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Abstract

Breakpoint phylogenies methods have been shown to be an effective tool for extractin
logenetic information from gene order data. Currently, the only practical breakpoint phylo
algorithms for the analysis of large genomes with varied gene content are heuristics with no o
ity guarantee. Here we begin to address this lack by deriving lower bounds for the breakpoint
problem and for the more complicated breakpoint phylogeny problem. In both cases we emp
grange multipliers and sub-gradient optimization to tighten the bounds. The bounds have been imp
mented and are available as part of the GOTREEpackage (http://www.math.mcgill.ca/bryant/gotree).
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Gene order data

Evolutionary trees (phylogenies) have for a long time been inferred from genet
quence data. The evolution of sequences has been modeled using a stochastic
involving local changes: insertion, deletion, and replacement of individual nucleotides
amino acids.

Recently, there has been a rapid increase in the number of completely seq
genomes, giving access to a new source of phylogenetic data: the position of gene
the genome. As genomes evolve, the orderingof genes along the genome can change. I
vidual genes are inserted or deleted. Segments of the genome can be duplicated, or rever
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to different genomes having equivalent orhomologous genes arranged in different order
How can we use this gene order information to infer evolutionary relationships bet

the organisms? This question is especially pertinent for groups of organisms, such
early branching eukaryotes, that have been difficult to analyse using conventional se
based methods [30].

Gene order data has been used as a source of phylogenetic information for sever
(e.g., [25]). Much of the early work in the field follows a distance-based approach.
an evolutionary distance is estimated for eachpair of genomes. Generally, this involved t
calculation of the minimum number of mutations (e.g., reversals, transpositions) re
to transform one genome into the other [10,25]. Next, these distances are used to co
trees using the variety of distance based methods available in phylogenetics.

A problem with distance based methods is that they give no indication as to the
of genomes for ancestral species: the nodes in the interior of the tree. This shortc
motivates the use of a parsimony type method. We try to find a tree and a collect
genomes for internal nodes of the tree such that the total length of the tree is minimum
length of an edge in the tree is the distance between the gene orders at its endpoints
length of the entire tree is simply the sum of all of its edge lengths. Thus, we are lo
for a Steiner tree on the space of genomes. Unfortunately, the extension of rearran
distances to more than two genomes proved to be computationally difficult [5], th
recently developed heuristic and Bayesian approaches are very promising [3,15,19].

1.2. Breakpoint methods

The breakpoint phylogeny method for the analysis of gene order data, introduced
[1], avoids many (but not all) of the computational difficulties inherent in rearrange
distance based methods. Breakpoints and breakpoint distances will be defined fo
later (Section 2). For now we give just the intuitive idea.

Consider the effect of an inversion on a genome (Fig. 1). Two genes 2 and 3 tha
adjacent in the original genomeA are not adjacent in the resulting genomeB; likewise for

Fig. 1. The effect of an inversion on adjacencies. The inversion causes a segment to be reversed and sw
the opposite strand.
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inversions or mutations breaks the adjacenciesbetween further pairs of genes, leading
more and more breakpoints. The breakpoint distance is based on the number of brea
between the two genomes, expressed as a proportion of the number of adjacenc
the genomes become more scrambled there will be more breakpoints and the bre
distance increases. The number of breakpoints is a directly observable phenomeno
a sense, the breakpoint distance is “model-free”.

The breakpoint distance can be extended to the case when there have been delet
insertions into the genome and the two genomes have different collections of gene
is, differentgene content). In this case, the breakpoint distance between two genom
computed by first removing any genes not appearing in both genomes, and then tak
distance between the two genomes that are left over [30,31].

The definitions of the breakpoint median and breakpoint phylogeny problems f
immediately from the definition of the breakpoint distance. The breakpoint median prob
lem is to find a genomeX that minimises the sum of the distances fromX to each of a
given collection of genomes. The breakpoint phylogeny problem is to find, for a tree
genomes at the leaves, an assignment of genomes for the internal nodes that minim
total length of the tree.

1.3. Existing work

The analysis of gene order data using breakpoints was introduced and develop
series of papers by Blanchette, Bourque, Kunisawa and Sankoff [1,2,27–29]. They
how the breakpoint median problem can be solved by transforming it into an instance
traveling salesman problem (TSP), provided that all genomes have the same gene
Thus methods and software for the TSP can be applied directly to the breakpoint m
problem.

Methods for the breakpoint median problem can in turn be extended to the brea
phylogeny problem using an iterative heuristic. First, the genomes at the internal nod
initialised in some way (e.g., randomly). Next the program makes repeated passes t
the tree, replacing the genome at each node with the median of its neighbouring genome
In this way the length is decreased, and the procedure converges to a local optima. T
method was implemented by Matthieu Blanchette and applied to a collection of a
mitochondrial gene orders. Blanchette’s implementation has been recently re-optimized
by Moret et al. [20], with impressive improvements in efficiency.

The breakpoint median problem was proved NP-hard by Pe’er and Shamir [21]
also developed an approximation algorithm for the problem [22]. Integral to the ap
imation algorithm is a lower bound method for the breakpoint median problem. We
discuss this bound in Section 3.6.

Several authors have proposed character encodings of gene orders [6,8]. Gene or
can be converted into character data for use with parsimony methods. These enc
give lower bounds for the breakpoint phylogeny problem. We show in Section 4.5
these bounds are not as tight as other possible parsimony encodings and not as tig
bounds developed in this paper.
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order data has required the use of heuristic methods. To my knowledge, no one ha
able to find a provably minimal solution of the breakpoint phylogeny problem for a
trivial data set. We can only guess at how well our heuristics are working. Even simu
experiments such as those of Cosner et al. [6] do not help us here: the ancestral genom
generated using a random Markov process are not necessarily the most parsimonio

Furthermore, almost all of the existing work only applies to the rather exceptiona
when all of the input gene orders have the same gene content. If we abandon this con
the breakpoint problems become significantly more difficult. To date, there have bee
a few papers on breakpoint analysis of geneorder data for genomes with unequal ge
content: Sankoff et al. [30] describe various heuristics and applied them to the anal
mitochondrial gene order data from early branching eukaryotes; and a diverse col
of chloroplast data was analysed using breakpoint distances in Sankoff et al. [31]. I
cases, there was little guarantee provided that the breakpoint phylogeny criteria had be
well optimised.

The determination of ancestral gene orders in a fixed tree is only one compon
the problem: we still have to search for thephylogeny of minimum length. Moret et al
[19] show how lower bounds can be used to exclude large numbers of bad trees
use a simple and fast circular ordering bound (see Section 4.5). The bounds we
here are provably tighter than the circular ordering bounds, even with theswap-as-you-go
modification of [19]. For this reason, the claim of Moret et al. that circular ordering bo
were tighter than the bounds presented here is puzzling.

Moret et al. also claim that the bounds we present are “very slow”—too slow to ju
the additional amount of work required. The connection with character parsimony
duced in Section 4.5 allows us to use PAUP* [32] to quickly evaluate the local optimum
bound on huge numbers of trees. It took less than a minute (on a Mac G4) to evaluat
million trees on 11 taxa when analyzing the animal mtDNA gene orders discussed
The local optimum bound eliminated all but 10,000 trees. In contrast, the circular ord
bound did not eliminate a single tree.

2. Terminology and notation

2.1. Genomes and successors

The genes will be denotated using lower case characters. We assume that we k
orientation of each gene, that is, the direction that the gene is read during transcriptio
orientation is indicated by the sign of the gene, with−a indicating the reverse orientatio
of a.

We will assume that the genomes are circular: linear genomes can be handled by ins
ing an extra symbolic gene representing the ends of the genome. A genome is a c
ordering of signed genes:

G = 〈g1, g2, . . . , gn, g1〉.
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Fig. 2. Two circular genomes with different gene content.

GenomeC in Fig. 2 would then be written〈1,−2,3,4,−5,−6,7,1〉. If we reverse both
the order and the orientation of all the genes we get back to the same genome. So−G =
〈−1,−7,6,5,−4,−3,2,−1〉 is just another way of writing downG. The set of genes o
a genomeG, with signs removed, is denotedG(G). For notational convenience we al
defineG±(G) which contains one positive and one negative copy of each gene inG(G).
ThusG(C) = {1,2,3,4,5,6,7} and

G±(C) = {−7,−6,−5,−4,−3,−2,−1,1,2,3,4,5,6,7}.
Given a vector of genomesA = [A1,A2, . . . ,AN ] we defineG(A) = ⋃N

i=1G(Ai) and
G±(A) = ⋃N

i=1G±(Ai).
The successor of a geneg in a genomeG is the genome immediately followingg,

and is denoted succ(g,G). Thus in the figure, succ(1,C) = −2, succ(−2,C) = 3 and
so on. SinceC and −C represent the same genome, we also have succ(−1,C) = −7,
succ(2,C) = −1 and so on. In general, succ(g,G) = h if and only if succ(−h,G) = −g.
If g is not a gene inG then we define succ(g,G) = ∅.

If G is a genome andX is a set of genes, then the induced genomeG|X is obtained by
removing all the genes ofG that are not inX (either positive or negative), but leaving t
rest of the genes in the same order. For example, ifX = {1,3,5,6} andC is the genome in
Fig. 2 thenC|X = 〈1,3,−5,−6,1〉.

2.2. The breakpoint distance

LetA andB be two genomes. LetX = G±(A)∩G±(B) be the signed genes they have
common. The (normalised) breakpoint distance between two genomesA andB is defined

(1)d(A,B) = 1

|X|
∣∣{g ∈ X: succ(g,A|X) �= succ(g,B|X)

}∣∣.
For example, ifC andD are the two genomes in Fig. 2 thenX = {1,−1,2,−2,5,−5,6,

−6} andd(C,D) = 1
84 = 1

2.
Note that the distanced(A,B) is unaffected by genes that only appear in one of

genomes or that do not appear in any of the genomes. Also note that this breakpo
tance differs from that used in [2] by the introduction of the scaling factor 1/|X|. This
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factor was introduced by [30] to overcome a problem of the unnormalised breakpoint dis-
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tances: when there is a great deal of variation in gene content, unnormalised brea
distances will tend to produce trees with large genomes forced apart.

2.3. The breakpoint median problem

Let A = [A1, . . . ,AN ] be a vector of genomes. For any other genomeG we define

δ(G,A) =
N∑

i=1

d(G,Ai).

The breakpoint median problem forA is to find a genomeG with gene setG(G) = G(A)

such thatδ(G,A) is minimized.

2.4. The breakpoint phylogeny problem

Let A = [A1, . . . ,AN ] be a vector of genomes and letT be a rooted tree with leave
labelled bijectively by numbers 1 toN . We will assume thatT is binary—every interna
node has exactly two children. We can make this assumption because every minimal break-
point phylogeny, as with every Steiner tree, can be extended to a binary tree throu
addition of zero length edges. The setE(T ) of edges ofT is the set of ordered pairs(u, v)

such thatu is a child ofv. We use par(v) to denote the parent of nodev and root(T ) to
denote the root ofT .

An assignment of genomes toT is defined formally as a mappingφ from nodes ofT to
genomes that satisfies

1. If v is a leaf andi is the label of this leaf thenφ(v) = Ai .
2. If v is an internal node andv has childrenu1 andu2 then the gene set ofφ(v) is equal

to the union of the gene sets ofφ(u1) andφ(u2).

The mappingφ describes a history of the evolution of the gene orders that corres
to the leaves. Property (2) models the situation where the differences in gene cont
completely explained by deletions. For this to be possible, the gene set of an ances
gene order must contain all the genes present in the gene orders of its descenden
ancestral genes that do not appear in any of the descendent gene orders can be remo
from the analysis without affecting the final result. We will always use the Greek lettφ

or ψ to denote assignments.
To simplify presentation later on we recursively define a gene setG±(v) for each vertex

v in T :

1. If v is a leaf with labeli thenG±(v) = G±(Ai).
2. If v is an internal node with childrenu1 andu2 thenG±(v) = G±(u1) ∪ G±(u2).

Thus for all assignmentsφ and all verticesv in T we haveG±(φ(v)) = G±(v).
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The breakpoint phylogeny problem for A andT is to find an assignmentφ of minimum
length.

3. A lower bound for the breakpoint median problem

In this section we describe a new lower bound for the breakpoint median probl
is inspired by a lower bound used for the TSP, though the conversion of the TSP
is complicated substantially by the problem of unequal gene content. After describ
initial basic bound, we show how to improve the bound using Lagrange multipliers. T
also a technique borrowed from work on the TSP, and it is also complicated by the un
gene content. Later on in the paper (Section 4) we show how the breakpoint median bou
can be extended to give a lower bound for the breakpoint phylogeny problem. The in
idea behind both bounds is the same: understanding the median bound is import
understanding the phylogeny bound.

3.1. The closest neighbour bound for the TSP

Suppose that we have an instance of the TSP: a distance matrixD defined on a finite
collection of cities 1,2, . . . , n. The length of any tourτ = 〈x1, x2, . . . , xn, x1〉 is defined

length(τ ) =
n∑

i=1

D[xi, xi+1]

wherexn+1 is identified withx1. For eachi = 1, . . . , n let yi be the closest city toxi . Thus
D[xi, xi+1] � D[xi, yi] and

length(τ ) �
n∑

i=1

D[xi, yi].

The right hand side is independent ofτ and is therefore a lower bound for any tour leng
This TSP lower bound can be viewed as the sum of local optimizations. For each c
optimize the length of the outgoing step. Summing these local optima gives a lower
for the global optimum.

Our lower bound for the breakpoint median (and later breakpoint phylogeny) pro
works by the same principle. For each signed gene, we solve a ‘localised median
lem’ that focuses only on the successors of that gene. The global bound is then fo
summing up over all of the signed genes.
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3.2. Local breakpoints and local medians
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The definition of breakpoint distance (Eq. (1)) incorporates the cardinality of the set:{
g ∈ X: succ(g,A) �= succ(g,B)

}
.

A standard way to define cardinality is to define a characteristic function for eleme
the set and sum over these. We modify this idea to re-express the breakpoint distan

Let A andB be two genomes and letX = G±(A) ∩ G±(B). For each signed geneg
define

(2)dg(A,B) =
{

1/|X|, if g ∈ X and succ(g,A|X) �= succ(g,B|X);
0, otherwise.

We can rewrite the breakpoint distance by summing up over all signed genes:

(3)d(A,B) =
∑
g

dg(A,B).

We decompose the median functionδ in a similar way. LetA be a vector of genome
[A1,A2, . . . ,AN ] and define

(4)δg(G,A) =
N∑

i=1

dg(G,Ai).

Then

(5)δ(G,A) =
N∑

i=1

d(G,Ai)

(6)=
N∑

i=1

∑
g

dg(G,Ai)

(7)=
∑
g

N∑
i=1

dg(G,Ai)

(8)=
∑
g

δg(G,A).

3.3. The local optimum bound

Having decomposed the functionδ into a sum of functionsδg , we obtain a bound b
optimizing eachδg separately. Thelocal optimal bound for A is defined

(9)L(A) =
∑

g∈G±(A)

min
G

{
δg(G,A): G(G) = G(A)

}
.

The next step is to prove that the local optimal bound is indeed a lower bound f
breakpoint median problem.
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Lemma 1. Let A be a vector of genomes. For all genomes H such that G(H) = G(A) we

ize
the
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have

(10)δ(H,A) � L(A).

Proof.

(11)δ(H,A) =
∑

g∈G±(A)

δg(H,A)

(12)�
∑

g∈G±(A)

min
G

{
δg(G,A): G(G) = G(A)

}
(13)= L(A). �

We now turn to the problem of efficiently computing this bound. In order to minim
the localised median scoreδg(G,A) we would hope that we only have to consider
genes close tog in the input genomes. This is what we establish in the next lemma.

Lemma 2. Let A = [A1,A2, . . . ,AN ] be a vector of genomes and g a signed gene in
G±(A). There is a genome G with G(G) = G(A) minimizing δg(G,A) such that for all
i = 1, . . . ,N either

succ(g,G|G(Ai)) = ∅
(that is, g /∈ G±(Ai)) or

succ(g,G|G(Ai)) = succ(g,Aj )

for some j ∈ {1,2, . . . ,N}.

Proof. Let H be a genome minimizingδg(H,A) such thatG(H) = G(A). Starting with
succ(g,H) we proceed along the genomeH , considering each geneh in turn. If h �=
succ(g,Aj ) for all j = 1, . . . ,N then we removeh from the genomeH and re-insert it
directly before the geneg. We then pass to the gene that was originally the successoh
in H . We continue this way until we have considered all of the genes inG(H) − {g,−g}.
Let G be the resulting genome.

If g /∈ G±(Ai) or succ(g,H |G(Ai)) = succ(g,Aj ) for somej = 1, . . . ,N then

succ(g,G|G(Ai)) = succ(g,H |G(Ai))

and sodg(G,Ai) = dg(H,Ai). On the other hand, ifg ∈ G±(Ai) but succ(g,H |G(Ai)) �=
succ(g,Aj ) for all j = 1, . . . ,N then

succ(g,H |G(Ai)) �= succ(g,Ai)

and so

dg(H,Ai) = 1

|G±(Ai) ∩ G±(G)| � dg(G,Ai).
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G|G(A3)
g h3 h4 . . .
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g h2 h4 . . .

G|G(A5)
h1 h3 h4 . . .

Fig. 3. A genomeG and five induced genomesG|G(A1),G|G(A2), . . . ,G|G(A5), providing an example of the
choice of induced successors for a gene. The choices for succ(g,G|Ai

) are in boldface.

It follows that δg(G,A) � δg(H,A). SinceH was already minimal, so isG and it is a
genome satisfying the conditions of the lemma.�

Lemma 2 tells us that to find the minimum value forδg(G,A) we need only conside
all the possible choices of genes for each succ(g,G|G(Ai)), i = 1, . . . ,N . Furthermore
these genes all come from the set of successors{succ(g,Aj ): j = 1, . . . ,N}. These two
observations are almost enough for a polynomial time algorithm to minimizeδg(G,A)

(for boundedN ). We merely have to check all choices of genes for succ(g,G|G(Ai)), i =
1, . . . ,N , that can be realised by some genomeG. This we can do using a search tree.
proceed by way of an example.

Fig. 3 represents a candidate genomeG and the five induced genomes

G|G(A1), G|G(A2), . . . , G|G(A5).

The geneg is present in only four of these. The first successor ofg, h1, appears in two
genomes. The next successorh2 appears in three, two of which (A1 andA2) containh1.
The third successor appears in two genomes, one of which does not containh1 or h2. At
this point, all of the successors succ(g,G|G(Ai)), i = 1, . . . ,5, have been chosen.

To generalise this example: we are looking for a sequence of signed genesh1, h2, . . . , hk

such that

(P1) Eachhi = succ(g,Aj ) for somej ∈ {1,2, . . . ,N}.
(P2) For eachhi there is a genomeAj such that{g,hi} ⊆ G±(Aj ) but hk /∈ G±(Aj ) for

all 1 � k < i.

Now we have enough to sufficiently limit our search space:

Theorem 3. The lower bound L(A) can be computed in polynomial time when either the
number of genomes is bounded or all genomes have equal gene content.

Proof. For each signed geneg ∈ G±(A) we need to search through all sequences satisf
properties (P1) and (P2) above. The maximum length of such a sequence is at mostN , and
for eachhi there are at most(N − i) possibilities, as (P2) rules out the possibility
repetitions. Hence the number of sequences to examine is at most O(N !). In the specia
case that all genes have the same gene content, (P2) forces the maximum sequence len
to be one, so the number of sequences is O(N). �
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Theorem 3 leads to a polynomial time algorithm when the genomes have equal gene
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content, or there is only a bounded number of genomes. In many practical applic
such as the iterate median heuristic of [30], the number of genomes in the median p
is bounded by two or three. However, it is important to ask whether a fast algorithm
for the general case. The answer to this question appears to be “probably no”:

Theorem 4. It is an NP-hard problem to compute L(A) for a vector of genomes
[A1, . . . ,AN ] with unequal gene sets. Hence it is also NP-hard to minimize δg(G,A) for a
signed gene g.

Proof. We provide a reduction from FEEDBACK ARC SET [13], which is NP-compl
even when there is cycle of length two. Let the directed graphG = (V ,E) and number
K � |E| make up an arbitrary instance of FEEDBACK ARC SET satisfying this condi
Put G = V ∪ {x} wherex is a new gene. Label the arcs inE as (a1, a

′
1), . . . , (am, a′

m).
Construct a vector of genomes

(14)A = [〈x, a1, a
′
1, x〉, 〈x, a2, a

′
2, x〉, . . . , 〈x, am,a′

m,x〉]
which all have genes inG. We claim thatG = (V ,E) has a feedback arc setE′ ⊆ E of size
K if and only if L(A) � K.

Fix a ∈ V , and letB = {b: (a, b) ∈ E}, let b1, . . . , bk be an arbitrary ordering ofB, and
consider the subsequencea, b1, . . . , bk, x. By inserting all other genes directly beforex we
obtain a genomeHa for which δa(Ha,A) = 0. The same trick (in reverse) gives a geno
H−a such thatδ−a(H−a,A) = 0. Hence

L(A) = 1

2
min

{
δx(H,A): G±(H) = G±(A)

}
+ 1

2
min

{
δ−x(H,A): G±(H) = G±(A)

}
.

Suppose thatE′ is a feedback arc set of sizeK. Leta1, . . . , an be an ordering ofV such
that for each arc(ai, aj ) ∈ E − E′ we havei < j . ConsiderH = 〈x, a1, a2, . . . , an, x〉.
Then δx(H,A) is the number of arcs(aj , ai) ∈ E such thatj > i, and δ−x(H,A) =
δx(H,A). HenceL(A) � |E′| � K.

Conversely, suppose thatL(A) � K. Without loss of generality there is a genomeH

such thatδx(H,A) � K. Write H as H = 〈x, a1, a2, . . . , an, x〉. There are at mostK
genomes〈x, aj , ai, x〉 in A such thatj > i, and the corresponding edges form a feedb
arc set forG. �

We stress that in most current applications the number of genomesN in the breakpoin
median problem is bounded (typicallyN � 3). In these cases, the above NP-hardness r
is irrelevant.

3.4. Improving the bound with Lagrange multipliers

Lagrange multipliers provide us with a ratchet technique for cranking up the l
bound by applying a system of weights. For each set of weights, we obtain a new bound—
the goal is to find a set of weights that produces as large a lower bound as we can.
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To illustrate the concept, return once again to the standard TSP and the “closest cities”
we also
t

ter
ng
bound,

he
r

bound that we derived before. Suppose that in addition to distances between cities
assign a cost for visiting each city; the cost of a hotel if you like. Letc(xi) denote the cos
of each visit to cityxi . Let yi denote the cheapest and closest city toxi , that is, the city for
whichD[xi, yi] + c(yi) is minimum. For any tourτ we have

(15)length(τ ) =
n∑

i=1

(
D[xi, xi+1] + c(xi+1)

) −
n∑

i=1

c(xi)

(16)�
n∑

i=1

(
D[xi, yi] + c(yi)

) −
n∑

i=1

c(xi).

The right hand side is independent ofτ so is a lower bound for any tour length, no mat
which values we choose for the costsc(xi). Clearly, different choices of costs are goi
to give different bounds. We are able to choose a set of costs that gives the largest
keeping in mind that any choice of costs still gives a guaranteed lower bound.

We return to the breakpoint median problem. LetA be the set of input genomes. T
analogue of a hotel cost is aLagrange multiplier. We define one Lagrange multiplier fo
each genome indexi = 1, . . . ,N and for each signed geneg ∈ G±(Ai). We denote this
Lagrange multiplier byλ[i, g] and the array of Lagrange multiplies byλ. For convenience
of notation we defineλ[i,∅] = 0 for all i andλ[i, g] = 0 for all g /∈ G±(Ai). This simplifies
several formulae further on.

Now to the analogue of the “closest cheapest” city. For each signed geneg define

(17)δg(G,A,λ) = δg(G,A) +
N∑

i=1

λ
[
i,succ(g,G|G(Ai))

]
which is equivalent to

(18)δg(G,A,λ) =
N∑

i=1

(
δg(G,Ai) + λ

[
i,succ(g,G|G(Ai))

])
.

Theweighted local optimum bound is then defined

(19)L(A,λ) =
∑

g∈G±(A)

min
G

{
δg(G,A,λ): G(G) = G(A)

} − 1

2

N∑
i=1

∑
g∈G±(A)

λ[i, g].

We prove that, for all choices ofλ, the weighted local optimum boundL(A,λ) is a lower
bound.

Lemma 5. Let A be a vector of genomes and let λ be a vector of Lagrange multipliers for
signed genes in A. For all genomes H such that G(H) = G(A) we have

(20)δ(H,A) � L(A, λ).
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Proof.

es the

be

ar-
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a

δ(H,A) =
∑

g∈G±(A)

δg(H,A)

=
∑

g∈G±(A)

(
δg(H,A) +

N∑
i=1

λ[i, g]
)

−
N∑

i=1

∑
g∈G±(A)

λ[i, g]

=
∑

g∈G±(A)

δg(H,A,λ) −
N∑

i=1

∑
g∈G±(A)

λ[i, g]

�
∑

g∈G±(A)

min
G

{
δg(G,A,λ): G(G) = G(A)

} −
N∑

i=1

∑
g∈G±(A)

λ[i, g]

= L(A,λ). �
Once again, we turn to computational issues. The introduction of weights mak

problem of minimizingδg(G,A,λ) harder than the problem of minimizingδg(G,A). For
one thing, Lemma 2 no longer holds: the addition of weights means that there may
no genome minimizingδg(G,A,λ) for which all of the successors genes succ(g,GG(Ai))

come from{succ(g,Aj ): j = 1, . . . ,N}. Our first step is to increase the set which is gu
anteed to contain the optimal successor genes.

Let Iin andIout be two disjoint subsets of{1,2, . . . ,N}. Let X[Iin, Iout] be the set of
signed genes defined as follows

X[Iin, Iout] = {
h ∈ G±(A): h ∈ G±(Ai) for all i ∈ Iin, and

h /∈ G±(Ai) for all i ∈ Iout
}
.

In pseudo-English:X[Iin, Iout] contains all of the genes that appear in every one of
genomes with indices inIin but none of the genomes with indices inIout. For exam-
ple, in Fig. 3,X[{1,2}, {3}] = {h1, h2}, X[{1,2}, {4}] = {h1}, X[{2}, {1,4}] = {h3} and
X[{2}, {4,5}] = ∅.

For each choice ofIin and Iout such thatX[Iin, Iout] is non-empty we choose
signed genex ∈ X[Iin, Iout] for which

∑
i∈Iin

λ[i, x] is minimal and a second geney ∈
X[Iin, Iout] − {x,−x} for which

∑
i∈Iin

λ[i, y] is minimal. We useM[A,λ] to denote the
set of all thex ’s andy ’s that are chosen for at least oneIin andIout.

Lemma 6. Let A = [A1,A2, . . . ,AN ] be a vector of genomes, λ an array of Lagrange
multipliers associated to A, and g a signed gene in G±(A). There is a genome G with
G(G) = G(A) minimizing δg(G,A) such that for all i = 1, . . . ,N either

succ(g,G|G(Ai)) = ∅
or

succ(g,G|G(Ai)) = succ(g,Aj )
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for some j ∈ {1,2, . . . ,N} or

t

s

.

s
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succ(g,G|G(Ai)) ∈ M[A,λ].

Proof. Let H be a genome minimizingδg(H,A) such thatG(H) = G(A) that does no
satisfy the conditions of the lemma. Leth1, h2, . . . , hm be the signed genes{

succ(g,H |G(Ai)): i = 1, . . . ,N
}

in the same order thatthey appear afterg in the genomeH . Let hk be the first gene in thi
sequence that is not a member ofM[A,λ] and does not equal succ(g,Aj ) for somej .

Set

Iin = {
i: succ(g,H |G(Ai)) = hk

}
and

Iout =
{
i: succ(g,H |G(Ai)) ∈ {hk+1, hk+2, . . . , hm}}.

ThenIin contains those genomes of whichhk is a member but no geneh1, h2, . . . , hk−1 is
a member whileIout contains those genomes of which none ofh1, h2, . . . , hk are members
Furthermore,hk ∈ X[Iin, Iout].

Let x be a gene inM[A,λ] that minimizes
∑

i∈Iin
λ[i, x] over all x ∈ X[Iin, Iout] −

{g,−g}. Since the genesh1, . . . , hk−1 are not genes in genomeAi for anyi ∈ Iin the gene
x cannot equal any of genesh1, . . . , hk−1. Similarly, sincex is not in any of the genome
Ai for i ∈ Iout, the genex does not equal any ofhk+1, . . . , hm.

We modify the genomeH by swappinghk with x. Let H ′ be the genome we obtai
Then

δg(H
′,A,λ) =

∑
i∈Iin

(
dg(H

′,Ai) + λ
[
i,succ(H ′|G(Ai))

])

+
∑
i /∈Iin

(
dg(H

′,Ai) + λ
[
i,succ(H ′|G(Ai))

])

=
∑
i∈Iin

(
dg(H

′,Ai) + λ[i, x]) +
∑
i /∈Iin

(
dg(H,Ai) + λ

[
i,succ(H |G(Ai))

])

�
∑
i∈Iin

(
dg(H,Ai) + λ[i, hk]

) +
∑
i /∈Iin

(
dg(H,Ai) + λ

[
i,succ(H |G(Ai))

])
= δg(H,A,λ).

SinceH is already minimal, so must beH ′. We can repeat the process, increasingk until
we obtain a minimal genome satisfying the conditions of the lemma.�

The problem of searching for genomes to minimizeδg(G,A,λ) is therefore almost th
same as the unweighted problem, except, of course, that we have to consider a larg
of genes at each node of the search tree. Specifically, we are searching for seque
signed genesh1, h2, . . . , hk that satisfy
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(P1′) Eachhi is either inM[A,λ] or equals succ(g,Aj ) for somej ∈ {1,2, . . . ,N}.

e NP-
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ble to
se to

h

f

(P2) For eachhi there is a genomeAj such that{g,hi} ⊆ G±(Aj ) but hk /∈ G±(Aj ) for
all 1 � k < i.

We now have

Theorem 7. The lower bound L(A,λ) can be computed in polynomial time when either
the number of genomes is bounded or all genomes have equal gene content.

Of course, whenN is unbounded and the genomes have unequal gene content, th
hardness result of Theorem 4 extends to the weighted case.

3.5. Choosing the best Lagrange multipliers: sub-gradient optimization

We now have a way of computing a lower boundL(A,λ) for each choice ofλ. To take
advantage of this feature, we wantλ that gives the largest, and therefore tightest, bo
possible. To this end, we need to study the function takingλ to L(A,λ). This function
shares many of the properties of the lower bound function for the Held–Karp boun
[11,12,23]), including continuity, piecewise linearity, and concavity. Hence we are a
use a technique called sub-gradient optimization to find an optimal, or hopefully clo
optimal, choice forλ.

First we need an ascent direction.
Suppose that we have calculatedL(A,λ) for some choice ofλ. To do this, we took eac

signed geneg ∈ G±(A) in turn and determined a genomeHg optimizing δg(Hg,A,λ).
In actual fact, we were really only interested in the successor genes succ(g,Hg |G±(Ai)),
i = 1, . . . ,N as the rest ofHg does not affect the score.

Fix a signed geneh and indexi such thath ∈ G±(Ai). Let f [i, h] denote the number o
genesg for which the optimal genomeHg that we found satisfies succ(g,Hg|G±(Ai)) = h.
That is,f [i, h] is the number of time thath gets chosen as a successor ofg in some
Hg|G±(Ai).

Define the array∆ = (∆[i, h]) by

(21)∆[i, h] = f [i, h] − 1

for all i = 1, . . . ,N andh ∈ G±(Ai). Whenh /∈ G±(Ai) we let∆[i, h] = 0. The array∆
has the same dimensions asλ and provides our sub-gradient vector.

Theorem 8. If ∆ is non-zero then there is ε > 0 such that L(A,λ + ε∆) > L(A,λ).

Proof. The functionL(A,λ) is piecewise linear: the space of allλ can thus be divided
up into closed regions on which everyf [i, h] is constant andL(A,λ) is linear. There is
ε > 0 such thatλ andλ + ε∆ belong to the same region. This is true even ifλ lies on the
boundary between two regions.
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For eachg ∈ G±(A) there is a genomeHg that minimizes bothδg(H,A,λ) and
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δg(H,A,λ + ε∆). Expandingδg(H,A,λ) we obtain

(22)δg(Hg,A,λ + ε∆) − δg(Hg,A,λ) =
N∑

i=1

ε∆
[
i,succ(g,Hg|G(Ai))

]
.

Thus

L(A,λ + ε∆) − L(A,λ)

=
( ∑

g∈G±(A)

(
δg(Hg,A,λ + ε∆) − δg(Hg,A,λ)

)) −
(

N∑
i=1

∑
g∈G±(A)

ε∆[i, g]
)

=
∑

g∈G±(A)

N∑
i=1

ε∆
[
i,succ(g,Hg |G±(Ai))

] −
∑

g∈G±(A)

N∑
i=1

ε∆[i, g]

= ε
∑

h∈G±(A)

N∑
i=1

∆[i, h](f [i, h] − 1
)

= ε
∑

h∈G±(A)

N∑
i=1

(
∆[i, h])2

(23)> 0,

since∆ �= 0. �
We therefore have an ascent direction. The next question is how far to go in this

tion. We have implemented three strategies:
Simple line search. The first strategy was to use the simple line search algorithm alr

being used for the Held–Karp bound (cf. [23], p. 176). The algorithm is given an initia
length and correction factor. At each iteration we proceed along the sub-gradient vector
the given step length, and then shorten the step length using the correction factor
tually the algorithm will either reach a local (and therefore global) optimum, or grind
a halt as the step length becomes too small. One obvious shortcoming of this appr
that we have to come up with some value for the initial step length.

Exact line search. The fact that the function is concave allows us to perform exact
searches. Consider the functionL(A,λ + t∆) for t � 0. Since∆ is a sub-gradient, th
function is initially increasing. The function is concave, so it will ascend monotonical
reach a maximum, then descend. We search for the first valuet1 > 0 such thatL(A,λ +
t1∆) � L(A,λ). The maximum must then equalL(A,λ + t∆) for somet ∈ [0, t1]. We
subdivide the interval[0, t1] into three equal segments:[0, t2], [t2, t3], [t3, t1]. If L(A,λ +
t2∆) < L(A,λ + t3∆) then the maximum occurs whent ∈ [t2, t1], otherwise whent ∈
[0, t3]. Recursing, we obtain a small interval that is guaranteed to contain the maxim

Almost exact line search. Given that exact line searching takes a lot of time, and is
necessarily the best strategy, we also tried an approximate line search. After locat
smallestt1 > 0 such thatL(A,λ + t1∆) � L(A,λ) we use the mid-pointλ + t1/2∆ as the
return value of the line search.
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3.6. Comparison with other breakpoint median bounds
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The lower boundsL(A) and maxλ L(A,λ) are currently the only two bounds that w
can use for the general breakpoint median problem. If we forget this for the mome
concentrate on the equal gene set case we find several bounds that we can make
isons with.

First of all, when all genomes have equal gene content the breakpoint distance be
a metric. We can therefore apply the standard three point Steiner bound:

δ
(
G, [A1,A2,A3]

)
� 1

2

(
d(A1,A2) + d(A1,A3) + d(A2,A3)

)
.

As usual, this bound is quite weak. Even the simple local optimum bound improves
Steiner bound. We can show that for all vectorsA = [A1,A2,A3] of three genomes with
equal gene content,

1

2

(
d(A1,A2) + d(A1,A3) + d(A2,A3)

)
� L(A) � max

λ
L(A,λ).

Another breakpoint median bound appears as part of the approximation algorithm
oped by Pe’er and Shamir [22]. One can show that the bound they use is at least
asL(A). The bound has not been implemented, so at the moment we don’t know wh
the bound also improves on maxλ L(A,λ). In any case, the Pe’er and Shamir bound
restricted to only three genomes with equal gene content. There appears to be no di
extension of the bound for a larger number of genomes nor for genomes with unequ
content.

The transformation from the breakpoint median problem to the TSP provides eve
ther scope for new and tighter lower and upper bounds. However, like the Pe’er and S
bound, this transformation breaks down completely when the genomes have differen
content and does not help us with the general breakpoint median problem.

4. A lower bound for the breakpoint phylogeny problem

Everything we did for medians we now do for trees. We will decompose the le
of a tree into local scores, define local optima, and use these to derive a lower b
We then show how Lagrange multipliers can be applied to this problem, and how dynam
programming can be used to compute the value of the bound for each choice of mult
Apart from the complications added by dealing with trees and larger numbers of gen
the intuition behind the breakpoint median and the breakpoint phylogeny bounds is
same.

4.1. Local breakpoints and local breakpoint phylogenies

In Section 3.2 we saw how the breakpoint distanced(A,B) between two genomes ca
be decomposed into the sum of local breakpoint distancesdg(A,B). Likewise, the median
scoreδg(G,A) can be expressed as the sum of local median scoresδg(G,A). Here we do
the same for tree length.
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The length of an assignmentφ was defined in Section 2.4 as

l
al

e
go-
l(φ,A, T ) =
∑

(u,v)∈E(T )

d
(
φ(u),φ(v)

)
.

For each signed geneg ∈ G±(A) we define

lg(φ,A, T ) =
∑

(u,v)∈E(T )

dg

(
φ(u),φ(v)

)
.

Then

(24)l(φ,A, T ) =
∑

(u,v)∈E(T )

∑
g∈G±(A)

dg

(
φ(u),φ(v)

)

(25)=
∑

g∈G±(A)

∑
(u,v)∈E(T )

dg

(
φ(u),φ(v)

)

(26)=
∑

g∈G±(A)

lg(φ,A, T ).

4.2. The local optimum bound for phylogenies

We have decomposed the lengthl(φ,A, T ) of an assignmentφ into the sum of loca
lengthslg(φ,A, T ). To derive a lower bound onl(φ,A, T ) we optimize each of these loc
lengths separately and then sum. Thelocal optimum bound for A andT is defined

(27)L(A, T ) =
∑

g∈G±(A)

min
ψ

{
lg(ψ,A, T ): ψ is an assignment forA andT

}
.

Lemma 9. Let A = [A1,A2, . . . ,AN ] be a vector of genomes and let T be a tree with leaves
labelled 1,2, . . . ,N . For all assignments φ for A and T we have l(φ,A, T ) � L(A, T ).

Proof.

(28)L(A, T ) =
∑

g∈G±(A)

min
ψ

{
lg(ψ,A, T ): ψ is an assignment forA andT

}

(29)�
∑

g∈G±(A)

lg(φ,A, T )

(30)= l(φ,A, T ). �
We can computel(φ,A, T ) in O(n2N) time using dynamic programming, though w

will omit details and correctness proof because the problem can be solved using the al
rithm we present in the following section.
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4.3. Improving the bound with Lagrange multipliers
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We have seen how Lagrange multipliers can be applied to the breakpoint median
lem. Here we show how to apply them to the breakpoint phylogeny problem. We us
Lagrange multiplier for each nodev in the tree and each signed geneg ∈ G±(v). (The set
G±(v) was defined in Section 2.4.) Denote this Lagrange multiplier byλ[v,g] and the ar-
ray of Lagrange multipliers byλ. As before, we defineλ[v,∅] = 0 for all v andλ[v,g] = 0
for all g /∈ G±(v).

Letpar(v) denote the parent ofv in T and root(T ) the root ofT . Letφ be an assignmen
for T . For each signed geneg define

(31)lg(φ,A, T ,λ) = lg(φ,A, T ) +
∑

u �=root(T )

λ
[
u,succ

(
g,φ

(
par(u)

)∣∣
G±(u)

)]
which is equivalent to

(32)lg(φ,A, T ,λ) =
∑

(u,v)∈E(T )

dg

(
φ(u),φ(v)

) + λ
[
u,succ

(
g,φ(v)|G±(u)

)]
.

Theweighted local optimum bound is then defined

(33)L(A, T ,λ) =
∑

g∈G±(A)

min
ψ

{
lg(ψ,A, T ,λ): ψ is an assignment forT andA

}

(34)−
∑

v �=root(T )

∑
g∈G±(A)

λ[v,g].

For all choices ofλ, the boundL(A, T ,λ) is a lower bound forl(φ,A, T ):

Lemma 10. Let A = [A1,A2, . . . ,AN ] be a vector of genomes and T a tree with leaves
labelled 1,2, . . . ,N . For all assignments φ for T and A and all choices of λ we have
l(φ,A, T ) � L(A, T ,λ).

Proof.

l(φ,A, T ) =
∑

g∈G±(A)

lg(φ,A, T )

=
∑

g∈G±(A)

lg(φ,A, T ,λ) −
∑

v �=root(T )

∑
g∈G±(A)

λ[v,g]

�
∑

g∈G±(A)

min
ψ

{
lg(ψ,A, T ,λ): ψ is an assignment forT andA

}

−
∑

v �=root(T )

∑
g∈G±(A)

λ[v,g]

(35)= L(A, T ,λ). �
We return to computational issues. We show thatL(A, T ,λ) can also be computed i

O(n2N) time, wheren is the number of genes andN the number of genomes. Letg be
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Algorithm 1. Dynamic programming algorithm that computes minψ lg(ψ,A, T ,λ).

a signed gene inG±(A). We construct a arraym[v,h] indexed by nodes ofT and signed
genes inG±(A). Algorithm 1 fills in the array and returns the minimum oflg(ψ,A, T ,λ)

over all valid assignmentsψ .

Theorem 11. If v0 is the root of T and m is the array constructed using Algorithm 1 then

min
{
m[v0, h]: h /∈ {g,−g}}

= min
ψ

{
lg(ψ,A, T ,λ): ψ is an assignment for A and T

}
.

Proof. For each nodev of T let Tv denote the subtree ofT rooted atv, let E(Tv) denote
the edges in this subtree and define

(36)lg(φ,A, Tv) =
∑

(x,y)∈E(Tv)

(
dg

(
φ(x),φ(y)

) + λ
[
x,succ

(
g,φ(y)|G±(x)

)])
.

Thus ifv0 is the root ofT thenT = Tv0 andlg(φ,A, Tv0) = lg(φ,A, T ).
We claim that after the algorithm has finished, the value ofm[v,h] equals the minimum

of lg(ψ,A, Tv,λ) over all assignmentsψ such that succ(g,ψ(v)) = h. The proof is by
induction on the height ofv.

Induction base. If v is a leaf which has labeli, andg ∈ G(v), thenlg(ψ,A, Tv,λ) = 0
for all assignmentsψ . By the definition of an assignment we must have succ(g,ψ(v)) =
succ(g,Ai) for all assignmentsψ . Thus we setm[v,h] = 0 for h = succ(g,Ai) and
m[v,h] = ∞ for h �= succ(g,Ai).
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Induction step. Next suppose thatv is not a leaf and that the claim holds for all descen-

nd
dents ofv. We will construct an assignmentφ for which

• succ(g,φ(v)) = h,
• lg(φ,A, Tv,λ) = m[v,h], and
• lg(φ,A, Tv,λ) � lg(ψ,A, Tv,λ) for all assignmentsψ with succ(g,ψ(v)) equal toh.

We initialiseφ as any assignment for which succ(g,φ(v)) = h.
Let u1 andu2 be the children ofv. Fix i ∈ {1,2} and consider three cases (i), (ii) a

(iii).
Case (i). g ∈ G±(ui) andh ∈ G±(ui).

Choosey that minimizesm[ui, y]. If

m[ui, h] � m[ui, y] + 1

|G±(ui)|
then setĥ = h, otherwise set̂h = y. By the induction hypothesis we can setφ(x) for all
nodesx in Tui so that succ(g,φ(ui)) = ĥ andlg(φ,Tui ,A,λ) = m[ui, ĥ]. For all assign-
mentsψ such that succ(g,ψ(v)) = h we have

lg(ψ,Tui ,A,λ) + dg

(
ψ(ui),ψ(v)

) + λ[ui, h]
� min

{
m[ui, h],m[ui, y] + 1

|G±(ui)|
}

+ λ[ui, h]
= lg(φ,Tui ,A,λ) + dg

(
φ(ui),φ(v)

) + λ[ui, h],
noting that

λ
[
ui,φ(v)|G±(ui)

] = λ
[
ui,ψ(v)|G±(ui)

] = λ[ui, h].
Case (ii). g /∈ G±(ui).
For any assignmentψ we have

lg(ψ,A, Tui ,λ) + dg

(
ψ(ui),ψ(v)

) = 0.

For each nodex in Tui we setφ(x) to be an arbitrary genome with genesG±(v). For all
assignmentsψ such that succ(g,ψ(v)) = h we then have

(37)0 = lg(ψ,A, Tui ,λ) + dg

(
ψ(ui),ψ(v)

) + λ
[
ui,ψ(v)|G±(ui)

]
(38)= lg(φ,A, Tui ,λ) + dg

(
φ(ui),ψ(v)

) + λ
[
ui,φ(v)|G±(ui)

]
,

noting that

λ
[
ui,φ(v)|G±(ui)

] = λ
[
ui,ψ(v)|G±(ui)

] = λ[ui,∅] = 0.

Case (iii). g ∈ G±(ui) buth /∈ G±(ui).
Choosex, y, z ∈ G±(ui) − {g,−g} that minimizem[ui, x] + λ[ui, x], m[ui, y], and

λ[ui, z] respectively. If

(39)m[ui, y] + λ[ui, z] + 1

|G±(ui)| < m[ui, x] + λ[ui, x],
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then set̂h = y, removez from φ(v) and insert it directly afterh. Thusλ[ui,φ(v)|G±(u )] =
r

very
at we

e,
nt
i

z. If (39) does not hold then we setĥ = x, removex from φ(v) and insert it directly afte
h, givingλ[ui,φ(v)|G±(ui)] = x. Case (iii) applies to at most one of the childrenu1 andu2
so there is conflict between the two children over the successor ofh in φ(v).

By the induction hypothesis we can setφ(x) for all nodesx in Tui so that succ(g,φ(ui))

= ĥ andlg(φ,A, Tui ,λ) = m[ui, ĥ]. For all assignmentsψ such that succ(g,ψ(v)) = h we
have

lg(ψ,Tui ,A,λ) + dg

(
ψ(ui),ψ(v)

) + λ
[
ui,ψ(v)|G±(ui)

]
� min

{
m[ui, x] + λ[ui, x], m[ui, y] + 1

|G±(ui)| + λ[ui, z]
}

= lg(φ,A, Tui ,λ) + dg

(
φ(ui),φ(v)

) + λ
[
ui,φ(v)|G±(ui)

]
.

Bringing things together, we have that for all assignmentsψ such that succ(g,ψ(v)) = h,

lg(ψ,A, Tv,λ) =
2∑

i=1

lg(ψ,Tui ,A,λ) + dg

(
ψ(ui),ψ(v)

) + λ
[
ui,ψ(v)|G±(ui)

]

�
2∑

i=1

lg(φ,Tui ,A,λ) + dg

(
φ(ui),φ(v)

) + λ
[
ui,φ(v)|G±(ui)

]
= lg(φ,A, Tv,λ).

Furthermore,lg(φ,A, Tv,λ) equals the valuem[v,h] computed by Algorithm 1.
This proves the induction hypothesis. To prove the theorem we observe that ifφ mini-

mizeslg(φ,A, T ,λ) andv0 is the root ofT then

lg(φ,A, T ,λ) = m
[
v0,succ

(
g,φ(v)

)] = min
{
m[v0, h]: h ∈ G±v0

}
. �

4.4. Choosing the best Lagrange multipliers: sub-gradient optimization

As with the breakpoint median problem, we want to find values forλ such that
L(A, T ,λ) is maximized. It is, of course, not necessary to find a global optimum: e
choice ofλ gives a lower bound. Nevertheless we do want to find the best bound th
can.

We are faced, then, with the problem of maximizing the high dimensional, concav
continuous and piecewise linear functionL(A, T ,λ). Once again, we employ sub-gradie
optimization.

For each signed geneg ∈ G±(A) letψg be an assignment that minimizeslg(ψg,A, T ,λ).
For each nodeu �= root(T ) and each signed geneh ∈ G±(u) define

(40)f [u,h] = ∣∣{g: ψg

(
par(u)

)∣∣
G±(u)

= h
}∣∣.

In pseudo-English,f [u,h] is the number of genesg for whichh equals the successor ofg

in the genomeψg(v) restricted toG±(u), wherev is parent ofu.
Define the array∆ = (∆[v,h]) by

(41)∆[v,h] = f [v,h] − 1
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for all nodesv �= root(T ) andh ∈ G±(v). Whenh /∈ G±(v) we let∆[v,h] = 0. The array
.

le-

with
omes in
logeny

tion to
the tree
∆ provides the sub-gradient. The following is the phylogeny analogue of Theorem 8

Theorem 12. If ∆ is non-zero then there is ε > 0 such that L(A, T ,λ+ ε∆) > L(A, T ,λ).

Proof. The functionL(A, T ,λ) is piecewise linear: the space of allλ can be divided up
into closed regions on which everyf [v,h] is constant andL(A, T ,λ) is linear. There is
ε > 0 such thatλ andλ + ε∆ belong to the same region. This is true even ifλ lies on the
boundary between two regions.

For eachg ∈ G±(A) there is an assignmentψg that minimizes bothlg(ψ,A, T ,λ) and
lg(ψ,A, T ,λ + ε∆). Expandinglg(ψg,A, T ,λ) we obtain

lg(ψg,A, T ,λ + ε∆) − lg(ψg,A, T ,λ)

(42)=
∑

(u,v)∈E(T )

ε∆
[
u,succ

(
g,ψg(v)|G(u)

)]
.

Thus

L(A, T ,λ + ε∆) − L(A, T ,λ)

=
( ∑

g∈G±(A)

(
lg(ψg,A, T ,λ + ε∆) − δg(ψg,A, T ,λ)

))

−
( ∑

(u,v)∈E(T )

∑
g∈G±(A)

ε∆[u,g]
)

=
∑

g∈G±(A)

∑
(u,v)∈E(T )

ε∆
[
u,succ

(
g,ψg(v)|G±(u)

)] −
∑

g∈G±(A)

N∑
i=1

ε∆[i, g]

=
∑

h∈G±(A)

∑
u �=root(T )

ε∆[u,h](f [u,h] − 1
)

=
∑

h∈G±(A)

∑
u �=root(T )

ε
(
f [u,h] − 1

)(
f [u,h] − 1

)
> 0. �

Thus∆ is an ascent direction. All three line-search strategies are available in the imp
mentation (see Section 5).

4.5. Comparison with other breakpoint phylogeny lower bounds

There are currently no other lower bounds for the breakpoint phylogeny problem
genomes that have unequal gene sets. Hence we consider the case when all gen
A have equal gene sets, and compare the existing bounds with the breakpoint phy
bounds we have derived.

The normalised breakpoint distance becomes a metric when we restrict our atten
genomes on the same gene set. We can therefore apply the standard “once around
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Steiner bound” as suggested by [19]. Leta1, a2, . . . , an be an ordering of the leaf labels
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1,2, . . . ,N given by a pre-order traversal ofT . If we define

ST(A, T ) = 1

2

(
d(Aa1,Aa2) + d(Aa2,Aa3) + · · · + d(AaN−1,AaN ) + d(AaN ,Aa1)

)
and then for all assignmentsφ,

ST(A, T ) � l(φ,A, T ).

This bound applies to all metric spaces irrespective of their structure, so one would
it be quite weak. It is, however, very quick to compute and [19] claim that it eliminat
large proportion of bad trees when applied to their one real and multiple simulated datase

The two additional bounds that we consider stem from two different character e
ings of gene order data. In the first, Maximum parsimony on binary encodings of gen
(MPBE) [6], we use binary characters to denote whether or not a particular adjacen
is present in a genome. There is one site for each ordered pair of signed genes(a, b).
The sequence representing a genomeAi has a 1 at the site corresponding to(a, b) if
succ(a,Ai) = b, and 0 otherwise. A second encoding, with we shall call the SB-enco
was introduced by Sankoff and Blanchette in quite a different context [29]. In this en
ing, the sequences have one site for each signed gene and the state set equals t
signed genes. The sequence representing a genomeAi has succ(g,Ai) at the site corre
sponding to signed geneg.

With both encodings, we use the Hamming distance to measure the difference b
sequences. LetMPBE(A, T ) denote the minimum length ofT under the MPBE encodin
and letSB(A, T ) denote the minimum length ofT under the SB-encoding.

Theorem 13. Let A = [A1,A2, . . . ,AN ] be a vector of genomes, all with the same set of
genes. Let T be a tree with leaves labelled by 1,2, . . . ,N . Let φ be an arbitrary assignment
for T and A. Then

ST(A, T ) � 1

|G±(A)|MPBE(A, T ) � 1

|G±(A)|SB(A, T ) = L(A, T )

� max
λ

{
L(A, T ,λ)

}
� l(φ,A, T ).

Proof. The space of binary encodings with metric 1/|G±(A)| times the Hamming distanc
is a metric space for which the distance between encodings of genomes equal the
tive normalised breakpoint distances. Sincethe Steiner bound holds for all metric spac
ST(A, T ) � 1

|G±(A)|MPBE(A, T ).
Every SB sequenceS can be converted into an MPBE encoding: the MPBE sequ

has a 1 at position(a, b) if the SB sequence has ab at positiona; otherwise it has 0. Th
Hamming distance between two converted SB sequences equals their original distan
therefore have an isometric mapping from SB sequences to MPBE sequences. No
MPBE sequence can be converted into a corresponding SB sequence. For exam
binary character encoding may have a 1 at positions(a, b) and(a, c) for b �= c. Therefore
the isometric mapping takes SB sequences into a strict subset of MPBE sequences.
a minimum length assignment for SB encodings on a treeT is therefore equivalent t
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finding a minimum length assignment on a restricted subset of MPBE sequences. This

orre-
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till
restriction can only increase the minumum possible length.
To prove thatSB(A, T ) = 1

|G±(A)|L(A, T ) we observe that

min
ψ

{
lg(ψ,A, T ): ψ is an assignment forT andA

}
equals 1/|G(A)| times the minimum number of changes along the tree for the site c
sponding tog in the SB encoding of the genomes. Hence

1

|G±(A)|SB(A, T )

(43)= 1

2

∑
g∈G±(A)

min
ψ

{
lg(ψ,A, T ): ψ is an assignment forA andT

}
(44)= L(A, T ).

The remaining inequalities follow from Lemma 10 and the observation thatL(A, T ,λ) =
L(A, T ) whenλ = 0. �

Theorem 13 has considerable practical implications for tree searching. Using the S
encoding, we can compute local optimum bounds using efficient phylogenetic estim
software such as PAUP* [32].

5. Discussion and future work

The lower bounds described in this paper have been implemented as part of the p
GOTREE, available fromhttp://www.mcb.mcgill.ca/~bryant. The package is based on t
nexus class library of Paul Lewis [16].

I have applied the bound to the gene order datasets analysed in [2,30], each time co
paring the lower bounds to heuristic upper bound ona number of different trees. The resu
were mixed. In general:

1. The lower bound for the breakpoint median problem fell within 1% (on averag
the upper bound when genes had equal gene content.

2. The lower bound for the breakpoint phylogeny fell within 8% (on average) of the u
bound when genomes had equal gene content.

3. For both problems, the bound worsened considerably when genomes had unequ
content: the average median bound fell to 12% of the upper bound while the phyl
bound dropped to 50% of the upper bound.

4. In all cases, Lagrangian optimization led to a significant improvement in the bou
5. Implementation accuracy plays a significant role in any simulation experiment.

These preliminary observations can be tested by applying the methods to a large an
ing range of gene order data. One could also attempt simulation experiments with synthe
data to detect potential biases and areas for improvement. Such experiments must
ducted with care, though. The underlying processes of the evolution of gene order are s

http://www.mcb.mcgill.ca/~bryant
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not well understood, and we can only draw limited conclusions using simplistic probabilis-
ared to
ata
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ranch
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tic models. Secondly, the performance of the bounds can only be measured comp
heuristic upper bounds, as we have as yet no means for generating random synthetic d
for which the most parsimonious assignment is known.

However the real test of these bounds will be in application, particularly in algorithm
velopment and tree searching. We are currently exploring their incorporation into a b
and bound technique. There are many computational obstacles to overcome.

A second direction for future work is the extension of these results to other mea
of gene order divergence. Upper bound heuristics for parsimony based on edit dis
have been developed by [3,19], though, as for breakpoints, there is little guarantee th
the heuristics are obtaining global optima. Moret et al. [18,19] use randomly gene
data to argue that edit based heuristics outperform breakpoint heuristics when esti
phylogenies and ancestral gene orders. Whether or not the same applies for real ge
in all contexts, depends on the accuracy and breadth of the model used to generate
synthetic data. The development and validation of models for gene order evolution
area of active and ongoing research.

6. For further reading

The following references could also be of interest to the reader: [4,7,9,14,17,24,2
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