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Abstract

Standard likelihood-based frameworks in phylogenetics consider the process of evolution of a sequence site by site. Assuming that sites

evolve independently greatly simplifies the required calculations. However, this simplification is known to be incorrect in many cases. Here,

a computational method that allows for general dependence between sites of a sequence is investigated. Using this method, measures acting

as sequence fitness proxies can be considered over a phylogenetic tree. In this work, a set of statistically derived amino acid pairwise

potentials, developed in the context of protein threading, is used to account for what we call the structural fitness of a sequence. We describe

a model combining statistical potentials with an empirical amino acid substitution matrix. We propose such a combination as a useful way of

capturing the complexity of protein evolution. Finally, we outline features of the model using three datasets and show the approach’s

sensitivity to different tree topologies.

D 2004 Elsevier B.V. All rights reserved.

Keywords: Protein evolution; Phylogenetics; Bayesian Markov chain Monte Carlo; Statistical potentials
1. Introduction

Probabilistic approaches in molecular phylogenetics

rest on explicit mathematical models of sequence

evolution. Given such a model, a maximum likelihood

(ML) or a Bayesian framework is adopted, requiring the

computation of the likelihood, i.e. the probability of

observing a particular dataset of sequences, conditional

on the phylogenetic hypothesis. An important simplifica-

tion–among others–is typically invoked to render this

computation tractable: the assumption that evolutionary

events at a particular site are independent from events at
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Centre-ville, Montréal, Québec, Canada H3C 3J7. Tel.: +1 514 343

6111x5091; fax: +1 514 343 2210.

E-mail address: nicolas.rodrigue@umontreal.ca (N. Rodrigue).
other sites. Accordingly, each site is considered sepa-

rately, so as to define an independent Markov substitu-

tion process along the branches of a tree. The Markov

process is specified by a rate matrix, the entries of which

indicate the instantaneous rate of substitution from one

nucleotide (or amino acid, or codon) to another. Rate

matrices are either purely theoretical (e.g. Jukes and

Cantor, 1969; Kimura, 1980), or based on generalized

empirical measurements (e.g. Dayhoff et al., 1978; Jones

et al., 1992a). Among the extensions of the single rate

matrix approach, it has been proposed to draw the rate

of each site from a gamma distribution (Yang, 1993,

1994). Such a drate across sitesT model provides an

implicit way of taking into account varying selective

pressures occurring at different sites. Models with site-

specific matrices have also been studied (Bruno, 1996;

Halpern and Bruno, 1998), as well as various types of

mixture models (e.g. Koshi and Goldstein, 1995; Thorne

et al., 1996; Koshi and Goldstein, 1997; Goldman et al.,
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1998; Lartillot and Philippe, 2004; Pagel and Meade,

2004).

It is widely agreed that the assumption of site

independence is not biologically sound. Consequently,

means of relaxing this assumption have been pursued,

usually with correlations or dependence introduced

between a limited number of sites (e.g. Felsenstein and

Chruchill, 1996; Siepel and Haussler, 2004), or consid-

ered for a limited number of sequences (Jensen and

Pedersen, 2000; Pedersen and Jensen, 2001; Robinson et

al., 2003). In particular, when considering pairs of coding

nucleotide sequences, Robinson et al. (2003) have

recently introduced a sampling technique with a model

allowing for dependence between codons. With their

sampling procedure, one can consider the stochastic

process underlying the evolution of a sequence as a

whole, so that the probability of a given substitution, at

any given time and at any site, depends, in principle, on

the state at all other positions. Robinson et al. measure

the composition of site interdependencies using an

empirical energy function (otherwise known as statistical

potentials) derived in the context of protein threading

(Jones et al., 1992b).

The central idea behind a wide variety of statistical

potentials (e.g. Miyazawa and Jernigan, 1985; Hendlich

et al., 1990; Jones et al., 1992b; Bastolla et al., 2001) is

to associate pseudo-energy terms to the plausibility of

having a given pair of amino acids at a particular spatial

proximity, as learned from a database of protein

sequences of known structure. Lower pseudo-energy

values correspond to typical pairwise amino acid inter-

actions, while higher values correspond to atypical

interactions. The measure provided by statistical poten-

tials can be said to capture the approximate structural
fitness of a sequence, since it has been optimized to

detect amino acid patterns with regards to the 3-dimen-

sional structure of natural sequences (i.e. sequences that

have been fixed by selection). In contrast with statistical

potentials, empirical amino acid replacement matrices,

such as the JTT matrix (Jones et al., 1992a), are

optimized based on how frequently two given amino

acids exchange with one another in homologous positions

of a sequence database.

Here, we build on the ideas of Robinson et al. (2003)

and propose a formulation at the amino acid level. We

describe a model that allows for dependence between sites

using statistical potentials (Bastolla et al., 2001) while also

making use of the information available in an empirical

amino acid replacement matrix (Jones et al., 1992a). We

suggest that capturing the complexity of protein evolution

may be best served by layering both varieties of empirical

measurements. Furthermore, we generalize the sampling

technique of Robinson et al. (2003) from two taxa to n

taxa, thus introducing the approach in a broader phyloge-

netic context. In line with Robinson et al., we deal with the

computational ramifications of structural fitness consider-

ations by adopting a Bayesian Markov chain Monte Carlo

(MCMC) approach to sample detailed substitution histories

along a given phylogenetic tree from their posterior

distribution. Following a similar framework to that used

in previous studies (e.g. Parisi and Echave, 2001; Bastolla

et al., 2003; Robinson et al., 2003), it is assumed that the

tertiary structure of a protein is well conserved and, for our

purposes, remains identical at all points along the tree. We

illustrate features of the model when applied to three

protein sequence alignments and prospect the possibility of

applying the approach to the comparison of different tree

topologies.
2. Material and methods

2.1. Datasets, trees and protein structures

For computational reasons, we have restrained our analyses to relatively small datasets, with a number of taxa ranging

from 4 to 10. We have also focused on small monomeric proteins, both to lighten computational requirements and because

the energy function used is known to perform better in such cases (Bastolla et al., 2001).

! PPK10-158: This dataset is composed of 10 amino acids sequences (with 158 positions) of bacterial 6-hydroxymethyl-7-8-

dihydroxypterin pyrophosphokinase. The species (with GenBank accession numbers) are Escherichia coli (BAB9671),

Shigella flexneri (AAP15678), Salmonella typhimurium (AAL19147), Phetorhabdus luminescens (CAE13168), Yersinia

pestis (AAS60560), Erwina carotovora (CAG76218), Vibro vulnificus (BAC95526), Azotobacter vinelandii

(ZP_00091220), Wigglesworthia glossinidia (BAC24410) and Coxiella burnetii (AA089845).

! MYO10-153: This is a 10 species dataset of mammalian myoglobin amino acid sequences (with 153 positions). The species

are Physester catodon (P02185), Orcinus orca (P02173), Bos taurus (BAA00311), Rattus norvegicus (AAF05848), Mus

musculus (CAA27994), Nannospalax ehrenbergi (P04248), Homo sapiens (CAA25109), Gorilla gorilla (P02147),

Ornithorhynchus anatinus (P02196) and Tachyglossus aculeatus (P02195).

! MYO4-153: This is also a dataset of myoglobin sequences, here taken from the 4 species P. catodon (P02185), O. orca

(P02173), Graptemys geographica (P02201) and Chelonia mydas caranigra (MYTTG).
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We worked under a fixed tree topology for all datasets. Topologies were obtained by ML, under a JTT+F

model, with gamma+invariant distributed rates across sites, using the PhyML program (Guindon and Gascuel,

2003).

Protein structures are assumed constant throughout the tree. In practice, we used as a reference the structure of one of

the sequences in the dataset, as determined by X-ray crystallography. The structure of E. coli (PDB code: 1HKA) was

used as a reference for the PPK10-158 dataset, and that of P. catodon (PDB code: 1MBD) for both MYO10-153 and

MYO4-153 datasets. Imposing the structure of a reference sequence on other sequences is simplified when these are of

identical length. Therefore, we constructed alignments without gaps. This was accomplished using sequences of the same

length as the reference sequence–which was the case for MYO10-153 and MYO4-153–or, in the case of PPK10-158,

including only insertions with respect to the reference sequence (such positions were removed, leading to a gapless

alignment).

2.2. General overview and notation

Standard likelihood computations in phylogenetics (Felsenstein, 1981), involving rate matrix exponentiation, correspond

to the integral over all possible substitution histories, or mappings (Nielsen, 2002), over a given phylogenetic tree. We

make use of this equivalence by sampling substitution histories directly. Within this framework, matrix exponentiation is

avoided, allowing one to consider rate matrices of much higher order. In particular, when taking into account an entire

amino acid sequence of length N, the rate matrix has an order of 20N�20N (clearly ruling out matrix exponentiation for

all practical purposes).

We use b to index branches of the tree. By convention, a node has the same index as the branch that leads to it (except the

root node, which has index 0). We refer to the set of branch lengths as b. A substitution history, denoted x, includes the time

and nature of each substitution event along branches. We index substitution events with z and symbolize the time of

substitution event z as t(z). The length of branch b is written as bb, and its substitution history is denoted xb. Datasets consist

of alignments of P amino acid sequences. An amino acid sequence is written as s(d ), using the superscripted parentheses to

describe the context of a sequence as follows:

! the sequence at the root of the tree, written as s(root);

! the sequences at other nodes, referring to the ancestral and descendant sequences found at the nodes at the ends of branch b

respectively as s(bYup) and s(bYdown);

! the sequence before and after a substitution event z, written as s(z�1) and s(z) respectively. When considering a series of qb
substitution events over branch b, we set s(0)=s(bYup), and after the final substitution event along branch b, s(qb)=s(bYdown).

Finally, we refer to the specific amino acid found at position i of sequence s(x) by writing si
(x).

2.3. Estimating structural fitness

We used the knowledge-based protein energy function described in Bastolla et al. (2001) to estimate the structural fitness of

a sequence in a given three-dimensional structure. Our use of the energy function is straightforward. Given a PDB file, one

computes the distances between all atoms of all amino acids. As defined by Bastolla et al., two amino acids are said to be in

contact if any of their heavy atoms (atoms other than hydrogen) are at a distance of 4.5 2 or less (contacts due to sequential

proximity–within three positions or less–are ignored). As such, the structure of a protein can be represented as a contact map.

The contact map of a protein structure of length N is an N�N matrix C with elements:

Ci;j ¼
1 if amino acids at sites i and j are in contact;
0 if amino acids at sites i and j are not in contact; or if ji� jjV3:

�
ð1Þ

Given a contact map, we evaluate the pseudo-energy of a protein as follows:

E
�
s xð Þ� ¼ X

1ViVjVN

Ci;jes xð Þ
i
;s

xð Þ
j

; ð2Þ

where the coefficients elm, (1Vl,mV20) is the pair potential matrix of Bastolla et al.

We impose the same structure throughout the phylogenetic tree by using the same contact map on all sequences, both

observed and inferred.
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2.4. Evolutionary model

Conventional models of protein evolution assume that an independent Markov process operates at each site, under an

identical 20�20 rate matrix Q. The matrix Q is specified by 20 amino acid stationary probabilities (pm), 1VmV20,P20
m¼1 pm ¼ 1, and exchangeability parameters (qlm), 1Vl,mV20, such that

Qlm ¼ 1

Z
qlmpm; l pm ð3Þ

Qll ¼ �
X
mp l

Qlm; ð4Þ

where Z is a normalization constant so that branch lengths represent the expected number of substitutions per site:

Z ¼ 2�
X

1VlbmV20

qlmpm: ð5Þ

One consequence of such models is that the probability that two sites undergo a substitution at the exact same moment

vanishes. As a result, the instant rate of substitution between two sequences differing at more than one position is 0.

Hence, site-specific Markov processes can, in principle, be combined to consider the evolution of the sequence as a whole,

which therefore also operates under a Markov process, now described by a 20N�20N matrix R:

Rs xð Þ;s yð Þ ¼
0 if s xð Þ and s yð Þ differ at more than one position;

Qlm if s xð Þand s yð Þ differ only at site i; s
xð Þ
i ¼ l and s

yð Þ
i ¼ m;

�
X

s yð Þps xð Þ

Rs xð Þ; s yð Þ if s xð Þ and s yð Þ are identical:

8>><
>>: ð6Þ

Following Robinson et al. (2003), the underlying theme of our model is that amino acid substitution rates are likely to

depend, at least in part, on how the amino acid substitutions in question affect the structural fitness of a sequence. The

approach adopted is to complement current models of protein evolution, specified by Q, with a supplementary factor that takes

into account the pseudo-energy difference before and after an amino acid substitution. This difference is weighted by a

parameter p. Our rate matrix R becomes:

Rs xð Þ;s yð Þ ¼

0 if s xð Þ and s yð Þ differ at more than one position;

Qlme
p

�
E

�
s xð Þ
�
�E

�
s yð Þ
��

if s xð Þand s yð Þ differ only at site i; s
xð Þ
i ¼ l and s

yð Þ
i ¼ m;

�
X

s yð Þps xð Þ

Rs xð Þ; s yð Þ if s xð Þ and s yð Þ are identical:

8>><
>>: ð7Þ

Note that since the energy function considers the sequence as a whole, the process defined by R(20N�20N) can no longer be

decomposed into an independent process operating at each site, defined by Q (20�20), except in the case where p=0 (which

simplifies to the model assuming independence in Eq. (6)). One of the goals of this work is to obtain probabilistic estimates of

p. Positive values of p would have selection favoring substitution events that lead to typical amino acid interactions. Negative

values of p would lead to the converse effect, increasing the rate of substitution toward atypical interactions, under the given

structure.

The stationary probabilities of amino acids (pm), 1VmV20, included in Q, are free parameters of the model. The

exchangeability terms (qlm), 1Vl,mV20, could also be free parameters. However, for simplicity we have fixed these parameters

to predefined values. In this study, we considered two cases for the exchangeability parameters:

! All exchangeability terms equal: the Poisson process;

! Exchangeability terms set to those of the JTT empirical matrix (Jones et al., 1992a).

2.5. Likelihood computations

For notational simplicity, the free parameters of the model are grouped into a vector denoted as h (i.e. h={ p, pm, (1VmV20)}).

Likelihood computations require the probabilities of transition from one sequence state to the next. Over a branch b of length

bb, the probability of going from s(bYup) to s(bYdown), given the evolutionary model parameters h, can be calculated as

p



s bYdownð Þjs bYupð Þ; bb; h

�
¼

�
ebbR



s bYupð Þ;s bYdownð Þ ¼

Z
Xb

p s bYdownð Þ;xbjs bYupð Þ; bb; h
�
dxb:

�
ð8Þ



N. Rodrigue et al. / Gene 347 (2005) 207–217 211
As shown by Eq. (8), this probability is an integral over all possible substitution histories (Xb) having s(bYup) and s(bYdown)

as their initial and final states respectively. This equivalence suggests sampling substitution histories directly as a tractable

alternative to matrix exponentiation. Robinson et al. (2003) have derived the calculations for evaluating the probability of a

substitution history:

p
�
s bYdownð Þ;xbjs bYupð Þ; bb; h

�
¼



j
qb

z¼1
Rs z�1ð Þ; s zð Þe

�R
s z�1ð Þ ; s dð Þ

�
t zð Þ�t z�1ð Þ

��
e
�R

s
qbð Þ ; s dð Þ ðbb�t qbÞÞð

; ð9Þ

where e�Rs (qb ),s (d )(bb�t(qb)) accounts for the probability of no events occurring from the last event q to the end of the branch, and

where Rs (x ), s (d ) represents the rate away from s(x). The rate away from s(x) can be calculated from

RsðxÞ;s dð Þ ¼
X
k

Rs xð Þ; s kð Þ ; ð10Þ

the sum being over all sequences s(k) of length N different than s(x). Since Rs(x ),s(k ) is equal to zero for all sequences s(k) that

differ with s(x) at more than one position, only 19N non-zero elements need be considered in this summation.

Eq. (9) provides a means of evaluating probabilities of substitution histories along a branch. Using this in the context of a

phylogenetic tree requires proposing sequences at internal nodes of the tree and applying Eq. (9) to each branch. Assuming that

lineages evolve independently allows one to evaluate the substitution history of the entire tree by taking the product of Eq. (9)

over all branches. To complete the likelihood computations, one must calculate the stationary probability of the sequence at the

root of the tree, given the evolutionary model. This probability is given by Robinson et al. (2003):

p
�
s rootð Þjh

�
¼

e�2pE

�
s rootð Þ

�
j
N

m¼1
p
s
rootð Þ
mX

k

e�2pE s kð Þð Þ j
N

n¼1
p
s
kð Þ
n

; ð11Þ

where ps (root)m
is the stationary probability of the amino acid at position m of sequence s(root), and where the sum in the

denominator is over all possible sequences of length N. In practice, since the model is reversible, one can root the phylogenetic

tree at any arbitrary point. We opted to root the tree at an external node (i.e. an observed sequence), which therefore remains

fixed.

Combining Eqs. (9) and (11) yields the overall likelihood term:

p Djx; h; bð Þ ¼ p
�
s rootð Þjh

�
j

2P�2

b¼1
p
�
s bYdownð Þ;xbjs bYupð Þ; bb; hÞ: ð12Þ

2.6. Monte Carlo sampling

This work adopts a Bayesian MCMC framework. Within this framework, x, h and b are sampled from their joint posterior

distribution p(x, h, b|D), where D is the dataset of P observed sequences. According to Bayes’ theorem, this probability can

be written as

p x; h; bjDð Þ ¼ p Djx; h; bð Þp h; bð Þ
p Dð Þ ; ð13Þ

where p(h, b) is the joint prior probability density of model parameters and branch lengths, and p(D) is a normalization factor

such that the total probability equals 1. Our MCMC procedure then consists of defining a Markov chain, with state space the

set of admissible values of (h, b, x), and having the posterior probability defined in Eq. (13) as its stationary distribution. This

is done using the Metropolis–Hastings algorithm (Metropolis et al., 1953; Hastings, 1970): assuming the current state of the

Markov chain is (h, b, x), a move to different model parameter values (hV), branch lengths (bV) or substitution histories (xV) is
proposed (note that a substitution history move can also include proposing an alternative state, sV(bYup), at an internal node).

The move is accepted with a probability of r, where

r ¼ min 1;
p Djx V; h V; b Vð Þp h V; b Vð Þ
p Djx; h; bð Þp h; bð Þ � h

�
;



ð14Þ

and where

h ¼ j
2P�2

b¼1

"
J
�
s bYupð Þ;xb; h; bbjs V bYupð Þ;xbV; h V; bbV

�
J
�
s V bYupð Þ;xbV; h V; bbVjs bYupð Þ;xb; h; bb

�
#

ð15Þ
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is the ratio of the proposal densities (here denoted using J) known as the Hastings ratio (Hastings, 1970), which effectively

corrects for biases in the proposal methods. If the move is accepted, h, b and x are set to those proposed; otherwise, they are

left as-is. This procedure is reiterated a large number of times until convergence to the posterior distribution, from which we

then sample.

2.7. Priors

We used uninformative priors for the amino acid stationary probabilities (pm), 1VmV20,
P20

m¼1 pm ¼ 1, branch lengths (bb)

and for the weight accorded to the protein structure considerations ( p):

! pm~Dirichlet(1,1,. . .,1);
! bb~Uniform[0,100];

! p~Uniform[�5, 5]; the reasons for the narrowness of the interval are explained in Section 2.9.

2.8. Proposing substitution histories x

Substitution histories are proposed site by site. The method used is an implementation of Nielsen’s (2002) method for

mapping substitutions along a tree using a model of evolution that assumes independence between sites, here denoted by a rate

matrix Q*. We set the exchangeability parameters of Q* to those found in Eq. (7), while the amino acid stationary probabilities

are fixed to the observed empirical frequencies (i.e. Q*=JTT+F or Poisson+F). Two types of moves are used to propose new

substitution histories x V. For both moves, h and b are kept constant.

!BranchHistory: this first type of move randomly selects a branch b on the tree and a site i among all sites N. A new

substitution history for site i along branch b is re-sampled as in Nielsen’s method, given the states si
(bYup) and si

(bYdown). The

move is then accepted with a probability given in Eq. (14). The corresponding Hastings ratio h is simply the probability of the

substitution history according to the model that assumes independence before the move over that of the proposed substitution

history, written as

h ¼
p
�
s
bYdownð Þ
i ;xbjs bYupð Þ

i ; bb;QT
�

p
�
s
bYdownð Þ
i ;xbVjs bYupð Þ

i ; bb;QT
� : ð16Þ

!NodeState: the second move randomly selects an internal node b and a site i. The move then re-samples the amino acid

state of site i at node b, again using Nielsen’s method. Having re-sampled the state, the move also re-samples a substitution

history for site i over the three branches connected to node b. The Hastings ratio for this move is the same as Eq. (16), but

multiplied over the three branches in question.

2.9. Proposing h and b

We used one move for proposing p Vm, 1VmV20, while keeping p, b and x fixed, and one move for proposing pV, while
keeping pm, 1VmV20, b and x fixed.

!Stationary: amino acid stationary probability moves are proposed according to a Dirichlet distribution centered on their

current value and with a tuning parameter sA, as described in Larget and Simon (1999).

!Structure: proposing pV is accomplished by adding sS (U�0.5) to p, where U is a random variable drawn from a

uniform distribution in the interval [0,1] and sSN0 is a tuning parameter. The Hastings ratio is 1.

Evaluating the proposed set of stationary probabilities p Vm, 1VmV20, or a proposed pV, raises a significant complication,

since in these moves, p(s(root)|hV)/p(s(root)|h) does not cancel out in Eq. (14). This complication arises from the fact that in Eq.

(11), the sum in the denominator is over all possible sequences of length N. Robinson et al. (2003) provide an approximation

strategy re-implemented for this work. The strategy rests on sampling a group of M sequences, denoted as g(1), g(2), . . ., g(M),

from the stationary distribution of sequences for a third set of parameter values h*. For sufficiently large values ofM, Robinson

et al.’s importance sampling argument can be applied to this model to yield

p
�
s rootð Þjh V

�
p
�
s rootð Þjh

� ce�2 pV�pð ÞE s rootð Þð Þ



j
N

m¼1

pimV

pim

�ð
XM
h¼1

e�2 p�p4ð ÞEðg hð ÞÞ j
N

n¼1

p
g hð Þ
n

p4
g hð Þ
nXM

h¼1

e�2 pV�p4ð ÞEðg hð ÞÞ j
N

n¼1

pV
g hð Þ
n

p4
g hð Þ
n

Þ: ð17Þ

This approximation’s quality depends on two factors: the value of M (high values improve the approximation) and the

distance of h* to both h and hV (a h* at the midpoint between h and hV gives the best approximation). Robinson et al. opt to
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partition their parameter space into a predefined grid. They then use the grid point h* that is nearest to the midpoint of h and hV.
The strategy employed here is different. Our protocol creates new h*s dynamically, always at the midpoint of h and hV. A new

h* is created whenever the distance (k) between the midpoint of h and hV, and the nearest h* is beyond a predefined threshold

(kmax). In practice, a limit is set on the number of h* stored in memory. Whenever this limit is reached, and a new h* is to be

created, one simply writes over the h* (and the respective M sequences) that is the furthest away from the midpoint of h and hV.
As such, one eventually has a dhyper-cloudT of h*s following h and hV as the MCMC run progresses. We determined

empirically the acceptable settings for this approximation procedure, fixing kmax=0.01 and M=1000 (see Supplementary

material). However, a larger kmax and a lower M can be used to obtain faster rough estimates.

Restraining the interval of the uniform distribution used as the prior for p serves to increase the speed of convergence. An

overly wide interval could lead to initial values that are very far from those at stationarity, which would require invoking the

approximation procedure for p(s(root)|hV)/p(s(root)|h) many times before convergence.

Branch lengths are proposed one branch at a time, while keeping h and x constant.

!BranchLength: a branch b is randomly selected from the tree. The length of branch b, as well as the times of each

substitution event along b, is then multiplied by t=esBL (U�0.5), where sBLN0 is another move-specific tuning parameter. The

Hastings ratio in this case is tdf, where degrees of freedom (df) is equal to 1 plus the number of substitution events along that

branch.

2.10. General MCMC settings and implementation checks

In the course of an MCMC run, moves are called according to a set of weights (wc), 1VwVW, where W is the total number

of possible moves. We thereby define a cycle as a set of W iterations, with W ¼
P

W
w¼1 ww. We determined the weights (ww)

empirically, as well as all move-specific tuning parameters, so as to optimize mixing (here W=112, see Supplementary

material). For the results presented here, we ran each chain for 100,000 cycles (W�100,000=11,200,000 iterations), discarded

the first 10,000 cycles as burn-in, and sub-sampled every 50 cycles from the remaining sample. The MCMC runs require

10–15 days of CPU time on a Xeon 2.4 GHz desktop computer.

When the parameter p=0, our model simplifies to the site independent JTT+p model (or Poisson+p, depending on the

exchangeability parameters chosen). We tested our implementation with p=0 and compared it with the results of a standard

JTT+p (Poisson+p) implementation (Lartillot and Philippe, 2004) and found both to converge to essentially identical

parameters and branch lengths at stationarity (data not shown). We also verified that when p=0 and Q=Q*, all substitution

history moves are accepted (since in this case, Eq. (14) simplifies to 1), and the mean number of substitutions sampled per site

indeed corresponds to the expected number of substitutions per site (data not shown, but see Nielsen, 2002).
3. Results and discussion

3.1. Exchangeability parameters in relation to structural

fitness considerations

We applied our model to a first data set, MYO10-153,

using the ML topology as a constraint (see Section 2.1). We

performed several independent runs, starting from different

initial values for the parameters, and found that the

parameter p consistently stabilizes around the same value

(Fig. 1). Additionally, p converges to positive values across

all datasets, indicating that selection prefers sequence

substitution histories that maintain a good structural fitness

(Table 1). These results corroborate with those of Robinson

et al. (2003). Interestingly, we note that p consistently

stabilizes at higher values when the exchangeability

parameters in Q are uniform (Poisson) than when they are

set to those of the JTT empirical matrix (Table 1). For

example, for the MYO10-153 dataset, the mean posterior

values obtained (with 95% credibility intervals) are

p=0.7005 (0.5876, 0.8164) and p=0.6273 (0.5042, 0.7386)

when using the Poisson and JTT exchangeability parameters
respectively. A z-test indicates that this difference is

significant, at a 99% confidence level.

Being empirically derived, the JTT matrix has a

considerable amount of prior biochemical information

regarding the amino acid substitution process. Accordingly,

these results seem to indicate that, despite being a formally

site independent model, the JTT matrix implicitly captures,

to some extent, the average effects of dependencies between

sites measured by the energy function. Hence, the weight

accorded to structural fitness considerations need not be as

high when using the JTT matrix in comparison to that when

using the naive Poisson matrix.

3.2. Amino acid stationary probabilities and branch lengths

The substitution process, as specified in Eq. (7), can be

viewed as a composition of two layered elements: (1) a

process proposing substitutions, according to Qlm and on

the basis of the current branch length values; (2) a process

selecting substitutions, by accepting or refusing according to

ep(E(s
(x ))�E(s ( y ))). Consequently, the amino acid stationary

probabilities are those of the substitution process in the
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absence of the selection step. The energy function itself

captures some elements of amino acid stationary probabil-

ities, thereby creating an interplay between p and pm,

1VmV20. A better measure of the true (or actual)

prevalence of each of the 20 amino acids is obtained by

looking at the induced amino acid frequencies in a set of

sequences sampled from h. To monitor the induced

frequencies, we found it convenient to simply look at the

relative frequencies of amino acids in the sequences

sampled from h* (see Section 2.9), as this parameter vector

is always in the vicinity of the h to hV proposal. When p is

fixed ( p=0), sequences are directly sampled according to

pm, 1VmV20, and the stationary probabilities and induced

frequencies of amino acids are necessarily equivalent (see

Table 2 of the Supplementary material). When p is a free

parameter ( pp0), the stationary probabilities often differ

widely with those when p=0 (Fig. 2). However, we found

that the induced frequencies with pp0 have only mild

differences with those when p=0 (or with the empirical

frequencies; see Fig. 2).

Likewise, branch lengths correspond to the expected

number of substitutions per site proposed upstream of the

selection step described above, and therefore, do not reflect

the true branch lengths (i.e. the number of substitutions

having actually occurred once the statistical potential has

been taken into account, which we call the number of

substitutions induced by the model). The sampling scheme

makes it easy to look directly at the number of substitutions
Table 1

Mean values of p at stationarity for the three datasets under study

Exchangeability

parameters in Q

Dataset

PPK10-158

Poisson 0.4207 (0.3300, 0.4994)

JTT 0.3613 (0.2759, 0.4358)

Parentheses indicate 95% credibility intervals.
per site induced by the model. As would be expected, we

found that these two measures of branch lengths do not

correspond when pp0, with the induced number of

substitutions consistently lower. Using the same MYO10-

153 dataset as an example, we found that the tree length

inferred with pp0 was 1.0874 (0.8926, 1.3045) whereas the

induced number of substitutions per site was 0.7779

(0.7255, 0.8434), a value only slightly higher to that with

p=0, at 0.7678 (0.7190, 0.8235).

3.3. Sensitivity to tree topology

Using the MYO4-153 dataset, we compared results of

MCMC runs under each of the three possible topologies,

focusing on the factor j2P�2
b¼1 p s bYdownð Þ;xbjs bYupð Þ; bb; h

��
of Eq. (12). We refer to these comparisons as likelihood

comparisons, although they are not true likelihood compar-

isons, since they ignore the factor p(s(root)|h). We found,

however, that the parameter estimates under each topology

were essentially identical, so that the factor p(s(root)|h) is

effectively equivalent under each run. In any case, the

comparisons provide an interesting contrast: the correct tree

topology (grouping the two whales together and the two

turtles together) is indeed the most favored tree (see Fig. 3).

Although the correct topology is also the most favored tree

when p=0 (data not shown), this demonstrates that the

computational approach (i.e. sampling substitution histor-

ies) is indeed sensitive to tree topologies and could
MYO10-153 MYO10-4

0.7005 (0.5876, 0.8164) 0.6901 (0.6141, 0.7913)

0.6273 (0.5042, 0.7386) 0.5717 (0.4804, 0.6555)
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potentially be applied to address more difficult phylogenetic

questions.

3.4. Perspectives

In this work, we have combined statistical potentials and

an empirical amino acid replacement matrix in a model

applied over phylogenetic trees. The model can be viewed

as having two layers: one layer of underlying parameters

that assume site-independence, specified by Q, and a second

layer accounting for site interdependence, weighted using a

parameter p. Here, we have found that the weight accorded

to structural fitness considerations ( p) is lower when using a

more reasonable matrix Q (i.e. JTT+p) than when using a

less reasonable matrix Q (Poisson+p). Conversely, an ideal

measure of sequence fitness would render the use of

underlying site-independent parameters inconsequential.

Indeed, such an ideal measure would make the codon-based

formulation of Robinson et al. (2003) a more appealing

explicative model of the substitution process. In practical

phylogenetics, however, using both layers may be valuable,

since each is based on approximations, which may be
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) for t

the fixed topology used for each of the three MCMC runs. A window of 20,000
capturing inherently different complexities of protein

evolution.

It would be interesting to further explore the relation

between these two layers. We hope to examine this relation

by first using different underlying parameters, which could

include a mixture of different matrices Q (e.g. Lartillot and

Philippe, 2004), with, or without, gamma rate heterogeneity

(Yang, 1993, 1994). In addition, we expect to study the

impact of different existing statistical potentials (e.g.

Miyazawa and Jernigan, 1985; Jones et al., 1992b; Singh

et al., 1996) as well as developing a new set specifically

tailored to our purposes. One particular problem we would

like to address is the slight bias for hydrophobic amino acids

in the induced frequencies with pp0 with respect to the

empirical frequencies (Fig. 2). This may be a result of the

fact that we ignore the differential in stability with respect to

alternative ddecoyT structures, as the energy function

prescribes for the protein-threading context (Bastolla et al.,

2001). We are currently constructing new potentials,

optimized in an amino acid replacement context on

predefined structures, rather than in the fold recognition

framework.
20000
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he three possible topologies of theMYO4-153 dataset. Legend keys indicate

cycles is shown, with points every 50. Burn-in cycles were removed.
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In all cases, it will be important to assess the perform-

ances of the model proposed here, as well as the possible

combinations mentioned above. In the Bayesian framework,

this is most often achieved by computing the Bayes factor

(Jeffreys, 1935, 1961; Jaynes, 2003) between alternative

models. For this purpose, we are currently adapting the

technique of Bayes factor evaluation by thermodynamic

integration described in Lartillot and Philippe (2004) to

compare (two-layered) site-interdependent models to (sin-

gle-layered) site-independent models. Using any particular

site-independent model as a reference would further allow

the assessment of different sequence fitness proxies applied

to this context, and their relevance to the datasets of interest.

Finally, we have prospected the idea of using this

approach to explore alternative topologies. Letting top-

ologies be free parameters of the inference may be

technically complex. The main complication arises from

the fact that a rearrangement of the tree means that the

current substitution history may not be compatible with the

newly proposed topology. This raises the difficult problem

of devising update mechanisms that simultaneously change

the topology and the substitution history, while having a

good acceptance rate; a task that would certainly be

computationally very demanding. We are currently explor-

ing a more reasonable alternative, which consists of using

thermodynamic integration for evaluating the Bayes factor

in support of one tree versus another. This would allow for

the comparison of a set of pre-specified topologies, and in

this way, assess the impact of the site-interdependent

scheme proposed here on phylogenetic inference.
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