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Compatibility of unrooted phylogenetic trees is FPT
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Abstract

A collection of T1, T2, . . . , Tk of unrooted, leaf labelled (phylogenetic) trees, all with different leaf sets, is said to be compatible if
there exists a tree T such that each tree Ti can be obtained from T by deleting leaves and contracting edges. Determining compatibility
is NP-hard, and the fastest algorithm to date has worst case complexity of around �(nk) time, n being the number of leaves. Here,
we present an O(nf (k)) algorithm, proving that compatibility of unrooted phylogenetic trees is fixed parameter tractable (FPT)
with respect to the number k of trees.
© 2005 Elsevier B.V. All rights reserved.

1. Introduction

The evolutionary history of a set of species is typically represented in the form of a phylogenetic tree, a tree with
leaves labelled by the different species and interior vertices representing hypothetical ancestors. While the structure of
these phylogenetic trees is extremely simple, the mathematics of phylogenetic trees quickly becomes non-trivial [10].
The combinatorics of phylogenetic trees has been a gold mine for algorithmically inclined computational biologists,
yielding many interesting, and generally NP-hard, optimisation problems.

One of the more central combinatorial problems in phylogenetics has been that of compatibility (defined formally in
Section 2). This problem was first discussed by Gordon [9], who introduced the attractive notion of subtrees as samples
of the true evolutionary tree. Suppose we have a phylogenetic tree for a large set of species. This tree intuitively implies
relationships between any subset of the set of species, thereby inducing a sub-phylogenetic tree for those species.
Gordon’s problem is: given a collection of phylogenetic trees for different sets of species, can we find a ‘super’ tree
such that all the input trees are restrictions, or samples, of the larger tree.

Gordon’s problem can be solved in polynomial time in one special case. We say that a phylogenetic tree is rooted if
we have identified a node in the tree corresponding to the common ancestor of all of the species at the leaves. Hence
rooted trees are directed, in the graph theoretic sense. The compatibility of rooted trees (where the resulting super tree
is also rooted) can be determined in polynomial time, by adapting a dynamic programming algorithm of Aho et al.
[2]. The same approach can also be applied in the case that all of the input trees are unrooted but share a species in
common [11].
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The general compatibility problem (for unrooted trees) is, however, NP-hard, as first proven by Steel [11]. Indeed
the problem is hard even if all of the input trees contain only four leaves. While the problem may be hard for a
large number of small trees, Steel showed that the problem can be solved in polynomial time for a bounded num-
ber of large trees. His strategy was to consider all possible places that the unrooted trees might be rooted, testing
each of the O(nk) possibilities using Aho et al.’s algorithm. This approach is clearly only practical when n and k

are small.
In this note we show that compatibility of k unrooted trees is fixed parameter tractable (FPT) with respect to

parameter k [8]. Specifically, we describe an algorithm solving the problem that runs in time O(nf (k)), where f is a
function of k. The proof involves two key steps. First, we define a simple way of amalgamating phylogenetic trees into
a graph, called the display graph, that will, if the trees are compatible, have bounded treewidth. Second, we show that
testing compatibility can be converted into an expression in second order monadic logic on this graph, enabling us to
apply the general algorithm of [3].

The structure of this paper is as follows. In Section 2 we give formal definitions of the key concepts and problems.
In Section 3 we define the display graph and prove that the graph will have bounded treewidth if the input trees are
compatible. In Section 4 we prove the compatibility of unrooted trees is FPT. We conclude in Section 5 with a discussion
of extensions and future work.

2. Definitions

An unrooted phylogenetic tree T is a connected, undirected, acyclic graph with leaves (degree one vertices) labelled
bijectively by the label set L(T ) and no vertices of degree two. If L(T ) = X for some finite set X then T is a
phylogenetic X-tree in the terminology of [10]. A rooted phylogenetic tree is defined in the same way except that an
internal vertex �, which may have degree two, is distinguished and called the root.

Let T be a rooted or unrooted phylogenetic tree and let e be an edge between two internal vertices of T . We use T/e

to denote the contraction of T obtained by deleting e and identifying its incident vertices. For a set of internal edges E′
we let T/E′ denote the tree obtained by contracting every edge e ∈ E′. It is easy to check that the order of contractions
is irrelevant.

Given a subset Y ⊆ L(T ) for an unrooted phylogenetic tree T we let T |Y denote the tree obtained by forming the
minimal subgraph of T connecting Y and then suppressing vertices of degree two. We say that T |Y is the subtree of
T induced by Y . Induced subtrees are defined in the same way for rooted trees, except that the root of T |Y becomes
the vertex in the minimal connecting subgraph that is closest to the root of T , and we supress all degree two vertices
except the new root.

Let T1 and T2 be rooted or unrooted phylogenetic trees. We say that T1 displays T2 if T2 is obtained by contracting
edges in an induced subtree of T1. That is, there is a set of edges E′ such that T2 = (T1|Y )/E′, where Y = L(T2). A
collection of phylogenetic trees T1, T2, . . . , Tk is compatible if there exists a phylogenetic tree T that displays each
tree Ti .

The main problem we consider is:
Compatibility of unrooted phylogenetic trees

Instance: Unrooted phylogenetic trees T1, T2, . . . , Tk

Parameter: k, the number of trees
Question: Does there exist an unrooted phylogenetic tree T that simultaneously displays each tree Ti?

3. The display graph and its treewidth

Suppose that T1 displays T2 and Y = L(T2). From the definition, we can obtain T2 from T1(Y ) through a series
of edge contractions, where each edge contraction involves deleting an edge and identifying its incident vertices. It
follows that every vertex of T1(Y ) gets mapped to a vertex of T2. Several vertices can be mapped to the same vertex,
the set of vertices mapped to a single vertex forms a connected subgraph of T1(Y ). More formally we have
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Fig. 1. Two unrooted phylogenetic trees (left) and their display graph (right).

Lemma 1. Suppose that T1 displays T2 and Y = L(T2). Then there exists a surjective map � from a subgraph of T1
to T2 such that

1. � maps labelled vertices to vertices with the same label.
2. For every vertex v of T2 the set �−1(v) is a connected subgraph of T1.
3. For every edge {u, v} of T2 there is a unique edge {u′, v′} in T1 such that �(u′) = u and �(v′) = v.

A consequence of the definition is that if we discard vertices of T1 not in �−1(T2), and contract any remaining edges
with endpoints mapped to the same vertex, then we will obtain a phylogenetic tree equal to T2. We note that the map
� is not unique, but this is not really an issue.

Let T1, T2, . . . , Tk be unrooted phylogenetic trees with varying leaf sets. The display graph for T1, . . . , Tk is formed
from the disjoint graph union of T1, T2, . . . , Tk by identifying vertices with the same label. The display graph for two
trees is presented in Fig. 1.

A graph G has treewidth k if there exists a tree T and a map B from V (T ) to subsets of V (G) of size at most k + 1
such that

(TW1) For every a ∈ V (G) there is v ∈ V (T ) such that a ∈ B(v).
(TW2) For all edges {a, b} in E(G) there exists v ∈ V (T ) such that {a, b} ⊆ B(v).
(TW3) For every a ∈ V (G) the set of vertices {v : a ∈ B(v)} forms a connected subgraph of T .

The sets B(v), v ∈ V (T ), are called the bags of the decomposition. See [4] for an introduction to treewidth and its
applications. Here, we will show that the treewidth of a display graph is bounded when the trees are compatible.

Theorem 1. Let T1, T2, . . . , Tk be a collection of compatible, unrooted phylogenetic trees with varying leaf sets. The
display graph of T1, . . . , Tk has treewidth at most k.

Proof. Our proof is in two parts. First we construct a tree decomposition for G. Then we prove that the tree decompo-
sition is valid and that each bag in the decomposition has size at most k + 1.

Suppose that T displays T1, T2, . . . , Tk . Let �1, . . . ,�k be maps from subgraphs of T to T1, T2, . . . , Tk given by
Lemma 1. We now form the disjoint union of the trees T1, . . . , Tk and identify vertices with the same label to obtain
the display graph G of T1, . . . , Tk . The maps �i can now be considered maps from subgraphs of T to subgraphs of G.

For each vertex v in T define

B(v) = {�i (v) : v in the domain of �i; 1� i�k}. (1)

Hence B maps vertices v of T to subsets of the vertex set of G.
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At this stage, we are most of the way towards having a tree decomposition. We have |B(v)|�k for all v ∈ V (T );
(TW1) and (TW3) are satisfied (we prove this formally later). However, we need to modify the bags in order to get
(TW2) to hold.

We form a new tree T ′ that is a subdivision of the tree T . Initially, set T ′ = T . We subdivide each edge {u, v} ∈ E(T ).
Let {u1, v1}, . . . , {um, vm} be the edges of G such that ui ∈ B(u) and vi ∈ B(v). There are at most k of these edges.
Let w1, . . . , wm be new vertices in T ′ and replace {u, v} by the path u, w1, . . . , wm, v. For i ∈ {1, 2, . . . , m}, let

B(wi) = (B(u) ∩ B(v)) ∪ {v1, . . . , vi, ui, . . . , um}.
The idea is that the subsets B(u), B(w1), . . . , B(wm), B(v) constitute a sequence of subsets from B(u) to B(v). The
set B(w1) differs from B(u) only by the addition of the element v1. To go from B(wi) to B(wi+1) we remove the
element ui and add the element vi+1. In this way, every the endpoints of every edge {ui, vi} appear in the bag B(wi),
yet each bag has size at most k + 1.

We claim that (T ′, B) constitute a tree decomposition of G with width k.

1. For each vertex v of T , B(v) defined by (1) has cardinality at most k. This also holds for the corresponding vertices
in T ′. Furthermore, for all the vertices wj resulting from a subdivision of an edge {u, v} in T we see that each set
B(wj ) has cardinality at most k + 1.

2. Consider a ∈ V (G). Then a was in some tree Ti of the k trees which G displays. Thus there is v ∈ T such that
�i (v) = a, so a ∈ B(v). If v is the corresponding vertex in T ′ then a ∈ B(v). Hence the decomposition satisfies
property (TW1).

3. Choose an edge {ui, vi} ∈ E(G) that originally came from some tree in T1, . . . , Tk . From Lemma 1 there is
{u, v} ∈ E(T ) such that ui ∈ B(u) and vi ∈ B(v). By our construction of T ′ there is wj such that {ui, vi} ⊆ B(wj ).
Thus the decomposition satisfies property (TW2).

4. We first claim that for each vertex a ∈ G the set

{v ∈ V (T ) : a ∈ B(v)}
is connected. If a is an unlabelled vertex of G then a originates from exactly one tree Ti . Hence a ∈ B(v) if and only
if �i (v) = a. From Lemma 1 this set is connected. On the other hand, if a is a labelled vertex of G then a ∈ B(v)

if and only if �j (v) = a for some j such that Tj contains a vertex with the same label as a. For each such j , the set

�−1
j (a) is connected and contains the vertex of T with the same label as a. Hence the union {v ∈ V (T ) : a ∈ B(v)}

of the sets �−1
j (a) is also connected.

There are two cases that we now need to consider in order to show that the bags of T ′ containing a are connected.
Firstly, if {u, v} is an edge of T and a ∈ B(u) ∩ B(v) then a ∈ B(wj ) for every vertex on the subdivision of {u, v}
in T ′. Secondly, if wj is some vertex on the subdivision of the edge {u, v} of T such that a ∈ B(wj ) ∩ B(u) but
a �∈ B(v) then, by our construction of B(wj ), we have that a ∈ B(u) ∩ B(w1) ∩ · · · ∩ B(wj ).
We therefore have that the decomposition satisfies property (TW3). �

4. An FPT algorithm for compatibility

Let n be the total number of leaf labels. Given a collection of trees T1, T2, . . . , Tk , it takes O(nk) time to construct
the display graph G, and O(nf (k)) time to determine whether or not G has treewidth k, for some function f [5]. If G

does not have treewidth k then G is incompatible, by Theorem 1. If G has treewidth k then, for this reason, we have
a host of powerful algorithmic tools. In particular, we have the general result of Courcelle [7] and Arnborg et al. [3]
that problems in second order monadic logic can be solved in linear time (with respect to the number of vertices) on
graphs with bounded treewidth. The bulk of this section is spent demonstrating how unrooted tree compatibility can be
encoded as such a problem.

As mentioned above, compatibility of k rooted phylogenetic trees on a set of n leaves can be determined in O(n2k)

time, using the algorithm of Aho et al. [1]. Any unrooted phylogenetic tree can be rooted along an edge e by subdividing
e and making the new degree two vertex the root. From Steel [11] we have
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Observation 2. Unrooted phylogenetic trees T1, T2, . . . , Tk are compatible if and only if each tree Ti can be rooted
along some edge in such a way that the resulting rooted trees are compatible.

Since there are only O(nk) ways that the k trees can be rooted we obtain a polynomial (for fixed k) time algorithm for
unrooted phylogenetic tree compatibility [11]. Our approach shares a lot of characteristics with this basic algorithm.
We also search over the set of all possible ways to root the unrooted trees. However, we exploit the low treewidth of
the display graph G to perform this search in time that is polynomial in n (but not in k).

First we formulate another characterisation of compatibility for rooted phylogenetic trees. Let T ′
1, T

′
2, . . . , T

′
k be a

set of rooted phylogenetic trees with roots �1, . . . , �k . For each tree T ′
i we define the set of rooted triples on L(T ′

i ) by

Ri = {ab|c : the path from a to b does not intersect the path from c to �i}.
Let R equal R1 ∪ · · · ∪ Rk . The following characterisation of compatibility for rooted trees is a reformulation of
Theorem 2 in [6].

Lemma 2. Let T ′
1, . . . , T

′
k be rooted phylogenetic trees on subsets of a leaf set L. Then T ′

1, . . . , T
′
k are incompatible if

and only if there exists S ⊆ L, |S|�3, such that for all non-empty, proper subsets U of S there exists uv|w ∈ R with
u ∈ U , v ∈ S − U and w ∈ S.

The characterisation only makes intuitive sense in the context of the divide and conquer algorithm of Aho et al. [1].
A proof and discussion of this result can be found in [6,10]. For our purposes, we only need a characterisation that we
can recode as second order monodic logic.

We translate the choice of roots, together with Lemma 2, into monadic, second order logic on the display graph G.
Following [3], the display graph of T1, . . . , Tk together with the trees T1, . . . , Tk , will be represented by a relational
structure

G = (V (G), E(G), L, V (T1), . . . , V (Tk), E(T1), . . . , E(Tk), R
∗),

where L is
⋃

1� i �k L(Ti) and R∗ is the vertex-edge incidence relation in G. We will now describe a formula �(A)

such that

G � �(A)

if and only if A is a set of edges (one from each tree Ti) in which we can root T1, . . . , Tk to make them compatible
rooted trees (Observation 2).

First, for each 1� i�k, define �i (u, v, X) to express that there is a path with vertex set Y ⊆ X ⊆ Vi between the
vertices u and v, i.e.

�i (u, v, X) ≡ Ci(X) ∧ u ∈ X ∧ v ∈ X,

where Ci(X) expresses that X ⊆ Vi and X induces a connected subgraph of G, i.e. Ci(X) is

X ⊆ Vi ∧ (∀Y, Z ⊆ X ((Y ∪ Z = X) → (∃y ∈ Y, z ∈ Z, e ∈ E (R∗(y, e) ∧ R∗(z, e))))).

Similarly, for each 1� i�k, define �′
i (u, e, X) to express that there is a path with vertex set Y ⊆ X ⊆ Vi between the

vertices u and the edge e

�′
i (u, e, X) ≡ u ∈ X ∧ Ci(X) ∧ (∃v ∈ X (R∗(v, e))).

The formula �(A) is the conjunction of
∧

1� i �k

|A ∩ Ei | = 1

and

∀S ⊆ L (|S|�3 → ∃U ⊆ S (U �= ∅ ∧ U �= S ∧ ∀u ∈ U, v ∈ (S \ U), w ∈ S (¬R(u, v, w, A))),
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where R is the relation defined above. In monadic second order logic,

R(u, v, w, A)

can be expressed as follows:
∨

1� i �k

∃Y, Z ⊂ Vi, x ∈ A ∩ Ei (�i (u, v, Y ) ∧ �′
i (w, x, Z) ∧ (Y ∩ Z = ∅)).

Recall that A represents a selection of edges along which each of the trees Ti is rooted. Thus R(u, v, w, A) is true if
there is a tree Ti such that, with the rooting implied by A, the path from u to v is vertex disjoint from the path from w

to the root. In otherwords, R(u, v, w, A) holds if and only if uv|w is a rooted triple in one of the trees rooted according
to A.

Hence the problem of determining which way to root the unrooted trees to give compatible rooted trees can be
translated into second order monadic logic, defined on the display graph G. As G has treewidth at most k we obtain

Theorem 3. Compatibility for unrooted phylogenetic trees can be solved in O(ng(k)) time, for some function g(k).

Although never explicitly stated in [3], the following theorem follows by applying standard backtracing techniques
to the automatons constructed in Section 5 of [3].

Theorem 4. Let �(X1, . . . , Xl) be a monadic second order property and K a class of graphs of bounded treewidth.
Given G ∈ K , if there are sets A1, . . . , Al such that G � �(A1, . . . , Al), those sets can be found in linear time.

We note that when T1, . . . , Tk are compatible, the theorem above implies that roots for the trees can be determined in
linear time, so that we can then apply Aho et al.’s [1] to actually construct a phylogenetic tree that displays T1, . . . , Tk .
The construction problem therefore takes O(n2g(k)) time for some function g.

5. Discussion and future work

We have shown that there exists a linear time, FPT algorithm for compatibility of unrooted trees. For this result to have
a significant impact in the evolutionary biology community we still need to design an algorithm that is simple, efficient,
and easy to implement. This should allow us to also derive bounds for the function of k in the complexity—something
that is complicated, and perhaps meaningless, with the current algorithm.

The basic result we present here can be easily extended to provide FPT algorithms for variations on the compatibility
problem. In application, the trees T1, . . . , Tk are only estimates, so it is desirable to incorporate relaxations of the strict
compatibility condition. Efficient algorithms for supertrees that ‘almost’ display all of the input trees (where ‘almost’
can have a number of interpretations) would definitely be of interest to phylogeneticists.
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