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We present Neighbor-Net, a distance based method for constructing phylogenetic networks that is based on the
Neighbor-Joining (NJ) algorithm of Saitou and Nei. Neighbor-Net provides a snapshot of the data that can guide more
detailed analysis. Unlike split decomposition, Neighbor-Net scales well and can quickly produce detailed and
informative networks for several hundred taxa. We illustrate the method by reanalyzing three published data sets:
a collection of 110 highly recombinant Salmonella multi-locus sequence typing sequences, the 135 ‘‘African Eve’’
human mitochondrial sequences published by Vigilant et al., and a collection of 12 Archeal chaperonin sequences
demonstrating strong evidence for gene conversion. Neighbor-Net is available as part of the SplitsTree4 software
package.

Introduction

The Neighbor-Joining (NJ) method of Saitou and Nei
(1987) is arguably the most widely used distance-based
method for phylogenetic analysis. The NJ algorithm takes an
arbitrary distance matrix and, using an agglomerative
process, constructs a fully resolved (bifurcating) phylo-
genetic tree. Dozens of simulation studies and thousands of
phylogenetic analyses have demonstrated that NJ is both fast
and quite accurate. This success has in turn inspired many
variations on the theme, including BioNJ and UNJ (Gascuel
1997a, 1997b), Weighbor-Joining (Bruno, Socci, and
Halpern 2000), and NJML (Ota and Li 2000). In this article
we describe a new variant of NJ, one which constructs
phylogenetic networks instead of phylogenetic trees.

Phylogenetic networks generalize phylogenetic trees
because they permit the representation of conflicting signal
or alternative phylogenetic histories (Fitch 1997). The use
of networks, rather than simple branching trees, is clearly
necessary when the underlying evolutionary history is not
treelike. Recombination, hybridization, gene conversion,
and gene transfer all lead to histories that are not adequately
modelled by a single tree. Even when the underlying
history is treelike, parallel evolution, model heterogeneity,
and sampling error may make it difficult to determine
a unique tree. In these cases networks can provide a
valuable tool for representing ambiguity or for visualizing
a space of feasible trees.

There are a number of phylogenetic network methods
already in use—Posada and Crandall (2001) provide
a comprehensive review. The methods divide roughly into
two classes. The first class includes methods that construct
networks directly from character data, typically under
a parsimony framework. The nodes in the network
represent taxa (for example, different haplotypes), hypo-
thetical ancestral taxa, or intermediary nodes. The best-
known network methods in this class are statistical
parsimony (Templeton, Crandall, and Sing 1992), median
networks (Bandelt et al. 1995), the variants of median
networks (Bandelt, Forster, and Röhl 1999; Huber et al.

2001, 2002), and the netting method (Fitch 1997). These
methods are designed for the analysis of intraspecific data.
They often run into problems when the level of diversity
increases, either because the networks become too
complicated, or through the increasing influence of
reduction rules on the resulting network. As well,
increased diversity can lead to the same consistency
problems encountered with parsimony unless hidden and
parallel mutations are corrected for (as in SpectroNet
[Huber et al. 2002]).

The second major class of phylogenetic network
methods includes those that construct networks directly
from a distance matrix. The use of distance data alone
means that these phylogenetic network methods start with
less information than those using the complete alignment.
Nevertheless, there is evidence that a lot of phylogenetic
information is preserved in the distance matrix, even in the
presence of reticulation (Bryant et al. 2003; Legendre and
Makarenkov 2002; Xu 2000).

Neighbor-Net is a distance-based method. It is most
closely related to Pyramid Clustering and Split Decom-
position. Pyramid clustering, like Neighbor-Net, works
agglomeratively (Diday 1986). The relationship between
Pyramid clustering and Neighbor-Net is loosely analogous
to that between UPGMA and NJ, although the agglomer-
ation and reduction processes used in the two methods are
quite different. Split decomposition (Bandelt and Dress
1992), implemented in SplitsTree (Huson 1998), decom-
poses the distance matrix into simple components based on
weighted splits (bipartitions of the taxa set). These splits are
then represented using a splits graph, a special type of
phylogenetic network that simultaneously represents both
groupings in the data and evolutionary distances between
taxa (see later under Splits Graphs). Neighbor-Net works in
a similar way: we first construct a collection of weighted
splits, then represent these splits using a splits graph. The
advantage of Neighbor-Net is that it tends to construct
networks that are much more resolved than those given by
split decomposition.

Methods
Background—Compatible and Incompatible Splits

A split is a partition of the set of taxa into two
disjoint, non-empty groups. Splits are the building blocks
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of phylogenetic trees: each branch divides the set of taxa
up into a split, with the taxa on one side of the branch
separated from the taxa on the other side (fig. 1). The
collection of splits given by all the different branches in
an unrooted phylogeny T contains all of the branching
information of the phylogeny. We call this collection the
set of splits of T.

A collection of splits is compatible if it is contained
within the set of splits of some phylogenetic tree;
otherwise it is incompatible. When we construct phylog-
enies we construct compatible collections of splits. To
generalize trees, we must allow collections of splits that
are incompatible. As we shall see, the collections con-
structed by Neighbor-Net are not, in general, compatible,
but instead satisfy a weaker condition than compatibility.

We will be dealing with weighted collections of
splits. The weights for a compatible collection of splits
correspond to the lengths of the corresponding branches.
Recall that the distance between any two taxa x, y in a tree,
also called the phyletic distance (Fitch 1997), equals the
sum of the lengths of the branches along the path from x to
y. The branches along this path correspond exactly to the
splits in the tree that have x and y on opposite sides (fig. 1).
Hence the phyletic distance between x and y equals the
sum of the split weights for all those splits having x and y
in different groups.

This formulation of phyletic distance extends directly
to collections of splits that are not compatible. The phyletic
distance between two taxa, with respect to a collection of

weighted splits, equals the sum of the weights of the splits
separating them. This in turn equals the length of a shortest
path between the two taxa in the splits graph representation
of the collection of splits (see later under Splits Graphs).

The Neighbor-Net Method
The Agglomerative Process

NJ, UPGMA, and the linkage tree algorithms all
follow the same general scheme. We start with one node
for each taxon. At each iteration, a pair of nodes is selected
and replaced by a new composite node. The procedure
continues until only two (or three) nodes remain, at which
point we reverse the process to construct a tree or
hierarchy.

Neighbor-Net works along the same lines, with one
important difference. When we select a pair of nodes we
do not combine and replace them immediately. Instead we
wait until a node has been paired up a second time. We
replace the three linked nodes with two linked nodes and
reduce the distance matrix. If there is still a node linked to
two others, we perform a second agglomeration and
reduction. We then proceed to the next iteration. This
simple change in the agglomerative framework generates
a collection of splits that cannot be represented by a single
tree. The process is illustrated in figure 2.

With NJ, we amalgamate pairs of nodes into a single
node, repeating the process until only three nodes remain.
If we keep a list of these amalgamations, we can re-
construct the NJ tree by reversing the amalgamation
process (fig. 3). With Neighbor-Net we also keep a list of
amalgamations, though each amalgamation replaces three
nodes with two. Reversing the amalgamation process gives
the splits in the Neighbor-Net (fig. 3).

The end-product of the Neighbor-Net process is
a circular collection of splits, as can be proved using
mathematical induction. Circular collections of splits are
a mathematical generalization of compatible collections of
splits. Formally, a collection of splits of X is circular if
there is an ordering x1, x2, . . . , xn of the taxa such that
every split is of the form fxi, xiþ1, . . . , xjg jX�fxi, . . . , xjg
for some i and j satisfying 1 � i � j , n. Graphically,
circular splits arise when we place the taxa around a circle
and consider the splits given by cutting the circle along
a line (fig. 4). Most importantly, Andreas Dress and Daniel
Huson (personal communication) have proved that circular

FIG. 1.—The splits graph for a set of compatible splits (i.e., a tree).
The splits for the branches along the path from x to y are given. These are
exactly the splits of the tree with x and y in different groups.

FIG. 2.—The agglomerative process for Neighbor-Net. (i) We begin
with each node representing a single taxon. (ii) Using the selection
criterion, we identify b and c as neighbors, as well as e and f. Unlike NJ,
we do not amalgamate immediately. (iii) We have identified e as
a neighbor of d (as well as f ). Notice how the splits ef jabcdg and
dejacdfg are both represented in the splits graph. (iv) As e has two
neighbors, we perform a reduction, replacing d, e, f by x, y.

FIG. 3.—Expanding after agglomeration: NJ and Neighbor-Net.
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collections of splits always have a planar splits graph
representation (see later under Splits Graphs).

Within the agglomerative framework, the Neighbor-
Net method is determined by the formulae used to select
nodes for agglomeration and the formula used to reduce
the distance matrix after each agglomeration.

Selection Formulae

The selection formulae are closely related to the
formulae used for NJ. Suppose that we have n nodes
remaining. At the very beginning of the algorithm, none of
the nodes will have neighbors already assigned to them.
Later on, some pairs of nodes will have been identified as
neighbors, but not agglomerated. We need to take these
neighbor relations into account when selecting nodes to
agglomerate.

The neighboring relations group the n nodes into
clusters C1, C2, . . . , Cm, m � n, some of which contain
a single node and others of which contain a pair of
neighboring nodes. The distance d(Ci, Cj) between two
clusters is the average of the distances between elements in
each cluster:

dðCi;CjÞ ¼
1

jCijjCjj
X
x2Ci

X
y2Cj

dxy: ð1Þ

The selection of neighboring nodes proceeds in two steps.
First we find the pair of clusters that minimizes the
standard NJ formula

QðCi;CjÞ ¼ ðm� 2ÞdðCi;CjÞ �
Xm
k¼1
k 6¼i

dðCi;CkÞ

�
Xm
k¼1
k 6¼j

dðCj;CkÞ: ð2Þ

Suppose that Ci* and Cj* are two clusters that minimize
Q(Ci, Cj). The second step is to choose which node xi 2 Ci*

and which node xj 2 Cj* are to be made neighbors. The
clusters Ci* and Cj* each contain either one or two nodes.
If these clusters were separated into individual nodes we
would end up with m þ jCi*j þ jCj*j � 2 clusters in total.
Let m̂ denote m þ jCi*j þ jCj*j � 2. To maintain
consistency, this value m̂ replaces m in equation (2) when
we are selecting particular nodes within clusters. That is,
we select the node xi 2 Ci* and node xj 2 Cj* that
minimizes

Q̂Qðxi; xjÞ ¼ ðm̂m� 2Þdðxi; xjÞ �
X̂mm
k¼1
k 6¼i

dðxi;CkÞ

�
X̂mm
k¼1
k 6¼j

dðxj;CkÞ: ð3Þ

The choice of selection formulae, and the reduction
formula which follows, guarantees the statistical consis-
tency of the Neighbor-Net method. We discuss consistency
below.

Distance-Reduction Formulae

Suppose that node y has two neighbors, x and z. In the
Neighbor-Net agglomeration step, we replace x, y, z with
two new nodes u, v.

The distances from u and v to another node a are
computed using the reduction formulae

dðu; aÞ ¼ a dðx; aÞ þ b dðy; aÞ
dðv; aÞ ¼ b dðy; aÞ þ c dðz; aÞ
dðu; vÞ ¼ a dðx; yÞ þ b dðx; zÞ þ c dðy; zÞ

where a, b, c are non-negative real numbers with aþ bþ
c ¼ 1.

Gascuel (1997a) observed that a single degree of
freedom can be introduced into the reduction formulae for
NJ. In the above formulae we introduce two degrees of
freedom, thereby opening the possibility for a variance
reduction method in future versions of Neighbor-Net. By
default we use a¼ b¼ c¼ 1

3
, the equal coefficients being

directly analogous to NJ.

Estimating Split Weights

The NJ algorithm computes both a tree and branch
lengths for that tree. The branch lengths are computed
while the tree is being constructed, using a variant of the
least squares formulae. We also use the least squares
framework for Neighbor-Net.

As we observed above, the phyletic distance between
two taxa equals the sum of the weights of the splits that
separate them. Suppose that the splits in the network are
numbered 1, 2, . . . , m and that the taxa are numbered 1,
2, . . . , n. Let A be the n(n � 1)/2 3 m matrix with rows
indexed by pairs of taxa, columns indexed by splits, and
entry A(ij)k given by

AðijÞk ¼
1 if i, j are on opposite sides of split k;

0 otherwise.

�
ð4Þ

The matrix A is the network equivalent of the standard
topological matrix for a tree (see, e.g., Cavalli-Sforza and
Edwards [1967]; Farris [1972]). The matrix corresponding
to the network in figure 5 equals:

FIG. 4.—A collection of splits is circular if it corresponds to cuts of
a circle.
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A ¼

1 1 0 0 0 1

1 0 1 0 1 0

1 0 0 1 1 1

0 1 1 0 1 1

0 1 0 1 1 0

0 0 1 1 0 1

2
6666664

3
7777775
: ð5Þ

We represent a distance matrix d by an n(n � 1)/2
dimensional vector

d ¼ ðd12; d13; . . . ; dðn�1ÞnÞ9: ð6Þ
The corresponding vector of phyletic distances is given by
p ¼ Ab.

Neighbor-Net produces a circular collection of splits,
so the corresponding matrix A has full rank (Bandelt and
Dress 1992). The ordinary least squares (OLS) estimates
for b can therefore be computed from the observed
distance vector d using the standard formula

b ¼ ðA9AÞ�1A9d: ð7Þ

Weighted least squares (WLS) estimates can be computed
using

b ¼ ðA9WAÞ�1A9Wd ð8Þ

where W is the n(n � 1)/2 3 n(n � 1)/2 diagonal matrix
with 1/var(dij) in entry W(ij)(ij). These formulae are
identical to those used for phylogenies (Cavalli-Sforza
and Edwards 1967; Farris 1972).

Equations (7) and (8) can produce some negative split
weights. If we discard splits with negative weight and
leave the remaining splits unchanged, the weights of the
remaining splits are often grossly overestimated. The
positively weighted splits compensate for the negatively
weighted splits. Consequently, many more redundant
splits are retained, creating a network that is both overly
complicated and a poor fit to the data. The same problem
can hold for phylogenies, but the situation for networks is
more serious.

For this reason, we always compute optimal least
squares estimates with a non-negativity constraint. There is
no closed formula for constrained least squares estimates.
Enforcing the constraint increases computation time
considerably, but the result is a far cleaner and more
accurate representation.

Splits Graphs

Neighbor-Net constructs a collection of weighted
splits which is then converted to a graphical representation,
called a splits graph, using the drawing algorithms
implemented in SplitsTree (Huson 1998). A splits graph
is a graphical representation of a collection of weighted
splits. The splits graph for a compatible collection of splits
is precisely a tree: each edge in the graph corresponds to
a split in the collection and has length equal to the weight
of the split. Incompatible splits are represented by splits
graphs with cycles or boxes. Each split in a splits graph
then corresponds to a collection of parallel edges, all with
the same length. Removing the edges corresponding to
a given split A jB partitions the network into two
connected parts, one containing the taxa in A and the
other containing the taxa in B.

In a tree, the phyletic distance between two taxa
equals the sum of the lengths of the path connecting them.
The presence of cycles in a splits graph means that there
can be several paths between any two taxa. The phyletic
distance between two taxa x, y equals the length of
a shortest path connecting them. One can show (A. Dress
and D. Huson, personal communication) that these shortest
paths include exactly one edge corresponding to every
split in the graph separating x from y. Hence the distance
between x and y also equals the sum of the split weights of
those splits separating x and y.

Some examples: The simplest splits graph that is not
a tree is depicted in figure 5. The graph represents six
splits: the four splits separating one taxa from the rest, one
split separating a, b from c, d, and another separating a,
c from b, d. The two darker internal edges correspond to
the split fa, bg j fc, dg, and the gray edges correspond to
fa, cg j fb, dg. Split weights are marked on the graph.

The interpretation of these graphs depends on the
significance of the corresponding splits and their weights.
Both trees T1 and T2 have their splits contained in the splits
graph, but T3 does not. If the splits graph is taken to
represent a distance matrix between a, b, c, d, we can see
that this distance matrix is closer to the distance matrix
given by T2 than T1. The splits graph can also represent
mixtures of two trees. The weights in the example are
consistent with a mosaic alignment where 2

3
of the sites

support T1 and 1
3

support T2. The weight for fa, bg j fc,
dg in the splits graph (0.06) equals the weight of the split
in T1 (0.09) multiplied by the proportion (2/3) of sites
supporting that tree. The split fag j fb, c, dg appears in T1

with weight 0.03 and in T2 with weight 0.06. The weight in
the splits graph is therefore 2/330.03þ1/330.06¼0.03.

The splits graph (i) in figure 6 is more complicated.
Three pairwise incompatible splits generate a three-
dimensional, non-planar, cube. However, this splits graph
can be simplified: the splits graph in figure 6 (ii) displays
exactly the same splits. The information represented by
both networks is identical.

This example illustrates two points: the splits graph
representation need not be planar and it is not necessarily
unique. This first problem is not an issue for us: the splits
graphs generated by Neighbor-Net are always planar, an
important advantage over other network methods when it

FIG. 5.—The simplest splits graph that is not a tree. The graph
‘‘contains’’ T1 and T2 but not T3.

258 Bryant and Moulton



comes to visualization. The second problem means that
care must be taken when interpreting internal, or ancestral,
nodes in the graph. A splits graph represents conflict, and
conflicting signals, rather than an explicit history of which
reticulations took place (Strimmer, Wiuf, and Moulton
2001). That said, boxes in the splits graph can be used to
locate reticulations which can then be validated by other
techniques.

Consistency

Neighbor-Joining is consistent. If the input to NJ is
a distance matrix that is already additive (treelike), then
NJ will return the corresponding weighted phylogenetic
tree (see (Gascuel 1997a) for a review). This condition
guarantees statistical consistency under a wide range of
stochastic models.

Neighbor-Net is also consistent. If the input to
Neighbor-Net is a treelike distance matrix, Neighbor-Net
will return the splits and branch lengths of the correspond-
ing tree. In fact, Neighbor-Net is consistent for all circular
distance matrices, a much wider class of distance matrices.
A distance matrix is circular (also called Kalmanson) if it
equals the phyletic distances for a circular collection of
splits with positive weights. Because compatible splits are
circular, treelike (or additive) distances are circular. If the
input distance matrix is circular, Neighbor-Net is guaran-
teed to return the corresponding circular splits with their
split weights. The proof is non-trivial—refer to Bryant and
Moulton (2003) for details. This consistency property
explains (and, in fact, almost determines) the specific
choice of selection and reduction formulae presented
above.

Examples

To illustrate the application of Neighbor-Net, we re-
analyzed three published data sets using Neighbor-Net.
The distance matrices used, and examples of further
studies and simulations, are available online from the
Neighbor-Net Web page (http://www.mcb.mcgill.ca/
;bryant/NeighborNet). Neighbor-Net itself is available
as part of the SplitsTree 4.0 software package.

Salmonella MLST Data

Kotetishvili et al. (2002) describe the use of multi-
locus sequence typing (MLST) to classify several hundred
Salmonella isolates. Split decomposition was used to test
for the presence of recombination within the data set. The
authors detected evidence for recombination in two of the
genes studied, but they were forced to reduce the number
of taxa for the analysis of the phosphomannomutase
(manB) sequences. We therefore repeated the analysis of
all the 110 manB sequences using Neighbor-Net.

We first estimated evolutionary distances using
maximum likelihood, with parameters determined using
Modeltest (Posada and Crandall 1998). The network
produced by Neighbor-Net permitted the selection of
a small group of sequences that were subsequently tested
for recombination using the LikeWin software (Archibald
and Roger 2002a).

LikeWin uses PAUP* (Swofford 1998) to compute
a maximum likelihood tree T for all of the sites. A sliding
window of width 100 is then moved along the sequence.
For each window we compare the maximum likelihood
score for a tree on those sites to the likelihood of T. A
significant difference between these two indicates a change
in signal. Statistical significance was estimated using
parametric bootstrapping, repeating the entire sliding
window analysis on multiple (we used 100) simulated
sets of sequences (following Archibald and Roger
[2002a]).

Mitochondrial Eve Data

Our second example revisits the phylogenetic anal-
ysis of 135 human mitochondrial sequences, originally
published by Vigilant et al. (1991). A phylogeny for these
sequences was used as supporting evidence for an African
origin of human mitochondria. The validity of this study
was later questioned, though an extensive study of the
large-scale landscape of the space of trees (Penny et al.
1995) indicates that data support the phylogenetic hy-
potheses put forward by Vigilant et al. (1991).

The central problem with these data is the large
number of sequences and the small number of sites.
Sampling error leads to substantial homoplasy between the
sequences, and the relative lack of information in the data
means that there will be millions, perhaps billions, of
optimal parsimony trees. This is an ideal situation for
a network analysis, because we can deduce features from
the data without restricting our attention to a single tree.

We estimated distances from the mitochondrial
sequences using K2P þ � (¼0.5). Following Penny et al.
(1995), we reweighted the characters to compensate for
hypervariable sites (site weights kindly supplied by D.
Penny) and constructed the Neighbor-Net.

Archeal Chaperonin Data—Gene Conversion

For the third example, we reanalyzed DNA sequence
data from the chaperonin complexes of 12 crenarchaeotes
(Archea), originally published by Archibald and Roger
(2002b). The taxa divide into a and b paralogs stemming
from an ancestral duplication. Archibald and Roger find
substantial evidence of gene conversion between the two
paralogs. Indeed, the presence of some gene conversion
between different paralogs is obvious from a visual
inspection of the alignments, most significantly with

FIG. 6.—Two splits graph representations of the same set of splits.
The edges corresponding to the split fa, b, cg j fd, e, fg are highlighted in
both graphs.
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Pyrodictium occultum. Despite this, Geneconv (Sawyer
1989) gave only weak or moderate support for the
presence of gene conversion, especially once selection
pressures had been corrected for (Archibald and Roger
2002b). Archibald and Roger also report that the likeli-
hood-based software of Grassly and Holmes (1997) and
the distance-based software of McGuire and Wright (2000)
both failed to detect significant gene conversion. They
therefore developed a new sliding-window method,
validated by parametric bootstrapping, that was used to
identify three principal domains supporting the three
phylogenies presented in figure 7.

We computed a distance matrix directly from the
alignment using ML distances (parameters taken from
Archibald and Roger [2002b]) and performed a Neighbor-
Net analysis.

Results
Salmonella Data

The Neighbor-Net for the 110 MLST manB sequen-
ces is given in figure 8. Whereas split decomposition
returns a tree for the full data set (Kotetishvili et al. 2002),
the Neighbor-Net is distinctly non-treelike. However the
presence of boxes in the network does not imply
recombination, only the possibility of recombination (see
the human mitochondrial analysis below). Therefore we

applied the sliding-window technique developed by
Archibald and Roger (2002a) to test for recombination.

The sliding-window analysis, and particularly the
parametric bootstrap method used to test significance,
requires a huge amount of computation, and is infeasible
for the complete set of 110 sequences. Instead we used
Neighbor-Net to select a small set of taxa to test for
recombination in a specific area in the network (identified
in figure 8). We used the same model parameters as those
determined for the complete set of sequences.

The analysis detected two areas where the window
likelihoods differed substantially from that for the
complete set of sites (fig. 9). The significance levels,
estimated using a parameterized bootstrap, are (P , 0.03)
for the larger peak and (P, 0.23) for the lower peak. Note
that the significance test is based on a single window
maximum and says nothing on the significance of
observing the multiple adjacent windows with high
likelihood differences that we encounter here. We focused
on the large peak, estimated breakpoints roughly from the
LikeWin graph, and repeated the Neighbor-Net analysis
including and excluding different sites (fig. 10).

Our first observation is that removing sites 110–250
removes almost all boxes from the restricted network.
Thus, in these seven sequences, we can conclude that
much of the conflicting signal comes from these sites. The
second and perhaps most important observation is that the
divergence between the taxa within sites 110–250 is

FIG. 7.—Maximum likelihood trees for three regions within the Archael Chaperonin sequences. (Adapted from Archibald and Roger [2002b].)
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significantly higher than for the remaining sites. This
suggests that a change in rate could have made a major
contribution to the difference in log likelihoods found
using the sliding-window analysis. In contrast, an in-
vestigation of the second smaller peak (sites 340–450)
revealed an area where divergence was significantly lower
than in the remaining sites.

We repeated the partitioned analysis for all 110
sequences (networks not shown). The network for sites
110–250 was almost identical to that for the seven
sequences, with one major conflicting split. The network
for the remaining sites was not treelike, but it had
significantly fewer boxes than the network for all of the
sites. Finally, the network for sites 340–450 was
completely treelike, dividing the sequences into only six
groups.

Clearly, further analysis is required to unravel the
evolutionary history of these sequences. Our aim here is to
illustrate how Neighbor-Net might be used to guide more
detailed investigations.

Mitochondrial Eve Data

The Neighbor-Net for the 135 human mitochondrial
sequences indicates very clearly why these data have been
so difficult to analyze (fig. 11). The network represents
marked ambiguity in the signal. There are conflicting splits

throughout the network. Even areas that appear treelike
(such as the area around the Asian–European groups) are
in fact full of boxes, as can be most clearly demonstrated
by manipulating the network within SplitsTree.

Given the history and context of the data, it is
reasonable to infer that the ambiguity is caused not by
conflicting signal (such as that given by reticulation) but
by sampling error. One clear example is the part of the

FIG. 8.—Neighbor-Net for the 110 Salmonella manB sequences. The isolates used for the sliding-window analysis are in boldface. Clinical isolates
indicated by an asterisk (*). Group A includes the isolates Sty54, Sty54*, Sty2, She9, Sty87, Snp40*, Sty13, Snp41*, Sen5, Sha160, Sha141, Sty20*,
Sha58, Sse18, Sha71, Sty31. Group B includes the isolates Sty61, Sha148, Smb-17, Sag75, Sha124. Group C includes the isolates UND3, Sha150,
Sha173, Sen23*, Sha153, Sha140, San96, Sen30*, Sen24*, Sha138, Sha176, Sha130, Sha164, Sha157, Sen29*, Sca93, Sha122, Sht20, Sha186. Group
D includes the isolates She3, Sha50, Sse95, Sha56, Sen24, Sen34, Sha177, Sty13*, Swo44, Sty86, Ste41, Sha77, UND80. Group E includes the isolates
Ssc40, Sse28, Sty89, Sty15*, Ske69, UND110, Sha49, Sen4, Sha48, Sha165, Sty92, Snp33*, Sty52, UND109, Sha131, Sha102, Sty6, Sha175.

FIG. 9.—Difference in log likelihoods for sliding-window analysis of
seven Salmonella manB sequences.
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network near the connection point of the long branch
leading to the Naron (76) taxon. These boxes represent
ambiguity in the placement of the Naron taxa—an
ambiguity already noted in phylogenetic analysis (Vigilant
et al. 1991). If the taxon is deleted, so are the boxes. Thus
Neighbor-Net is prone to long branch attraction, as are NJ
and maximum likelihood. Unlike trees, however, networks
can represent both the signal introduced by long branch
attraction and the signal of the underlying phylogeny
(Clements, Gray, and Choat 2002).

The Neighbor-Net did more than represent complex-
ity and ambiguity. We also have a snapshot of the general
structure in the data, a snapshot that is not restricted to
a single bifurcating tree. The ‘‘Africa 49’’ cluster identified
by Vigilant et al. (1991) (and validated by Penny et al.
[1995]) is represented clearly. The divergence between
African sequences is noticeably greater than the di-
vergence between all other sequences. The African
sequences are also more widely dispersed than the non-
African sequences. Hence the Neighbor-Net is consistent
with the analysis, and conclusions, of the original Vigilant
et al. article, and this conclusion is reached without
restricting attention to a single tree.

Archeal Chaperonin Data

Neighbor-Net analysis of the Archeal chaperonin
sequences (fig. 12) rapidly detected the presence of
conflicting signal. The Neighbor-Net is attempting to
represent groupings resulting from gene conversion versus
the separation between the two paralogs. The division
between the a and b paralogs is clear, except for the
position of P. occultum b. In the complete sequence, the
signal grouping the two P. occultum taxa is stronger than
that separating the a and b duplicates.

Although the method has detected conflict, it has not
reconstructed the complete history. Neighbor-Net misrep-
resents some of the reticulation because it only constructs
planar networks. It is not possible to group the a and b
pairs for all three of A. pernix, Pd. occultum and Pb.
aerophilium and still have a planar collection of splits.
Indeed, grouping two of these pairs and splitting the
paralogs would also violate planarity.

We therefore suggest that any reticulations detected
by Neighbor-Net be investigated and validated with other,
perhaps more detailed, methods. The advantage of
Neighbor-Net is that it is rapid and scales well, producing
a detailed overview of the entire data set. Other methods,
like split decomposition and median networks, are not
suited for analysis of larger data sets, but are still useful for
detecting patterns in subsets of taxa.

In this case, we applied split decomposition to two
subsets of the taxa (fig. 12). The split decomposition graph
for A. pernix, Pd. occultum and Pb. aerophilium is non-
planar, and represents both the grouping of the pairs of
paralogs and the separation of the a and b sequences. Split
decomposition does not detect any additional signal when
applied to the other six sequences. The split decomposition
graph constructed on the entire data set (not shown) is
substantially less resolved than the Neighbor-Net.

The message is, then, to apply Neighbor-Net to the
entire data set to rapidly obtain an overview of the
structure and possible points of interest. Finer details can
then be explored using more computationally intensive or
detailed methods.

Discussion

Neighbor-Net rapidly provides a detailed snapshot of
the data. The algorithm is an extension of the NJ method,

FIG. 10.—Networks produced for seven Salmonella manB sequences from different sites. Note the difference in scale in the lower network.
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using similar selection and reduction formulae. Unlike NJ,
Neighbor-Net can represent conflicting signals in the data,
whether they arise from sampling error or genuine
recombinations.

Neighbor-Net is fast. The basic algorithm takes O(n3)
time on n sequences, the same order of complexity as NJ.
The major computational difficulty comes with edge
weighting, which uses a least squares estimation under
a non-negativity constraint. At present we use a combina-
tion of iterative techniques and combinatorial algorithms,
but there is potential for substantial improvements in
efficiency for this step. Even so, we have been able to
relatively quickly (a few minutes) analyze data sets
containing over 300 taxa on a 600 MHz laptop.

Neighbor-Net is consistent and, apparently, relatively
efficient. We have proven consistency over a large class of
distance matrices. However, as we saw with the archael
chaperonins, the planarity constraint is not sufficiently
general in some situations. In these cases, Neighbor-Net is
not consistent, but neither are any tree-based methods.
However, unlike tree-based methods, the network gener-
ally gives a clear indication of which parts of the network
the complexity stems from, allowing us to focus in on
those regions, with more detailed and computationally
demanding methods.

Neighbor-Net is informative. Our three examples
indicate that networks produced by Neighbor-Net are

useful both as a representation of the overall structure of
the data and as a guide for further analysis. A splits graph
is a powerful representation tool, even if it does require
some practice to interpret.

There remain many open questions. The most
fundamental is the interpretation and validation of the
splits graphs produced by Neighbor-Net. At present, we
advocate use of the method as a technique for data
representation and exploration, much in the same way as
a scatter diagram can be used to explore the relationship
between two real valued variables. To go beyond ex-
ploration to diagnosis we require a consistent framework
for interpretation of splits graphs, particularly if we are to
design meaningful significance tests. Recent progress
toward solving these problems has been made by Bryant
et al. (2003), who show that the splits in the network are
estimations of the splits in the input trees. However, the
interpretation is a little idealistic because it ignores the
planarity constraint inherent in Neighbor-Net.

This leads us to the second shortcoming of the
method—one highlighted by the Archael Chaperonin
analysis. Neighbor-Net produces circular collections of
splits. We concede that the definition of circular splits and
circular distances is not biologically motivated. However,
the key observation is that this ‘‘mathematically motivated’’
class of distance matrices includes treelike distances and
the matrices generated by a large range of evolutionary

FIG. 11.—Neighbor-Net for the 135 human mitochondrial sequences studied by Vigilant et al. The numbering is identical to that of Vigilant et al.:
Western Pygmies (1, 2, 37–48); Eastern Pygmies (4–6, 30–32, 65–73); !Kung (7–22); African Americans (3, 27, 33, 35, 36, 59, 63, 100); Yorubans
(24–26, 29, 51, 57, 60, 63, 77, 78, 103, 106, 107); Australian (49); Herero (34, 52–56, 105, 127); Asians (23, 28, 58, 74, 75, 84–88, 90–
93, 95, 98, 112, 113, 121–124, 128); Papua New Guineans (50, 79–82, 97, 108–110, 125, 129–135); Hazda (61, 62, 64, 83); Naron (76); Europeans
(89, 94, 96, 99, 101, 102, 104, 111, 114–120).
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histories. The planarity property guarantees that the
representation will not become so overly complicated as
to be uninformative. Nevertheless, planar split graphs
might not be general enough for some evolutionary
histories. In these cases, Neighbor-Net can still give an
indication of where such complexities arise, allowing one
to focus on the relevant portions of the tree or network for
more specialized analysis. There is still potential for
network methods producing different but representative
collections of splits.

Finally, we note that a splits graph is only one step
toward a complete reconstruction of recombination
histories. Under a standard evolutionary model, each gene
or pair of contiguous segments has a treelike evolutionary
history, and the network yields a composite of these
different histories. The difficult problem of unravelling this
composite history remains, although we have seen that
Neighbor-Net provides a valuable first step.
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