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Abstract

We propose a continuous model for variation in the evolutionary rate across sites and over the phylo-
genetic tree. We derive exact transition probabilities of substitutions under this model. Changes in rate are
modelled using the CIR process, a diffusion widely used in financial applications. The model directly
extends the standard gamma distributed rates across site model, with one additional parameter governing
changes in rate down the tree. The parameters of the model can be estimated directly from two well-known
statistics: the index of dispersion and the gamma shape parameter of the rates across sites model. The CIR
model can be readily incorporated into probabilistic models for sequence evolution. We provide here an
exact formula for the likelihood of a three-taxon tree. The likelihoods of larger trees can be evaluated using
Monte–Carlo methods.
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1. Introduction

Understanding evolutionary rates and how they vary is one of the central concerns of molecular
evolution. It has been clearly shown that inadequate models of rate variation, between lineages
and between loci, can dramatically affect the accuracy of phylogenetic inference [1–3]. The depen-
dency of molecular dating on evolutionary rate models is even more critical: we will only obtain
precise divergence time estimates from molecular data once we can model the rate at which
sequences evolve [4,5].

Modelling the evolutionary rate is made difficult by the number and variety of factors influenc-
ing it. The base rate of mutation can vary because of changes in the accuracy of replication
machinery [6], DNA repair mechanisms [7], and metabolic rate [8]. At the cellular level, selective
pressures can lead to variation of rate between loci and over time, as evidenced by differential
rates of the three codon positions [9,10], the slower evolutionary rate of highly expressed genes
[11], and the effect of tertiary structure on patterns of sequence conservation [12].

Selection also affects the evolutionary rate at the level of populations. For the most part, the
only mutations that affect phylogenetics are those that are fixed in the population. Hence evolu-
tionary rate is a combination of mutation rate and fixation rate. Fluctuations in population size,
generation times, and environmental pressures affect fixation rates and thereby influence evolu-
tionary rate [13–15].

Because of this complexity, the strategies employed for modelling evolutionary rate have tended
to be statistical in nature. As with all statistical inference, there is an iterative sequence of model
formulation, model assessment, and model improvement. The aim is to construct a model that
accurately explains the observed variation but is as simple, and tractable, as possible.

Our goal in this paper is to derive a continuous model for rate evolution that avoids many of
the problems of existing approaches. We base our model on the CIR process, a continuous Mar-
kov process that is widely used in finance to model interest rate fluctuations [16]. As we shall see,
the model fits well into existing protocols for phylogenetic inference.

The CIR process has a stationary distribution given by a gamma distribution and yet, unlike
the rates-across-sites (RAS) model of Uzzell and Corbin [17], the rate is allowed to vary along
lineages. The CIR model adds only one parameter to the RAS model, and this parameter can
be estimated directly from the index of dispersion or the autocorrelation (see below). Further-
more, we can derive exact transition probabilities when we incorporate CIR based rate variation
into the standard models for sequence evolution.

The outline of the paper is as follows:

• In the following section we summarise the key characteristics of models for rate evolution, and
show how existing models are classified with respect to these characteristics.

• In Section 3 we present the CIR model for rate evolution and discuss its basic properties.
• In Section 4 we derive transition probabilities for standard substitution models where the rate is
described as a Markov process.

• In Section 5 we focus on the case where the rate is modelled by a CIR process.
• In Section 6 we extend this one step further to derive an expression for likelihood of a three-
taxon tree using a substitution model with rate determined by the CIR process. We note that
three-taxon trees are often used to study differences in evolutionary rate.
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We conclude with a discussion on how these results can be applied to phylogenetic analyses for
more than three taxa.
2. Properties of models for rate variation

In this section we examine several important characteristics that can be used to distinguish, and
choose between, different models for rate variation. We discuss how the existing models fit into
this scheme and summarise the differences between them in Table 1.

The rate of evolution for a given site at time tP 0 is denoted by Rt. For each t > 0, Rt is a non-
negative random variable, and different models of rate evolution give different distributions for
the rates Rt, t P 0.

Here and throughout the paper we will restrict out attention to Markov processes. That is, for
any t1 6 t2 6 t3, we assume that Rt3 conditioned on Rt2 is independent of Rt1 . In other words, the
future depends on the past only through the present.
Table 1
Models for the substitution rate, classified according to the properties of Section 2

I II III IV
Rate class Ergodicity Closed form

for the transition
probability

Closed form
for the
autocovariance

Ref.

Models from population genetics

Fluctuating mutation rates CTMC with
continuous state space

No Yes None [14]

Fluctuating neutral space CTMC with
continuous state space

Yes None None [14]

Compound Poisson process CTMC
with finite state space

Yes None None [14,38]

Episodic evolution CTMC
with finite state space

Yes None None [26]

Models from phylogenetics

Covarion CTMC with
finite state space

Yes Yes None [18,27,19,20]

HLS CTMC with
continuous state space

No None None [21]

Log-normal Diffusion No None Constant
autocovariance

[23,5]

Ornstein–Uhlenbeck Diffusion No None Exponentially
decreasing

[4,22]

CIR process Diffusion Yes Yes Exponentially
decreasing

[16]

CTMC stands for ‘continuous-time Markov chain’.
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2.1. Property I: Continuous or discontinuous sample paths

The first characteristic is whether sample paths of the process are continuous or discontinuous
with respect to time. Typically, models with discontinuous paths have ratesRt that are constant ex-
cept for discrete points in time at which there is a jump in the value (Fig. 1-1(a)). If the number of
possible values for the rate is finite, then the rate can easily be described as a continuous-timeMarkov
chainwith afinite dimensional infinitesimal ratematrix. For example, in the covarionprocess [18] the
basic rates are ‘off’ (Rt = 0) or ‘on’ (Rt = 1) and transitions occur between them at exponentially dis-
tributed random time intervals. Galtier [19,20] generalizes this process to one with more than two
possible states. In othermodels, the rangeof possible values for the rate is continuous, as in themodel
of Huelsenbeck [21], where a rate change event consists of multiplying the previous rate by a gamma
random variable. The rate change events are still discrete and exponentially distributed.

There are also models that describe the rate as a continuous function with time, and the most
important class of Markov processes with continuous paths are diffusions (Fig. 1-2(a)). Examples
include the CIR process presented here, the Ornstein–Uhlenbeck model of Aris-Brosou and Yang
[4,22], and the log-normal model of Kishino et al. [5,23].

Finally, it is also possible for Rt to make jumps in value at a discrete set of times while also
changing continuously in between these points.

2.2. Property II: Long term behaviour and ergodicity

The second property we consider is the distribution of Rt as t goes to infinity, that is, the
distribution of the rate of evolution in the long term. Surprisingly, many models of rate evolution
are very badly behaved in the limit.
Fig. 1. A representation of the two classes of rate process with respect to the classification of property I. On top are
examples of the rate history. Below are the corresponding integrated rates sðtÞ ¼

R t
s¼0

Rs ds. The figures 1(a), 2(a) refer to
a continuous-time Markov chain with discrete rate change events, and in figures 1(b), 2(b), R(t) is modelled as a
diffusion process, with continuous paths.
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One problematic class of processes that have already been applied to rates in phylogenetics is
the martingales. We say that a Markov process is a martingale if, for all s, t P 0 we have
E[Mt+sjMt] =Mt [24]. An example of a Markov martingale is Brownian motion. As a result of
this fairly innocuous looking condition, a martingale Mt has the property that either E[jMtj] is
unbounded in time or Mt converges to a random constant [25]. Either possibility is undesirable
from a modelling point of view. This may not be a problem if we only look at the process over
a finite time, but neither is it particularly desirable. The processes of Kishino et al. [5,23] and Huel-
senbeck et al. [21] all have the property that either Rt or log(Rt) is a martingale.

At a purely theoretical level, we observe that an ever-increasing variance will result for almost
any signal that is only driven by its initial value and a stochastic force, with no directional bias.
The position of a particle subjected to a random force produced by collisions with other particles
is a classical example of such a case. In our context, the effects on the evolutionary rate are not
independent of the actual rate: whatever the theoretical framework we consider, a high evolution-
ary rate is not as likely to increase (or to stay at high values) as to go back to smaller values. The
theory of episodic evolution [26] fits particularly well with this idea. Periods of drastic adaptation
with high evolutionary rates are naturally followed by periods where a population is adapted and
its genome evolves much more slowly. Even according to the neutral theory, as argued by Takah-
ata [14], the overall dynamic of the rate should behave as a random function that takes high values
whenever bottlenecks occur and goes back to small values afterwards.

The concept of ergodicity naturally arises from this observation. We say that a Markov process
is ergodic if for any initial rate R0 the distribution of Rt converges to a unique distribution as t
goes to infinity. The limiting distribution is known as the invariant or stationary distribution.
Examples of ergodic processes include the OU process, the CIR model and (usually) the discrete
space covarion and covarion-type models [27,19,20].

One possible way for a process to not be ergodic is if for some initial rate R0 the distribution of
Rt does not converge for large t. This must be the case if Rt is a martingale and does not converge
to a constant, as is the case with Brownian motion. Another possibility is that Rt converges to
different stationary distributions for different values of R0.

2.3. Property III: Tractability

A highly desirable feature of any model is its tractability, both mathematical (does there exist a
closed formula?) and computational (can we compute probabilities efficiently?). Nowadays,
Monte Carlo methods make it possible to use arbitrarily complex models: however, explicit
analytical formulae permit more efficient sampling [28].

There are several probability distribution functions that are important to have when working
with rate processes. The most basic is the distribution of the rate Rt given the rate at time
t = 0. This we have for the models [4,22,23,5] and for the CIR model, but not for the models
of [21].

In phylogenetics we incorporate the model for evolutionary rate into the substitution model for
sequence evolution at a site. These interact to give a joint process (Rt, Xt) for both the rate Rt at
time t and the nucleotide or amino acid state Xt at time t. To evaluate the likelihood we require an
expression for the joint conditional transition probabilities of Xt and Rt. If both random variables
are discrete, then their joint transition probability is a probability mass function, which we denote
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Pr½X t ¼ j;Rt ¼ sjX 0 ¼ i;R0 ¼ r�.

If Rt is continuous, then its marginal distribution is best described by a probability density func-
tion fRt jR0¼rðsÞ, defined as
Pr½Rt 2 dsjR0 ¼ r� ¼ fRt jR0¼rðsÞds;

where ds is infinitesimal and ds = [s, s + ds]. The joint distribution of Xt and Rt will then take the
general form
Pr½X t ¼ j;Rt 2 dsjX 0 ¼ i;R0 ¼ r�
¼ Pr½X t ¼ jjX 0 ¼ i;Rt 2 ds;R0 ¼ r�Pr½Rt 2 dsjR0 ¼ r�
¼ Pr½X t ¼ jjX 0 ¼ i;Rt ¼ s;R0 ¼ r�fRt jR0¼rðsÞds;
where the last step is valid when Rt is a diffusion process. Even though it is sometimes possible to
perform Monte Carlo computations to estimate this probability without a formula (as in [21]),
having a formula will speed up the computations significantly without having to resort to approx-
imations, as in [23,5].

2.4. Property IV: Autocovariance and dispersion

There is general agreement [29–31] on the relevance of autocorrelation in the modelling of evo-
lutionary rate. Broadly speaking, if the various causes that explain rate variation (generation time,
population size, environmental fitness) vary with time, it should be reflected in rate variations. The
extent to which the rate varies can be studied using the index of dispersion [32–34]. Let N(t) be the
number of substitutions or mutations of a sequence over time t. The index of dispersion I(t) is
defined as
IðtÞ ¼ Var½NðtÞ�
E½NðtÞ� . ð1Þ
This statistic can be estimated by comparing the number of substitutions that have accumulated in
different lineages [33,35]. These estimates are consistently found to be greater than one, hinting
that the substitution process is overdispersed and deviates from the Poisson process [29,36]. As
Zheng showed [37], the infinitesimal matrices currently in use (with constant rate) are not likely
by themselves to explain a large increase in the index of dispersion.

Many models of molecular evolution have been suggested to explain the observed amount over-
dispersion [14,38,39]. They model the impact of environmental change, fluctuation selective pres-
sure and multiple simultaneous mutations. In phylogenetics, which generally operates at a longer
time scale than population biology, the emphasis is on autocorrelation of rates [40,31]. In effect,
the many population level processes influencing evolutionary rate are collapsed into one random
process.

The first attempt of estimation of divergence times with an overdispersed clock was performed
by Cutler [40], but instead of inferring the mean number of substitutions along each branch using
his own method, he rather used Sanderson’s non-parametric method [31]. Here, we propose a new
model for the evolutionary rate, the CIR model, that can be applied to phylogenetic analysis, and
at the same time incorporates overdispersion of the substitution process.
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The index of dispersion resulting from a particular model of rate variation is a function of the
autocovariance of that model. The autocovariance for a process Rt is defined by
qðtÞ ¼ CovðR0;RtÞ. ð2Þ

For many processes we can derive an explicit formula for the autocovariance. If we assume that
the substitutions occur according to a Poisson process with rate governed by our rate process (that
is, the substitutions follow a doubly stochastic or Cox process, see Section 4) and the rate process
has autocovariance function q(t) then
IðtÞ ¼ 1þ
2
R t
0
1� s

t

� �
qðsÞds

EðRtÞ
; ð3Þ
as stated by a theorem in [41], and the stationary index of dispersion [26] is then
Ið1Þ ¼ lim
t!1

IðtÞ ¼ 1þ
2
R1
0 qðsÞds

l
; ð4Þ
provided that l, the stationary mean of the process R(t), and the limit, exist. Note that if there is
any stochastic variation in rate then the index of dispersion will be greater than one [26].

Some rate models in phylogenetics [23,22] don’t model the rate explicitly, but instead assign a
(fixed) rate to each branch, so that the expected number of substitutions on a particular branch is
equal to its length times its assigned (constant) rate.

A close look at the log-normal model from Thorne et al. [5], which differs from their previous
version [23] in that the rate is explicitly modelled, shows that the rate has constant autocovariance,
since this rate process is close to a transform of the Brownian motion, and Brownian motion has a
constant autocovariance function. Put into Eq. (4), we see that the index of dispersion diverges.
This problematic result illustrates the necessity of a balance between the presence of autocorrela-
tion on one side, and the decrease of autocorrelation on a large time scale.
2.5. Property V: Heterotachy or homotachy

There are two general ways that models for evolutionary rate can be incorporated into phylog-
enetics. On one hand, we can introduce a distinct rate process for each site or locus. In this paper,
our focus is principally on the modelling of heterotachy, which describes changes in the rate that
are site-specific [2]. The transition probabilities that we derive in Section 4 can be applied primar-
ily in a heterotachous context. Therefore, an independent substitution process as well as an inde-
pendent rate process occur on each site.

The alternative to having an independent rate process for each site is to model dependencies
between sites, or, in the extreme case, a single rate process that applies simultaneously to all sites.
This extreme case can be modelled by trees for which the paths from the root to the leaves have
different lengths, and capture what Langley and Fitch [34] called the lineage effect, i.e. the part of
rate variation that is common to all sites, for example the consequence of a variable generation
time. This kind of rate variation explains the extent to which the evolution of the sequences
has violated the molecular clock.



T. Lepage et al. / Mathematical Biosciences 199 (2006) 216–233 223
3. A continuous diffusion model for the evolutionary rate

A Markov process with continuous paths and satisfying some additional smoothness condi-
tions on its transition probabilities [42] is called a diffusion. There are many ways of specifying
a diffusion process: perhaps the most intuitive one is by giving the probability distribution func-
tion (PDF) of Rt given R0 = r0, for arbitrary r0.We denote this PDF by fR[Rtjr0]. For example,
Brownian motion with parameter r2 is defined by the condition that fR[Rtjr0] is a normal density
with mean r0 and variance r2t.

A mathematically convenient representation of a diffusion is by means of a stochastic differen-
tial equation (SDE). In the same way that a dynamical system can be defined as the solution of a
differential equation, a diffusion process Rt can be defined as the solution of an equation taking
the general form (see [24, p. 61])
dRt ¼ aðt;RtÞdt þ bðt;RtÞdBt. ð5Þ

Here, a(t, Rt) represents the deterministic effect on Rt, b(t, Rt) the stochastic part, and dBt is an
infinitesimal ‘random’ increment. Brownian motion corresponds to the case when a(t, Rt) = 0
for all t, b(t, Rt) is constant and the SDE becomes
dRt ¼ rdBðtÞ.

Note that if b(t, Rt) = 0 for all t and Rt then (5) becomes a deterministic ordinary differential
equation.

Going from an SDE such as (5) to a PDF for the diffusion involves solving a variable-coefficient
second-order partial differential equation (PDE). For general functions a and b this PDE has no
analytic solution. There are very few diffusions known that have closed form equations for their
pdfs, and even fewer of these are ergodic. The simplest ergodic diffusions with closed-form expres-
sions for the PDF are the Ornstein–Uhlenbeck and the CIR (Cox-Ingersoll-Ross) [16] processes.

The Ornstein–Uhlenbeck (OU) process is described by the SDE
dRt ¼ �bRt dt þ rdBt.
The PDF for Rt given R0 = r0 is the normal density with mean r0e
�bt and variance r2(1 � e�2ht).

Its stationary distribution is normal with mean 0 and variance r2. The OU process was used by
Aris-Brosou and Yang [22] to model evolutionary rates. However, the OU process can take on
negative values, and it is not clear how it can be used directly without any transformation, such
as a reflected OU or a squared OU. Aris-Brosou and Yang also proposed another model, the EXP
(for exponential) model, defined as the following: the rate assigned to a branch is drawn from an
exponential distribution with mean equal to the rate of its ancestral branch. Hence their EXP
model was a martingale. They observed that the OU model seemed to provide a better fit to their
data than the EXP model. Even though the reason of this better fit is still to be investigated, it
seems reasonable to suggest that the ergodic property of the OU model could be a important
factor. They also mentioned that the r2 parameter of the OU model was hard to infer, perhaps
because the OU model has an insufficient number of free parameters.

The use of the CIR model solves the problem, since it is a generalization of the squared
OU process, that has two independent parameters instead of three for the CIR. Fixing the
mean parameter of the CIR process to one, we are left with two parameters that can be used
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to independently estimate the variance and the autocorrelation. In the mathematical literature it is
often called the squared Bessel process (see [43]).

The CIR process satisfies the SDE
dRt ¼ bða� RtÞdt þ r
ffiffiffiffiffi
Rt

p
dBt; ð6Þ
and the PDF fR(Rtjr0) for Rt given R0 = r0 is a non-central v2 distribution with degree of freedom
4ab/r2 and parameter of non-centrality 4br0e�bt

r2ð1�e�btÞ. Its mean and variance are equal to
E½Rt� ¼ r0e�bt þ að1� e�btÞ ð7Þ

Var½Rt� ¼ r0
r2

b
ðe�bt � e�2btÞ þ ar2

2b
ð1� e�btÞ2. ð8Þ
As t goes to infinity, the parameter of non-centrality of fR goes to zero, and the stationary dis-
tribution of Rt is a gamma distribution with shape parameter 2ab/r2 and scale parameter r2/2b, or
equivalently, the stationary rate equals r2

4b times a v2 random variable with degree of freedom 4ab
r2 .

Hence the mean of the stationary distribution is a and the variance is ar2

2b [16].
Unlike an OU process, if r0, a, and b are all positive a CIR process is always non-negative. The

square of an OU process is a special case of the CIR process. Furthermore, by multiplying Rt by a
constant in Eq. (6), we see that multiplying a CIR process by a positive constant gives another
CIR process.

The covariance of the stationary CIR process can be exactly computed as
qðtÞ ¼ CovðR0;RtÞ ¼
ar2

2b
e�bt. ð9Þ
From this, (3) leads to a closed formula for the index of dispersion:
ICIRðtÞ ¼ 1þ r2

b3t
ðbt � 1þ e�btÞ.
Thus
ICIRð1Þ ¼ lim
t!1

ICIRðtÞ ¼ 1þ r2

b2
. ð10Þ
From (6) we see that the CIR process possesses three parameters a, b, and r2. These parameters
can be interpreted as the stationary mean a, the stationary variance 2ar2/b, and the intensity of
the force that drives the process to its stationary distribution, b. The parameter b determines
how fast the process autocovariance goes to 0 as t increases.

The three parameters of the CIR process can be quickly estimated from standard statistics in
molecular evolution. The parameter a is a scale parameter. It determines the expected rate at
any time given no other information. Throughout the paper, we will assume that a = 1, so that
the model has an expected rate equal to one. This parallels the constraint that the gamma distri-
bution has an expected rate equal to one in the Rate-Across-Site (RAS) model [1].

The CIR process has a stationary distribution given by a gamma distribution. To make the
stationary distribution coincide with the gamma distribution of a RAS model with parameter
C we choose r and b such that
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C ¼ r2

b
. ð11Þ
The stationary index of dispersion, ICIR(t), can be estimated empirically [34,29] for a given locus.
Because the difference between ICIR(t) and ICIR(1) is of the order of 1/t, we can then use (10) and
(11) to obtain the estimates
b̂ ¼ Ĉ

ÎCIRð1Þ � 1
;

r̂2 ¼ Ĉ
2

ÎCIRð1Þ � 1
.

4. Substitution models with a rate process

The standard model for the substitution process at a particular locus is a continuous-time Mar-
kov chain. This kind of process is defined by a square matrix Q called the infinitesimal rate matrix.
Suppose, to begin, that there is a constant evolutionary rate r0. As above, we let Xt denote the
state (e.g. amino acid) at time t. The transition probabilities are then given by
Pr½X t ¼ jjX 0 ¼ i� ¼ ½eQr0t�ij. ð12Þ
We suppose that the process has a unique stationary distribution p, where pj is the stationary
probability of state j and
pj ¼ lim
t!1

Pr½X t ¼ jjX 0 ¼ i�
for all i and j. We assume that Q has been normalised so that in the stationary distribution the
expected number of substitutions over time t equals r0t. Note that the transition probabilities
(12) depend only on the product r0t, so will be the same if we double the rate and halve the time,
for example.

Suppose now that the rate is not constant, but instead varies according to some fixed function
rs, s P 0. Eq. (12) then becomes
Pr½X t ¼ jjX 0 ¼ i; r� ¼ ½eQsr �ij; ð13Þ
where
sr ¼
Z s¼t

s¼0

rs ds
is the area under the curve rs.
In the models we will consider, the fixed function r = (rt)tP0 is replaced by a random process

R = (Rt)tP0 that is dependent only on the starting rate r0. The integral
sR ¼
Z s¼t

s¼0

Rsds ð14Þ
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is also random in this case; let gR denote its PDF. The transition probabilities can be determined
from the expected value of (13) with sr replaced by the random variable sR. By the law of total
expectation, this simplifies to
Pr½X t ¼ jjX 0 ¼ i� ¼
Z
s
½eQs�ijgRðsÞds. ð15Þ
Let MðgÞ ¼ Es½egsR � denote the moment generating function (MGF) for the random variable sR.
Then (15) can be rewritten
Pr½X t ¼ jjX 0 ¼ i� ¼ ½MðQÞ�ij

where the function M is interpreted as a matrix function [44]. We assume that Q can be diagona-
lised as Q = VKV�1, where K = diag(k1, . . . ,kn) is a diagonal matrix formed from the eigenvalues
of Q. The matrix function M(Q) can then be evaluated as M(Q) = VM(K)V�1, where
MðKÞ ¼ diagðMðk1Þ; . . . ;MðknÞÞ.

See [45] for a more details on matrix functions. The problem of determining pattern probabilities
therefore boils down to the problem of determining the moment generating function of the inte-
grated rate, sR (Eq. (14)). Tuffley and Steel use this approach to derive distance estimates for the
covarion process [27].

For applications in phylogenetics, we need the MGF of sR conditioned on just the starting rate,
or both the starting and finishing rate. MGF of sR conditioned on a starting rate of r0 is
Mr0ðgÞ ¼ E expðgsRÞjR0 ¼ r0½ � ¼ E exp g
Z t

s¼0

Rsds
� �

jR0 ¼ r0

� �
. ð16Þ
As before, we let fR(Rtjr0) denote the PDF of Rt conditioned on R0 = r0. Let d(x) denote the Dirac
delta distribution, so that

R
dðxÞf ðxÞdx ¼ f ð0Þ for all smooth functions f. MGF of sR conditioned

on both the starting and finishing rates is
Mr0;rtðgÞ ¼ E expðgsRÞjR0 ¼ r0; Rt ¼ rt½ �

¼ 1

fRðrtjr0Þ
E expðgsRÞdðRt � rtÞjR0 ¼ r0½ �

¼ 1

fRðrtjr0Þ
E exp g

Z t

s¼0

Rs ds
� �

dðRt � rtÞjR0 ¼ r0

� �
. ð17Þ
Eqs. (16) and (17) hold irrespective of whether R is discrete or continuous, a diffusion, jump
process, or a continuous time Markov chain.

We note in passing that analytic formulae for Mr0ðgÞ and Mr0;rtðgÞ exist in the case that R is
a continuous time Markov chain, for example in the covarion-type model of Galtier [19]. Sup-
pose that the evolutionary rate switches between rate values g1, g2, . . . , gk following a continu-
ous time Markov chain with infinitesimal rate matrix G. Let D be the k · k diagonal matrix
with entries g1, g2, . . . , gk. A careful reworking of the proof of Theorem 1 in [46] gives
MGF of sR conditioned on both the starting and finishing rate. MGF for sR conditioned
on r0 = gi is then
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Mgi ¼
Xk

j¼1

ðeðGþgDÞtÞij
while MGF of sR conditioned on r0 = gi and rt = gj is
Mgi;gj ¼
ðeðGþgDÞtÞij
ðeGtÞij

.

This provides an independent derivation of the formula in [20] for transition probabilities under a
covarion-type model.
5. Moment generating functions and transition probabilities for the CIR model

In this section we derive expressions for the (joint) transition probabilities
Pr½X t ¼ jjX 0 ¼ i;R0 ¼ r0�. ð18Þ

and
Pr½X t ¼ j;Rt 2 dsjX 0 ¼ i;R0 ¼ r0� ð19Þ

As we have seen, to evaluate these probabilities we need to determine the moment generating
functions (MGFs) defined in Eqs. (16) and (17).

We use the Feynman-Kac formula [47,24] to derive analytic formulae for Mr0ðgÞ and Mr0;rtðgÞ
under the CIR model. Let g(Æ) be a real-valued function. Define the function v = v(t, x) by
vðt; xÞ ¼ E exp g
Z t

0

RðsÞds
� �

gðRtÞ
����R0 ¼ x

� �
ð20Þ
The Feynman-Kac formula [47] asserts that v(t, x) solves the following partial differential equa-
tion (PDE)
o

ot
vðt; xÞ ¼ bð1� xÞ o

ox
vðt; xÞ þ 1

2
r2xðt; xÞ o

2

ox2
vðt; xÞ þ gxv ð21Þ
for t > 0, x 2 R, and with boundary condition
vð0; xÞ ¼ gðxÞ for all x 2 R. ð22Þ
We apply the methods in [48,49] to solve these PDEs with the different boundary conditions.
First consider the case when we condition only on the initial rate, Eq. (16). To make (20) equal

to (16) we set g(x) = 1 for all x. The boundary condition (22) in this case becomes
vð0; xÞ ¼ 1 for all x 2 R.
With this boundary condition, the PDE (21) has solution
vðt; xÞ ¼ Wðg; tÞe�xNðg;tÞ;
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where
Wðg; tÞ ¼ bebt=2

b coshðbt=2Þ þ b sin hðbt=2Þ

� �2b
r2

; ð23Þ

Nðg; tÞ ¼ 2g sinhðbt=2Þ
b coshðbt=2Þ þ b sinhðbt=2Þ

� �
; ð24Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 2gr2

q
. ð25Þ
We therefore have
Mr0ðgÞ ¼ Wðg; tÞe�r0Nðg;tÞ. ð26Þ

The case when both the starting and finished rates are specified is more complicated. From (17)

MGF Mr0;rt can be written
Mr0;rt ¼
1

fRðrtjr0Þ
vðt; xÞ;
where, in this case, v(t, x) is given by (20) with g(x) = d(x � rt). The boundary condition (22)
therefore becomes
vð0; xÞ ¼ dðx� rtÞ.
With this new boundary condition, the PDE (21) has solution
vðt; xÞ ¼ c exp � bt
r2

ðb� bÞ þ b� b
r2

x� bþ b
r2

rt � cðrt þ xÞe�bt

� �

� rt
xe�bt

� � b
r2
�1=2

I 2b
r2
�1 2c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xrte�bt

q� �
; ð27Þ
where
c ¼ 2b

r2ð1� e�btÞ
;

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 2gr2

q

and Im(x) is the modified Bessel function of the first kind with parameter m [50]. Hence MGF con-
ditioned on initial and final rates is given by
Mr0;rtðgÞ ¼ c exp � bt
r2

ðb� bÞ þ b� b
r2

r0 �
bþ b
r2

rt � cðrt þ r0Þe�bt

� �

� rt
r0e�bt

� � b
r2
�1=2

I 2b
r2
�1 2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0rte�bt

q� �
1

fRðrtjR0 ¼ r0Þ
;

where c and b are defined above and, from Section 3, fR(rtjR0 = r0) is the PDF for a non-central v2

distribution with degree of freedom 4ab/r2 and parameter of non-centrality 4br0e�bt

r2ð1�e�btÞ.
Bringing everything together, we have our main result.



T. Lepage et al. / Mathematical Biosciences 199 (2006) 216–233 229
Theorem 1. Let Xt be a substitution process with infinitesimal matrix Q, and diffusion process Rt

with probability density function fRtðsÞ. Define P as the joint PDF of Xt and Rt, so that
P ½X t ¼ j;Rt 2 ds�

¼ Pr½X t ¼ j;Rt 2 dsjX 0 ¼ i;R0 ¼ r0�

¼ Pr½X t ¼ jjX 0 ¼ i;Rt ¼ s;R0 ¼ r0�fRtðsÞds;
where ds is infinitesimal and ds = [s, s + ds]. Suppose that Q is an infinitesimal matrix that can be
written as Q = VK V�1 where K is a diagonal matrix containing the eigenvalues k1, . . . ,kn of Q. Then
P ½X t ¼ j;Rt 2 ds� ¼ MðQÞfRtðsÞds ¼ VMðKÞV �1fRtðsÞds
where M(K) is the diagonal matrix with, for all i,
MðKÞii ¼ Mr0;sðkiÞ;
and Mr0;sðkiÞ given by Eq. (17).
6. Three-taxon phylogenies

The simplest phylogeny for which we can distinguish between constant and variable evolution-
ary rates is a tree with three taxa. For this reason, there are many methods for testing, and
estimating, rate variation that are based on three taxon analyses [29]. Here we show that the like-
lihood for a three-taxon tree, under the CIR model of rate variation, can be computed exactly.
The problem for general phylogenies is more complex since we have to integrate out rates for
the internal nodes. Here, we consider a heterotachous model, so that each site has its own rate
history. Because the sites (and the rate at each site) evolve independently from each other, the like-
lihood of a sequence will be the product of all site-specific likelihoods. Therefore, we only require
the likelihood computation for one site.

We recall that the stationary distribution of the CIR is a gamma distribution C(m,x), where
x = m = 2b/r2, i.e.
fR0
ðrÞ ¼ xm

CðmÞ r
m�1e�xr. ð28Þ
Therefore the stationary mean and variance are 1 and r2/2b.
In order to get the transition probabilities, we will use MGF of sR unconditioned on the final

rate, given by Eq. (26). The transition probability matrix of the substitution process, given initial
rates, can be obtained by Eqs. (26) and (1). Let k1, . . . ,kn be the eigenvalues of Q. Using eigenvalue
decomposition, we can find vectors u(1), . . . ,u(n) and v(1), . . . ,v(n) such that
Pr½X t ¼ ijX 0 ¼ j;R0 ¼ r0� ¼
Xn

k¼1

u
ðkÞT
j v

ðkÞ
i Mr0ðkk; tÞ; ð29Þ
where we changed slightly our notation and explicitly wrote the dependency of Mr0 on t.



Fig. 2. A three-taxon rooted star tree, with branch lengths and one character state and rate value associated to
each leaf.
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Now consider the three-taxon tree with branches of lengths t1, t2, t3 leading to leaves labelled
with states x1, x2, x3 (Fig. 2). If we condition on a rate r0 and state x0 at the root then the prob-
ability of observing x1,x2,x3 at the leaves is given by
Lðx1; x2; x3jx0; r0Þ ¼ P ½X t1 ¼ x1jx0; r0�P ½X t2 ¼ x2jx0; r0�P ½X t3 ¼ x3jx0; r0�

¼
Xn

i¼1

Xn

j¼1

Xn

k¼1

BijkMr0ðki; t1ÞMr0ðkj; t2ÞMr0ðkk; t3Þ ð30Þ
where
Bijk ¼ uðiÞx0 v
ðiÞ
x1
uðjÞx0

vðjÞx2
uðkÞx0

vðkÞx3
.

The rate at the root is assumed to have the stationary distribution fR0
given by (28). The like-

lihood integrated with respect to r0 is then
Lðx1; x2; x3jx0Þ ¼
Z
r0

Lðx1; x2; x3jx0; r0ÞfR0
ðr0Þdr0
which by (30) equals
Xn

i¼1

Xn

j¼1

Xn

k¼1

Bijk

Z
r0

Mr0ðki; t1ÞMr0ðkj; t2ÞMr0ðkk; t3ÞfR0
ðr0Þdr0. ð31Þ
We now use the formula (26) for MGFs derived above.
Mr0ðki; t1ÞMr0ðkj; t2ÞMr0ðkk; t3ÞfR0
ðr0Þ

¼ Wðki; t1Þe�r0Nðki;t1ÞWðkj; t2Þe�r0Nðkj;t2ÞWðkk; t3Þe�r0Nðkk ;t3Þ xm

CðmÞ r
m�1
0 e�xr0

¼ Wðki; t1ÞWðkj; t2ÞWðkk; t3Þ
xm

CðmÞ r
m�1
0 e�r0ðxþNðki;t1ÞþNðkj;t2ÞþNðkk ;t3ÞÞ ð32Þ



T. Lepage et al. / Mathematical Biosciences 199 (2006) 216–233 231
Using integration by parts, or simply using the fact that the gamma PDF integrates to 1, we get
Z
r0

Mr0ðki; t1ÞMr0ðkj; t2ÞMr0ðkk; t3ÞfR0
ðr0Þdr0

¼ Wðki; t1ÞWðkj; t2ÞWðkk; t3Þ
x

xþ Nðki; t1Þ þ Nðkj; t3Þ þ Nðkk; t3Þ

� �m

.

Finally, we can substitute this back into (31) to obtain
Lðx1; x2; x3jx0Þ ¼
Xn

i¼1

Xn

j¼1

Xn

k¼1

BijkWðki; t1ÞWðkj; t2ÞWðkk; t3Þ
x

xþ Nðki; t1Þ þ Nðkj; t3Þ þ Nðkk; t3Þ

� �m

.

The formula extends immediately to phylogenies with n leaves attached to the root, though the
number of terms in the summation increases exponentially. Our approach has been to use Monte–
Carlo techniques to evaluate likelihoods on complete phylogenies.
7. Discussion

7.1. Summary

We have shown that, given a few natural criteria for our model selection, the CIR is the sim-
plest continuous model that is at the same time ergodic, has a non-zero autocovariance function
and that can account for an arbitrarily large index of dispersion. Moreover, we provided simple
ways to estimate its parameters with the help of two observable statistics, namely the RAS gamma
parameter and empirical index of dispersion. Another very interesting practical aspect of the CIR
process is that it can be easily, and without approximations, implemented in the MCMC
framework.

7.2. Future applications and extensions

The most straightforward application of our model would be to test the presence of heterotachy
in specific data sets, meaning that we have to be able to apply our model to tree with more than 3
taxa. For such trees, we need to integrate efficiently over the possible rate histories. We have
implemented (together with Nicolas Lartillot) an MCMC algorithm to perform Bayesian phylo-
genetic analysis under this model. The problems faced when the huge number of variables (one
rate value for every node and every site) in the integration were a source of considerable compu-
tational difficulties, and convergence is rather slow. The implementation and application will be
discussed in a forthcoming paper.

A possible future extension of our model could involve jump models, in which the rate path is
discontinuous as in the continuous-time Markov chain, but also varies as diffusion between these
discontinuities. However, the use of such a model implies the use of more parameters, and it may
well be the case that the relative weakness of the rate of evolution signal cannot allow the use of
more than two parameters, because of identifiability problems.
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