on other databases. However, it is also
possible that this is an artefact arising from varying rates
of gene loss. Snel et al. (2005) draw an interesting paral-
lel between parallel gene loss in parasites and the kind
of heterotachy studied by Kolaczkowski and Thornton
(2004) for DNA sequence models. In both cases, there

is a subset of observations (sites or genes) showing the
same change in the rate of evolution on widely separated
edges. If this is not accounted for in a model of evolu-
tion, the wrong topology may be inferred. Kolaczkowski
and Thornton (2004) suggested that parsimony might be
less vulnerable than maximum likelihood to the effects
of heterotachy, but this is highly controversial (Gadagkar
and Kumar, 2005; Gaucher and Miyamoto, 2005; Lock-
hart et al., 2005; Philippe et al., 2005; Spencer et al., 2005).
Snel et al. (2005) similarly suggested that ad hoc correc-
tions for genome size such as SHOT might be preferable
to model-based methods for gene content data. SHOT
is not misled by parallel gene loss, because it ignores
shared absences. However, we showed that variation in
genome size can cause SHOT to be inconsistent in cases
where conditioned logdet distances are consistent and
perform well. Thus no current method is invulnerable
to artefacts caused by changing evolutionary processes
across the tree. If the parasite group is not simply an arte-
fact of the COG database, the best solution might be to
develop mixture models for gene content: such models
work well for heterotachy in DNA sequences (Spencer
et al., 2005) and have been shown to be identifiable in
some cases (Airman and Rhodes, 2006).

The interpretation of a genome phylogeny is less clear
than the interpretation of a gene phylogeny. Lake and
Rivera (2004) suggested that "any method that can prop-
erly model genomic evolution will be invariant to the
confounding effects of HGT [horizontal gene transfer]."
However, such a method would have to properly account
for the sources of lateral transfers. All of our results are
based on the assumption of independent evolution along
edges. If lateral transfers are common between taxa that
share the same habitat, this assumption may be violated,
and the tree estimated by a gene content method may
not reflect the tree of vertical descent. Such cases may or
may not be common, but if they occur one might not reli-
ably estimate the tree that best represents vertical trans-
mission. We could think of the tree as representing the
dominant pathways of transmission, whether vertical or
horizontal (Wolf et al., 2002). Alternatively, we could pur-
sue phylogenetic methods such as Neighbor-Net (Bryant
and Moulton, 2004) that do not impose a tree-like model
on non-tree-like data. The interpretation of trees obtained
from conditioned genome reconstruction has been criti-
cized (Bapteste and Walsh, 2005). Nevertheless, the use
of conditioned logdet distances is a usefti1 step towards
more rigorous analyses of gene content data. The major
challenges facing such analyses are parallel gene loss and
non-random lateral gene transfer.
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APPENDIX 1
TREE-ADDITIVITY AND NON-NEGATIVITY OF

CONDITIONED LOGDET

The Unconditioned Case
We first briefly review a proof that the logdet distance between two

taxa 10 and x is tree-additive and non-negative if all genes are observ-
able. For simplicity, we assume that the path from w to x includes one
internal node v and two edges with separate Markov processes, but the
generalization to many internal edges with different Markov processes
is simple.

The unconditional logdet distance between w and x is defined in
Equation 1. Let P(ur) be a stochastic matrix with ijth entry p\jx), the
probability that taxon x has state ;', given that taxon w has state i. The
pattern probabilities satisfy

Note that logdet(AB) = logdet A + logdet B. Then the last line of Equa-
tion 26 shows that dwx = dmv + dvx. Thus the standard logdet distances
are tree-additive.

To prove that the distance between a pair of adjacent nodes w and
v is non-negative, we first write

(27)

where T indicates transpose. Then

dav = i { -

= j {- log det P'"'"* - log det Pivw)} (28)

We know that log det P = tr(logP), where tr is the trace (the sum of
the diagonal elements) and log is the matrix logarithm. Let Q'""'' =
l/twu log P(u"') be the instantaneous rate matrix along the edge of length
twv = tvw >0 from w to u. We then have

dav = -{-tr(Q(wv)twv) - tr(Q(uu"<
4

(29)

For an instantaneous rate matrix, - 1 times the trace is the sum of the
rates of leaving each state. This is positive unless every state is absorb-
ing, so the logdet distance is non-negative. Also, if („,„ = 0, the logdet
distance is zero.

The Conditioned Case
The logdet distance between w and x, calculated for genes present in

a conditioning genome, is defined in Equation 2 and can be rewritten

d'wx = -l/21ogdet[n'( l u )]1 / 2P'( l"x )[n'( x )]x ) [n ' ( x ) ] - 1 / 2 (30)

P'tox) j s defined as in the unconditioned case, except that it includes
only those genes present in the conditioning genome.

There are three different rooted trees for a pair of taxa w and x and
a conditioning genome c (Fig. 10). However, cases ii and iii differ only
in the labeling of the taxa of interest, so we do not need to consider
case iii separately. We now show that conditioned logdet distances are
tree-additive and non-negative for cases i and ii, so long as the IT' and
F matrices are not singular.

Consider case i in Figure 10. Connecting the conditioning genome c
to the path from ID to x separates the edge wx into two new edges wv
and vx, meeting at a new internal node v. F{wx) has ijth entry

_ TT(«')p(uiu)p(i'jr) (25) = j\Xw = i,Xc = 1} Pr{Xu, = i\X, = (31)

If v is the common ancestor of w and x, then P(u)u) is a time-reversed pro- Each of the terms is conditional on genes being present in the condi-
cess. Provided the forward process has an irreducible transition matrix, tioning genome. The first term in Equation 31 can be written as
this time-reversed process will also be a Markov process, although it
will not necessarily be the same as the forward process (Norris, 1997: Vr{Xx = j \ X = i Xc = 1}
47-48).

Pre- and post-multiplying by the —1/2 powers of the state probabil- .
ities gives

[rI(u-)]-1/2n(u,)p(u..v)[nW]-l/2

[n( u' ) ]-1 /2n( i")p( u i i i ) [n( i ' ) ]-1n( i ' )p( M )[nw]-1 / 2 (26)

(32)
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FIGURE 10. The three possible arrangements of two genomes w
and ,t between which we want to calculate the distance, together with
a conditioning genome c, the root r, and an internal node v.

Here, p̂ 1""1 is the ikth conditional transition probability in P'iwv).
The second term in Equation 31 can be written as

=i\Xu= k}?r{X0 = k\Xc=l}

UJ = 11 XB = k] u = k | X r = /}

Pr{Xr=/|Xc = (33)

Let 7r,'(r) = Pr{Xr = l\Xc = 1} be the probability of state / at node r
conditional on state 1 in the conditioning genome. Then

=k\Xr= /} Pr{Xr = /1 Xc = 1}-

We can then rewrite Equation 33 as

Pr{Xw = i\Xc = 1} = y^Pr{X u , = 11X,. = k}jz'kM

k

(35)

Finally, we can substitute Equations 32 and 35 back into Equation
31 to get

(36)

The proof that conditioned logdet distances are tree-additive is then
exactly as in the unconditional case.

The proof that conditioned logdet distances are non-negative is a
little different. In the unconditional case, we used the properties of
the instantaneous rate matrix Q. We have not shown that there is an
instantaneous rate matrix Q' corresponding to a conditional transition
probability matrix P'.

When going away from the conditioning genome, e.g., v -*• w in
case i:

= i\Xv=k,Xt = l)
Pr{XU) = i\Xu = k] Pr{Xu =k\Xc =

(37)

Thus, going away from the conditioning genome, we have the same P
matrix as in the unconditional case, and can use the same proof.

Going towards the conditioning genome, e.g., u <- w in case i:

[p'(-)]Tir(t*) = n'^'p0'""

(38)det[P'("'ll)]T det IT*"0 = det n'(l'> det P(uui)

det PK"ll) det n'*"0 == det II'll1> det P'""0

detn'(ui)

For any stochastic matrix M, we know that

0 < | d e t M | < l (39)

(because the determinant is the product of the eigenvalues, and none of
these has absolute value greater than 1). This means that det P"""' < 1.
For H'iv) and n'(u>), we know that the determinants are non-negative
(because they are the products of the probabilities of states 0 and 1).
This fact, together with Equation 39 and inequality 39, gives us

0 < detP*""1' < 1 *> 0 < detP'(u)ll) < 1 (40)

(34)

If there was a continuous-time Markov process along the edge in the un-
conditional case, then we know tha t log det P{vw) < 0, with equality only
when the expected number of substitutions is zero (as shown above in
the unconditional case). This establishes that the LHS of relation 40 is
true. The conditioned logdet distance (Equation 30) is non-negative if
both the II' matrices and the P' matrix have determinants between zero
and one, which we have just shown. This also establishes that there is
an instantaneous rate matrix Q' corresponding to P' for the two-state
case (reviewed in Singer and Spikrman, 1976: 9-10).
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Case ii differs from case i in that the path from w to x includes r as We therefore need to show that if i has neighbor j , then g(v) is min-
wellas v, but the proof is similar. The first term in Equation 31 becomes imized at /. Let u be the internal node that is the parent of / and /.

Let s be the internal node adjacent to u with dus > 0, and let / be some
= 11X — i X- = 1) terminal node other than /, j .

\r = /|Xt, =k,Xc = l}Pr{X,, = it|Xu, = i, Xc = 1} ^
= (dij — du) + (djj — dji) + (dji — du) + y d]n — div

Pki Plj ^~-v
= (dfj — du) + y djv — diu (45)

r tu<v) ' ( IT) /(r.v)l °*i'i''
L J ij

For v ̂  i, j , I, the path from j to v includes the nodes s and u. Using
For case ii, let n'kM = Pr{XL, = k\X<. = 1}. The second term in Equation the triangle inequality,

31 then becomes

E > djU + dus + dsv - (d,s + ds,,)
Pr{Xu, = i|X, = it}Pr{Xu = k\X< = 1}

= dJU + dus - dls (46)

= y PkT n'k' Because the path from / to i includes nodes s and u, du = dts + dsu + duu

k or dis = da — dsu — dui. Substituting this into Equation 46,

= 4W) (42)
djv — div > djU + dus — d,j + dsu + dui

so we finish with = dij - du + 2dus (47)

f'(fx) _ yj._'("•) rp'(uaOp'(i'r)p/(rj-)l ^2) > d,t — du

„ . . . . . . , . . . . . . Substituting in Equation 45,
Proving tree-additivity and non-negativity is then the same as m case °
i, but with two internal nodes instead of one.

Sj - S, > (^ - d , , ) + (r- 3)(dij - du) (48)

APPENDIX 2 ={r_2)(dij-dii)

IF i HAS A NEIGHBOR, MINIMIZING Qiv WILL FIND THAT
NEIGHBOR SO that

We want to show that if a fixed taxon i has a neighbor, minimizing
the criterion Qiv over all other taxa v will identify that neighbor, for ,., _ ,... _ , _ ,- - , . , _ ~\ _ J
tree-additive distances on a bifurcating tree with positive internal edge ° ° ' ~ '' ' ' ''
lengths. We have dropped the superscripts indicating the conditioning -I- (S(. + S)/(r — 2)
genome for clarity. Let

g(v) = div - (Si + Sv)/(r - 2) > (du - dij) + W,7 - dH)

= QiJ(r - 2) (44) = 0 (49)
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