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Abstract

Breakpoint phylogenies methods have been shown to be an effective tool for extracting phy-
logenetic information from gene order data. Currently, the only practical breakpoint phylogeny
algorithms for the analysis of large genomes with varied gene content are heuristics with no optimal-
ity guarantee. Here we begin to address this lack by deriving lower bounds for the breakpoint median
problem and for the more complicated breakpoint phylogeny problem. In both cases we employ La-
grange multipliers and sub-gradteoptimization to tighten tabounds. The bounds have been imple-
mented and are available as part of theT&EE package Itttp://www.math.mcgill.ca/bryant/gotriee
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1. Introduction
1.1. Geneorder data

Evolutionary trees (phylogenies) have for a long time been inferred from genetic se-
guence data. The evolution of sequences has been modeled using a stochastic process
involving local changes: insertion, deleti, and replacement of individual nucleotides or
amino acids.

Recently, there has been a rapid increase in the number of completely sequenced
genomes, giving access to a new source of phylogenetic data: the position of genes along
the genome. As genomes evolve, the ordeoigenes along the genome can change. Indi-
vidual genes are inserted or deleted. Segsefthe genome can be duplicated, or reversed
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(an inversion), or removed and re-inserted in another position (a transposition). This leads
to different genomes having equivalentmmol ogous genes arranged in different orders.

How can we use this gene order information to infer evolutionary relationships between
the organisms? This question is especially pertinent for groups of organisms, such as the
early branching eukaryotes, that have been difficult to analyse using conventional sequence
based methods [30].

Gene order data has been used as a source of phylogenetic information for several years
(e.g., [25]). Much of the early work in the field follows a distance-based approach. First,
an evolutionary distance is estimated for epalr of genomes. Generally, this involved the
calculation of the minimum number of mutations (e.g., reversals, transpositions) required
to transform one genome into the other [10,25]. Next, these distances are used to construct
trees using the variety of distance based methods available in phylogenetics.

A problem with distance based methods is that they give no indication as to the nature
of genomes for ancestral species: the nodes in the interior of the tree. This shortcoming
motivates the use of a parsimony type method. We try to find a tree and a collection of
genomes for internal nodes of the tree such that the total length of the tree is minimum. The
length of an edge in the tree is the distance between the gene orders at its endpoints, and the
length of the entire tree is simply the sum of all of its edge lengths. Thus, we are looking
for a Steiner tree on the space of genomes. Unfortunately, the extension of rearrangement
distances to more than two genomes proved to be computationally difficult [5], though
recently developed heuristic and Bayesigpmaches are very promising [3,15,19].

1.2. Breakpoint methods

The breakpoint phylogeny method for the analysis of gene order data, introduced by
[1], avoids many (but not all) of the computational difficulties inherent in rearrangement
distance based methods. Breakpoints and breakpoint distances will be defined formally
later (Section 2). For now we give just the intuitive idea.

Consider the effect of an inversion on a genome (Fig. 1). Two genes 2 and 3 that were
adjacent in the original genom®eare not adjacent in the resulting genoBidikewise for
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Fig. 1. The effect of an inversion on adjacencies. The inversion causes a segment to be reversed and swapped to
the opposite strand.
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the pair—5 and—6. These broken adjacencies are cabeshkpoints. Performing further
inversions or mutations breaks the adjacenbigtsveen further pairs of genes, leading to
more and more breakpoints. The breakpoint distance is based on the number of breakpoints
between the two genomes, expressed as a proportion of the number of adjacencies. As
the genomes become more scrambled there will be more breakpoints and the breakpoint
distance increases. The number of breakpoints is a directly observable phenomenon so, in
a sense, the breakpoint distance is “model-free”.

The breakpoint distance can be extended to the case when there have been deletions and
insertions into the genome and the two genomes have different collections of genes (that
is, differentgene content). In this case, the breakpoint distance between two genomes is
computed by first removing any genes not appearing in both genomes, and then taking the
distance between the two genomes that are left over [30,31].

The definitions of the breakpoint median and breakpoint phylogeny problems follow
immediately from the definition of the brigaoint distance. The kakpoint median prob-
lem is to find a genom& that minimises the sum of the distances frafrto each of a
given collection of genomes. The breakpoint phylogeny problem is to find, for a tree with
genomes at the leaves, an assignment of genomes for the internal nodes that minimizes the
total length of the tree.

1.3. Existing work

The analysis of gene order data using breakpoints was introduced and developed in a
series of papers by Blanchette, Bourque, Kunisawa and Sankoff [1,2,27-29]. They show
how the breakpoint median problem can be solved by transforming it into an instance of the
traveling salesman problem (TSP), provided that all genomes have the same gene content.
Thus methods and software for the TSP can be applied directly to the breakpoint median
problem.

Methods for the breakpoint median problem can in turn be extended to the breakpoint
phylogeny problem using an iterative heuristic. First, the genomes at the internal nodes are
initialised in some way (e.g., randomly). Next the program makes repeated passes through
the tree, replacing the genome at each noitle the median of its neighbouring genomes.

In this way the length is decreased, and thecpdure converges to a local optima. The
method was implemented by Matthieu Blanchette and applied to a collection of animal
mitochondrial gene orders. &hchette’'s implemntation has beerecently re-optimized

by Moret et al. [20], with impressive improvements in efficiency.

The breakpoint median problem was proved NP-hard by Pe’er and Shamir [21], who
also developed an approximation algorithm for the problem [22]. Integral to the approx-
imation algorithm is a lower bound method for the breakpoint median problem. We will
discuss this bound in Section 3.6.

Several authors have proposed character encodings of gene orders [6,8]. Gene order data
can be converted into character data for use with parsimony methods. These encodings
give lower bounds for the breakpoint phylogeny problem. We show in Section 4.5 that
these bounds are not as tight as other possible parsimony encodings and not as tight as the
bounds developed in this paper.
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In all of the work to date, the application of breakpoint methods to the analysis of gene
order data has required the use of heuristic methods. To my knowledge, no one has been
able to find a provably minimal solution of the breakpoint phylogeny problem for a non-
trivial data set. We can only guess at how well our heuristics are working. Even simulation
experiments such as those of Cosner et dldfonot help us here: the ancestral genomes
generated using a random Markov process are not necessarily the most parsimonious.

Furthermore, almost all of the existing work only applies to the rather exceptional case
when all of the input gene orders have the same gene content. If we abandon this constraint,
the breakpoint problems become significantly more difficult. To date, there have been only
a few papers on breakpoint analysis of gemder data for genomes with unequal gene
content: Sankoff et al. [30] describe various heuristics and applied them to the analysis of
mitochondrial gene order data from early branching eukaryotes; and a diverse collection
of chloroplast data was analysed using breakpoint distances in Sankoff et al. [31]. In both
cases, there was little guarantee provideat the breakpoint phylogeny criteria had been
well optimised.

The determination of ancestral gene orders in a fixed tree is only one component of
the problem: we still have to search for thhylogeny of minimumength. Moret et al.

[19] show how lower bounds can be used to exclude large numbers of bad trees. They
use a simple and fast circular ordering bound (see Section 4.5). The bounds we present
here are provably tighter than the circular ordering bounds, even wittwideas-you-go
modification of [19]. For this reason, the claim of Moret et al. that circular ordering bounds
were tighter than the bounds presented here is puzzling.

Moret et al. also claim that the bounds we present are “very slow”—too slow to justify
the additional amount of work required. The connection with character parsimony intro-
duced in Section 4.5 allows us to use PAUB2] to quickly evaluate the local optimum
bound on huge numbers of trees. It took less than a minute (on a Mac G4) to evaluate all 34
million trees on 11 taxa when analyzing the animal mtDNA gene orders discussed in [2].
The local optimum bound eliminated all but 10,000 trees. In contrast, the circular ordering
bound did not eliminate a single tree.

2. Terminology and notation
2.1. Genomes and successors

The genes will be denotated using lower case characters. We assume that we know the
orientation of each gene, that is, the direction that the gene is read during transcription. The
orientation is indicated by the sign of the gene, with indicating the reverse orientation
ofa.

We will assume that the genomes are diaculinear genomes can be handled by insert-
ing an extra symbolic gene representing the ends of the genome. A genome is a circular
ordering of signed genes:

G = <gl7 827 .. ~7gn7 g]_)'
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Fig. 2. Two circular genomes with different gene content.

GenomeC in Fig. 2 would then be writterl, —2, 3,4, —5, —6, 7, 1). If we reverse both
the order and the orientation of alletgenes we get back to the same genome-6o=
(—1,-7,6,5,—4, —3, 2, —1) is just another way of writing dow. The set of genes of
a genomeG, with signs removed, is denot&llG). For notational convenience we also
defineG*(G) which contains one positive and one negative copy of each geGiedi.
ThusG(C)={1,2,3,4,5,6,7} and

G*(C)={-7,-6,-5,-4,-3,-2,-1,1,2,3,4,5,6, 7).
Given a vector of genome& = [A1, Ap, ..., Ay] we defineG(A) = vazlg(A,-) and
G=A) = UL G* (A0,

The successor of a geneg in a genomeG is the genome immediately following,
and is denoted su¢g, G). Thus in the figure, suct, C) = —2, suc€—2,C) = 3 and
so on. SinceC and —C represent the same genome, we also have(suc«) = —7,
sucg2, C) = —1 and so on. In general, sugc G) = A if and only if suc¢—h, G) = —g.

If ¢ is nota gene irG then we define sucg, G) = @.

If G is agenome and is a set of genes, then the induced genamg is obtained by
removing all the genes af that are not inX (either positive or negative), but leaving the
rest of the genes in the same order. For examplé 4 {1, 3, 5, 6} andC is the genome in
Fig. 2thenC|x = (1,3, -5, —6, 1).

2.2. The breakpoint distance

Let A andB be two genomes. Lef = G*(A) NG (B) be the signed genes they have in
common. Therformalised) breakpoint distance between two genomes andB is defined

1
a4, B) = =g € X: sucdg. Alx) # sucdg, Bl (1)

For example, ifC and D are the two genomes in Fig. 2 th&h= {1, —1,2, —2,5, -5, 6,
—6}andd(C, D) = 34=1.

Note that the distancé(A, B) is unaffected by genes that only appear in one of the
genomes or that do not appear in any of the genomes. Also note that this breakpoint dis-
tance differs from that used in [2] by the introduction of the scaling facf¢X L This
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factor was introduced by [30] to overcome a problem of the unnormalised breakpoint dis-
tances: when there is a great deal of variation in gene content, unnormalised breakpoint
distances will tend to produce trees with large genomes forced apart.

2.3. The breakpoint median problem

LetA =[A1,..., Ay] be a vector of genomes. For any other gena@mae define

N
5(G.A)=) d(G.A)).
i=1

The breakpoint median problem féris to find a genom& with gene set;(G) = G(A)
such tha# (G, A) is minimized.

2.4. The breakpoint phylogeny problem

Let A =[A1,..., Ay] be a vector of genomes and [Etbe a rooted tree with leaves
labelled bijectively by numbers 1 tv. We will assume thal" is binary—every internal
node has exactly two children. We can makis ttssumption becauseasy minimal break-
point phylogeny, as with every Steiner tree, can be extended to a binary tree through the
addition of zero length edges. The #&iT") of edges ofl’ is the set of ordered paifsa, v)
such thatx is a child ofv. We use pat) to denote the parent of nodeand root7") to
denote the root of.

An assignment of genomes td@" is defined formally as a mappirgfrom nodes off" to
genomes that satisfies

1. If vis aleaf and is the label of this leaf thea (v) = A;.
2. If v is an internal node andhas children:; anduz then the gene set @f(v) is equal
to the union of the gene sets¢tu1) ande (u2).

The mappingp describes a history of the evolution of the gene orders that correspond
to the leaves. Property (2) models the situation where the differences in gene content are
completely explained by deletions. Foiigho be possible, the gene set of an ancestral
gene order must contain all the genes present in the gene orders of its descendents. Any
ancestral genes that do not appear in anyhefdescendent gene orders can be removed
from the analysis without affecting the final result. We will always use the Greek lgiters
or ¢ to denote assignments.

To simplify presentation later on we recursively define a geng$ét) for each vertex
vinT:

1. If vis a leaf with label thenG* (v) = G=(4;).
2. If vis an internal node with childremy andus thenG®(v) = G+ (u1) U GE(u2).

Thus for all assignments and all vertices in T we haveG* (¢ (v)) = Gt (v).
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Given genomeg and tre€eT’, thelength of an assignmeng is defined

I, AT) = d(dw,é®).

(u,v)€E(T)

The breakpoint phylogeny problem for A andT is to find an assignmert of minimum
length.

3. A lower bound for the breakpoint median problem

In this section we describe a new lower bound for the breakpoint median problem. It
is inspired by a lower bound used for the TSP, though the conversion of the TSP bound
is complicated substantially by the problem of unequal gene content. After describing an
initial basic bound, we show how to improve the bound using Lagrange multipliers. This is
also a technique borrowed from work on the TSP, and it is also complicated by the unequal
gene content. Later on in the paper (t@t4) we show how the breakpoint median bound
can be extended to give a lower bound for the breakpoint phylogeny problem. The intuitive
idea behind both bounds is the same: understanding the median bound is important for
understanding the phylogeny bound.

3.1. The closest neighbour bound for the TSP

Suppose that we have an instance of the TSP: a distance nmiattefined on a finite
collection of cities 12, ..., n. The length of any tout = (x1, x2, ..., x,,, x1) is defined

length(t) = Z Dlx;, xiy1]
i=1

wherex, 11 is identified withx;. Foreach =1, ..., n let y; be the closest city t®;. Thus
DI[x;, xi+1] 2 D[x;, y;]1 and

length(t) > " Dlx;, yil.
i=1

The right hand side is independentoénd is therefore a lower bound for any tour length.
This TSP lower bound can be viewed as the sum of local optimizations. For each city, we
optimize the length of the outgoing step. Summing these local optima gives a lower bound
for the global optimum.

Our lower bound for the breakpoint median (and later breakpoint phylogeny) problem
works by the same principle. For each signed gene, we solve a ‘localised median prob-
lem’ that focuses only on the successors of that gene. The global bound is then found by
summing up over all of the signed genes.
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3.2. Local breakpointsand local medians

The definition of breakpoint distance (Eq)Yincorporates the cardinality of the set:

{g € X: sucag, A) # sucdg, B)}.

A standard way to define cardinality is to define a characteristic function for elements of
the set and sum over these. We modify this idea to re-express the breakpoint distance.

Let A and B be two genomes and l&f = G*(A) N G*(B). For each signed geng
define

_]1/1Xx], if ge X and sucgg, A|x) # sucdg, Blx);
dg(A. B) = { 0, otherwise. @
We can rewrite the breakpoint distance by summing up over all signed genes:
d(A,B):ng(A,B). (3)
8

We decompose the median functi®in a similar way. LetA be a vector of genomes
[A1, A, ..., Axy] and define

N
85(G.A) = dy(G. Ap). (4)
i=1

Then

N
5(G,A)=Y d(G.Aj) (5)

i=1

N
=Y di(G, A)) 6)

i=1 g
N
=Y di(G, A)) (7
g i=1
=) 5,(G.A). (8)
8

3.3. Thelocal optimum bound

Having decomposed the functiéninto a sum of functions,, we obtain a bound by
optimizing eacls, separately. Thiocal optimal bound for A is defined

LA = ) min{s;(G,A): G(G)=GA)}. 9)
g€GEA)

The next step is to prove that the local optimal bound is indeed a lower bound for the
breakpoint median problem.
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Lemma 1. Let A be a vector of genomes. For all genomes H such that G(H) = G(A) we
have

S(H,A) > L(A). (10)
Proof.
S(H,A) = Z 8o(H,A) (11)
2eGE(A)
= min{5,(G, A): G(G) = G(A)]} (12)
geGE(A)
=LA). O (13)

We now turn to the problem of efficiently computing this bound. In order to minimize
the localised median scoi (G, A) we would hope that we only have to consider the
genes close tg in the input genomes. This is what we establish in the next lemma.

Lemma 2. Let A =[A1, Ao, ..., Ay] be a vector of genomes and g a signed gene in
G*(A). There is a genome G with G(G) = G(A) minimizing 8,(G, A) such that for all
i=1...,N ether

sucdg, Glga,)) =9

(thatis, g ¢ G*(A)) or

sucdg, Glga;)) =sucag, A;)
forsomeje{1,2,..., N}.
Proof. Let H be a genome minimizing, (H, A) such thatG(H) = G(A). Starting with
succg, H) we proceed along the genonig, considering each genein turn. If i #
sucdg, A;) forall j =1,..., N then we remové from the genome&? and re-insert it
directly before the geng. We then pass to the gene that was originally the succesgor of
in H. We continue this way until we have considered all of the gen€g i) — {g, —g}.
Let G be the resulting genome.

If g ¢ GE(A;) or succg, H|g(a,;)) = succg, A;) forsomej =1,..., N then

sucg, Glga,;)) =sucdg, Hlg,))
and sod, (G, A;) = dg(H, A;). On the other hand, i§ € G*(A;) but sucgg, Hlg,)) #
sucdg, Aj) forall j=1,..., N then

succg, Hlga;)) # sucdg, A;)
and so

dg(H, Aj) =

1
GE(A) NGE@G)) - @ AD-
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G |g h1 hy h3z hg

Glgiapl|ge M h2 hg
Glgan|8 M1 ho h3 hy
Glgas) |8 hy hg
Glgagy |8 ha ha
Glg(as) hy h3 hg

Fig. 3. A genomeG and five induced genomeS|ga,). Glg(ap): - - -+ Glg(as). providing an example of the
choice of induced successors for a gene. The choices fo(EUGty; ) are in boldface.

It follows that §,(G, A) < 84(H, A). Since H was already minimal, so i& and it is a
genome satisfying the conditions of the lemman

Lemma 2 tells us that to find the minimum value 8K(G, A) we need only consider
all the possible choices of genes for each $poG|g4;)), i =1,..., N. Furthermore,
these genes all come from the set of succesgursig, A;): j=1,..., N}. These two
observations are almost enough for a polynomial time algorithm to mini&ieg, A)
(for boundedV). We merely have to check all choices of genes for 610G |g(4,)), i =
1,..., N, that can be realised by some genogheThis we can do using a search tree. We
proceed by way of an example.

Fig. 3 represents a candidate genathand the five induced genomes

Glgap Glgays ---» Glgas)-

The geneg is present in only four of these. The first successog,0f1, appears in two
genomes. The next succes#arappears in three, two of whictkdg and A») containi.
The third successor appears in two genomes, one of which does not contairh,. At
this point, all of the successors sigeGlg4,)), i =1,...,5, have been chosen.

To generalise this example: we are looking for a sequence of signedigenes. . .,
such that

(P1) Eachi; =sucdg, A;) forsomej € {1,2,..., N}.
(P2) For eachh; there is a genomd ; such that{g, h;} € G*(A;) buthy ¢ GE(A)) for
all1<k <i.

Now we have enough to sufficiently limit our search space:

Theorem 3. The lower bound L(A) can be computed in polynomial time when either the
number of genomesis bounded or all genomes have equal gene content.

Proof. Foreach signed gerges G (A) we need to search through all sequences satisfying
properties (P1) and (P2) above. The maximum length of such a sequence is at,ranst

for eachh; there are at mostN — i) possibilities, as (P2) rules out the possibility of
repetitions. Hence the number of sequences to examine is at nid3j.dn the special
case that all genes have the same gene cgr{fe2) forces the maximum sequence length
to be one, so the number of sequences(© O
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Theorem 3 leads to a polynomial time algorithm when the genomes have equal gene
content, or there is only a bounded number of genomes. In many practical applications,
such as the iterate median heuristic of [30], the number of genomes in the median problem
is bounded by two or three. However, it is important to ask whether a fast algorithm exists
for the general case. The answer to this question appears to be “probably no™:

Theorem 4. It is an NP-hard problem to compute L(A) for a vector of genomes
[A1, ..., Ay] with unequal gene sets. Henceit is also NP-hard to minimize 6, (G, A) for a
signed gene g.

Proof. We provide a reduction from FEEDBACK ARC SET [13], which is NP-complete
even when there is cycle of length two. Let the directed gr&@ph (V, E) and number

K < |E| make up an arbitrary instance of FEEDBACK ARC SET satisfying this condition.
PutG =V U {x} wherex is a new gene. Label the arcs mas (a1,a)), ..., (anm,ay,).
Construct a vector of genomes

A=[(x,a1,ay,x), (x,a2,a5,x), ..., (x,am.a,, x)] (14)

which all have genes iG. We claim thaiG = (V, E) has a feedback arc s&t C E of size
K ifandonlyif L(A) <K.

Fixa e V,andletB = {b: (a,b) € E}, letbhy, ..., by be an arbitrary ordering a8, and
consider the subsequence, ..., b, x. By inserting all other genes directly beforeve
obtain a genomé!, for which §,(H,, A) = 0. The same trick (in reverse) gives a genome
H_, suchthat_,(H_,,A) =0. Hence

1
L(A) = 5 min{s.(H, A): GE(H)=G*(A)}

+ % min{é_(H,A): G*(H) =G*=(A)}.

Suppose thak’ is a feedback arc set of siZé. Letay, ..., a, be an ordering o¥/ such
that for each arda;,a;) € E — E’ we havei < j. ConsiderH = (x, a1, a2, ...,a, X).
Then é.(H, A) is the number of arcéa;,a;) € E such thatj > i, andé_.(H,A) =
8.(H,A). HenceL(A) < |E'| <K.

Conversely, suppose thaiA) < K. Without loss of generality there is a genorfe
such thaté,(H,A) < K. Write H as H = (x, a1, a>, ...,a,,x). There are at mosk
genomesx, a;, a;, x) in A such thatj > i, and the corresponding edges form a feedback
arcsetforG. O

We stress that in most current applications the number of gendhieshe breakpoint
median problem is bounded (typicaly < 3). In these cases, the above NP-hardness result
is irrelevant.

3.4. Improving the bound with Lagrange multipliers
Lagrange multipliers provide us with a ratchet technique for cranking up the lower

bound by applying a systeni weights. For each set ofaights, we obtain a new bound—
the goal is to find a set of weights that produces as large a lower bound as we can.
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To illustrate the concept, return once again to the standard TSP and the “closest cities”
bound that we derived before. Suppose that in addition to distances between cities we also
assign a cost for visiting each city; the cost of a hotel if you like.d¢@f) denote the cost
of each visit to cityx;. Let y; denote the cheapest and closest city;tdhat is, the city for
which D[x;, yi1+ c(y;) is minimum. For any tout we have

length(t) = Y "(Dlxi, xit1] + c(xip1)) — Y _ c(xi) (15)
i=1 i=1
> (Dlxi, yil+ (i) = Y elx). (16)
i=1 i=1

The right hand side is independentwo$o is a lower bound for any tour length, no matter
which values we choose for the cosis;). Clearly, different choices of costs are going
to give different bounds. We are able to choose a set of costs that gives the largest bound,
keeping in mind that any choice of costs still gives a guaranteed lower bound.

We return to the breakpoint median problem. Bebe the set of input genomes. The
analogue of a hotel cost islaagrange multiplier. We define one Lagrange multiplier for
each genome index=1,..., N and for each signed genec G*(A;). We denote this
Lagrange multiplier by.[i, g] and the array of Lagrange multiplies hyFor convenience
of notation we define[i, @] = 0 for alli anda[i, g] = 0 for all g ¢ G (A;). This simplifies
several formulae further on.

Now to the analogue of the “closest cheapest” city. For each signedggaeine

N

85(G. A L) =8,(G.A)+ Y A[i.sucdg. Glg,)] (17)
i=1
which is equivalent to
N
8g(G. A L) = (8,(G. Ap) + A[i. sucdg. Glga,)])- (18)

i=1

Theweighted local optimum bound is then defined

: i _
LAN= Y min {5, (G, A, 1): g(c;):g(A)}—EZ > Mgl (19)

g€G=(A) i=1geG*(A)

We prove that, for all choices af, the weighted local optimum bourld A, 1) is a lower
bound.

Lemma 5. Let A bea vector of genomesand let A be a vector of Lagrange multipliers for
signed genesin A. For all genomes H such that G(H) = G(A) we have

S(H,A) > L(A, ). (20)
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Proof.
SCH.A)= ) 8,(H.A)
g€GE(A)
N N
= > <8g(H,A)+Z>»[i,g]>—Z > Migl
geGE(A) i=1 i=1geG*(A)
N
= Y SHAMN-=Y Y Aligl
geG=(A) i=1geG*(A)

N
> ) min{sG.AL GG =GA)} =3 3 ig]
$<GE(A) i=15eG(A)
—LAM. O

Once again, we turn to computational issues. The introduction of weights makes the
problem of minimizings, (G, A, A) harder than the problem of minimizirdg (G, A). For
one thing, Lemma 2 no longer holds: the ditoh of weights means that there may be
no genome minimizing, (G, A, 1) for which all of the successors genes SUcGg4;))
come from{sucgg, A;): j=1,..., N}. Our first step is to increase the set which is guar-
anteed to contain the optimal successor genes.

Let Iin and Iyt be two disjoint subsets dfL, 2, ..., N}. Let X[Iin, Ioyt] be the set of
signed genes defined as follows

X[Iin, Ioud = {h € G=(A): h € G=(A;) foralli € Iin, and
h ¢ G (A) foralli € o).

In pseudo-EnglishX[Iin, Ioyt] contains all of the genes that appear in every one of the
genomes with indices i, but none of the genomes with indices Ip,. For exam-
ple, in Fig. 3, X[{1, 2}, {3}] = {h1, h2}, X[{1, 2}, {4}] = {ha}, X[{2}, {1, 4}] = {hs3} and
X[{2}, {4,5}] =¢.

For each choice ofli; and Ipy: such thatX[/lin, Ioyt] iS non-empty we choose a
signed genec € X[Iin, Ioyt] for which Zie[m Ali, x] is minimal and a second genec
X[ lin, Iout]l — {x, —x} for which Zie,m Ali, y] is minimal. We useM[A, 1] to denote the
set of all thex’s andy’s that are chosen for at least ofg and Ioyt.

Lemma 6. Let A =[A1, Ao, ..., Ay] be a vector of genomes, A an array of Lagrange
multipliers associated to A, and g a signed gene in G*(A). There is a genome G with
G(G)=G(A) minimizing 8,(G, A) suchthat for all i =1,..., N either

sucgg, Glga,)) =9

or

sucdg, Glga;)) =sucag, A;)
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forsomeje{l,2,...,N}or

sucdg, Glga,)) € M[A,A].

Proof. Let H be a genome minimizing,(H, A) such thatG(H) = G(A) that does not
satisfy the conditions of the lemma. Let, &2, . .., h,, be the signed genes

{sucdg, Hlga,): i=1....,N}

in the same order thélhey appear afteg in the genomeH . Let ;. be the first gene in this
sequence that is not a membedfA, 1] and does not equal sugc A ;) for some;.
Set

Iin={i: sucgg, H|ga,) = hi}
and

Tout={i: sucag, Hlga,) € {hi+1, bt 2, .., hum}}.

Thenlj, contains those genomes of whikhis a member but no geria, i, ..., hx—1is
a member whildy; contains those genomes of which nonégfho, .. ., hy are members.
Furthermoreh; € X[Iin, Ioutl.

Let x be a gene inM[A, A] that minimizeSZie,inA[i,x] over all x € X[Iin, Ioutl —
{g, —g}. Since the genésy, ..., hy_1 are not genes in genomg for anyi € I, the gene
x cannot equal any of genas, ..., hx_1. Similarly, sincex is not in any of the genomes
A; fori € Iy, the gener does not equal any @41, ..., hy,.

We modify the genoméi by swappingi; with x. Let H' be the genome we obtain.
Then

So(H'.AX) =Y (dg(H', A}) + A[i, SUCEH |g(4,))])

ielin
+ ) (dg(H'. A +A[i, suctH'lgaa,)])
i¢lin
= (dg(H', A)) + Ali. x1) + D (dg(H. Ap) + A[i, SUCCH | g(a,))])
ielin i¢lin
< Z (dg(H. Ap) + Ali. hx) + Z (dg(H, A7) + A[i. sucqHlga,)])
AR

SinceH is already minimal, so must b’. We can repeat the process, increadingtil
we obtain a minimal genome satisfying the conditions of the lemnma.

The problem of searching for genomes to minimizéG, A, 1) is therefore almost the
same as the unweighted problem, except, of course, that we have to consider a larger range
of genes at each node of the search tree. Specifically, we are searching for sequences of
signed geneas, ho, ..., h; that satisfy
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(PY) Eachh; is either inM[A, 1] or equals sudg, A;) for somej € {1,2,..., N}.
(P2) For eacth; there is a genomd ; such that{g, ;} € G(A;) buthy ¢ GE(A;) for
all1<k <i.

We now have

Theorem 7. The lower bound L(A, L) can be computed in polynomial time when either
the number of genomesis bounded or all genomes have equal gene content.

Of course, wherV is unbounded and the genomes have unequal gene content, the NP-
hardness result of Theorem 4 extends to the weighted case.

3.5. Choosing the best Lagrange multipliers: sub-gradient optimization

We now have a way of computing a lower boub@, 1) for each choice ok. To take
advantage of this feature, we wanthat gives the largest, and therefore tightest, bound
possible. To this end, we need to study the function taking L(A, 1). This function
shares many of the properties of the lower bound function for the Held—Karp bound (cf.
[11,12,23]), including continuity, piecewise linearity, and concavity. Hence we are able to
use a technique called sub-gradient optimization to find an optimal, or hopefully close to
optimal, choice foi.

First we need an ascent direction.

Suppose that we have calculate@?, L) for some choice ok. To do this, we took each
signed geng € G*(A) in turn and determined a genondg, optimizing §,(H,, A, 1).

In actual fact, we were really only interested in the successor gene§stits=(4,)),
i=1,..., N as the rest oH, does not affect the score.

Fix a signed gengé and index such that: € G*(A;). Let f[i, k] denote the number of
genes for which the optimal genom#&, that we found satisfies suGS H;|g+(4,)) = h.

That is, f[i, k] is the number of time thak gets chosen as a successorgoin some
Hylg=(a;)-
Define the arrayA = (A[i, h]) by

Ali,h] = fli,h] -1 (21)

foralli=1,...,N andh € G¥(A;). Whenh ¢ G¥(A;) we let A[i, h] = 0. The arrayA
has the same dimensionslaand provides our sub-gradient vector.

Theorem 8. If A isnon-zerothenthereise > Osuchthat L(A, A +¢A) > L(A,L).

Proof. The functionL(A, 1) is piecewise linear: the space of allcan thus be divided
up into closed regions on which evefii, k] is constant and.(A, 1) is linear. There is
¢ > 0 such thak and\ + ¢ A belong to the same region. This is true eveh ifes on the
boundary between two regions.
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For eachg € G*(A) there is a genoméd, that minimizes boths,(H,A, 1) and
8,(H,A, L+ ¢eA). Expandings, (H, A, L) we obtain

N
8g(Hg, A, L+ £A) — 8g(Hy, A, L) = Y e A[i, sucag, Hglg(a,)]- (22)
i=1
Thus

LA, X +eA) — L(A,})

N
:< > (3g(Hg,A,x+sA)—3g(Hg,A,x))>—(Z > 8A[i,g]>
2€GE(A) i=1geG+(A)
N

N
= Y > eAli.sucag, Hylg=a))]— Y. Y eAlig]

geG*(A) i=1 geGE(A) i=1

N
=e Y Y A[li.h)(fli.h]1-1)

heG=(A) i=1

e Y Yy

heGE(A) i=1
>0, (23)
sinceA #0. O

We therefore have an ascent direction. The next question is how far to go in this direc-
tion. We have implemented three strategies:

Smpleline search. The first strategy was to use the simple line search algorithm already
being used for the Held—Karp bound (cf. [23], p. 176). The algorithm is given an initial step
length and correction factor. At each iteratime proceed along the sub-gradient vector by
the given step length, and then shorten the step length using the correction factor. Even-
tually the algorithm will eitker reach a local (and therefore global) optimum, or grind to
a halt as the step length becomes too small. One obvious shortcoming of this approach is
that we have to come up with some value for the initial step length.

Exact line search. The fact that the function is concave allows us to perform exact line
searches. Consider the functidgA, A + tA) for t > 0. SinceA is a sub-gradient, the
function is initially increasing. The functivis concave, so it will ascend monotonically,
reach a maximum, then descend. We search for the first valud such thatL (A, A +
t1A) < L(A, ). The maximum must then equalA, A + tA) for somet € [0, 11]. We
subdivide the intervdl0, #1] into three equal segment®, 2], (2, 3], [t3, 11]. If L(A, A +
t2A) < L(A, A + t3A) then the maximum occurs whenre [, t1], otherwise when €
[0, 73]. Recursing, we obtain a small interval that is guaranteed to contain the maximum.

Almost exact line search. Given that exact line searching takes a lot of time, and is not
necessarily the best strategy, we also tried an approximate line search. After locating the
smallestr; > 0 such thatL.(A, A + 11 A) < L(A, L) we use the mid-poirk + ¢1/2A as the
return value of the line search.
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3.6. Comparison with other breakpoint median bounds

The lower boundd.(A) and max L(A, L) are currently the only two bounds that we
can use for the general breakpoint median problem. If we forget this for the moment and
concentrate on the equal gene set case we find several bounds that we can make compar-
isons with.

First of all, when all genomes have equal gene content the breakpoint distance becomes
a metric. We can therefore apply the standard three point Steiner bound:

1
8(G.[A1, Az, A3]) > > (d(A1, A2) + d(A1, A3) +d(Az, A3)).

As usual, this bound is quite weak. Even the simple local optimum bound improves on the
Steiner bound. We can show that for all vectérs= [A1, A2, A3] of three genomes with
equal gene content,

1
E(d(AL A2) 4+ d(A1, Ag) + d(Az, A3)) < L(A) < maxL (A, ).

Another breakpoint median bound appears as part of the approximation algorithm devel-
oped by Pe’er and Shamir [22]. One can show that the bound they use is at least as tight
asL(A). The bound has not been implemented, so at the moment we don’t know whether
the bound also improves on mak(A, A). In any case, the Pe’er and Shamir bound is
restricted to only three genomes with efjgane content. There appears to be no direct
extension of the bound for a larger number of genomes nor for genomes with unequal gene
content.

The transformation from the breakpoint median problem to the TSP provides even fur-
ther scope for new and tighter lower and upper bounds. However, like the Pe’er and Shamir
bound, this transformation breaks down completely when the genomes have different gene
content and does not help us with the general breakpoint median problem.

4. A lower bound for the breakpoint phylogeny problem

Everything we did for medians we now do for trees. We will decompose the length
of a tree into local scores, define local optima, and use these to derive a lower bound.
We then show how Lagrange multipliers can Ippléed to this problem, and how dynamic
programming can be used to compute the value of the bound for each choice of multipliers.
Apart from the complications added by dealing with trees and larger numbers of genomes,
the intuition behind the breakpoint medi and the breakpoint phylogeny bounds is the
same.

4.1. Local breakpointsand local breakpoint phylogenies

In Section 3.2 we saw how the breakpoint distari¢é, B) between two genomes can
be decomposed into the sum of local breakpoint distaiiges$, B). Likewise, the median
scored, (G, A) can be expressed as the sum of local median ség(€s A). Here we do
the same for tree length.
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The length of an assignmegtwas defined in Section 2.4 as
. AT)= > d(pw),é®).
(u,v)eE(T)
For each signed genee G*(A) we define
L@ AT)= Y de(pw),p).
(u,v)eE(T)
Then
I AT)= Y Y de(p).p)) (24)

(u,v)€E(T) geGE(A)

= D D de(¢w.o) (25)

geGE(A) (u,v)eE(T)
= Y I(¢.AT) 26)
geGEA)

4.2. Thelocal optimum bound for phylogenies

We have decomposed the lendtp, A, T) of an assignmeng into the sum of local
lengthsl, (¢, A, T'). To derive a lower bound afi¢, A, T') we optimize each of these local
lengths separately and then sum. Té@l optimum bound for A andT is defined

LA, T)= Z min{lg(w, A, T): ¢ is an assignment fok andT}. (27)
g€GE(A)

Lemma9.LetA =[A1, Ao, ..., Ay] beavector of genomesandlet T beatreewith leaves
labelled 1, 2, ..., N. For all assignments ¢ for A and T we havel(¢,A,T) > L(A, T).

Proof.
LA, T)= Z min{l, (¥, A, T): ¥ is an assignment fok andT '} (28)
geGE(A)
< Y L@,AT (29)
2eGE(A)
=l(¢,A,T). O (30)

We can computé(g, A, T) in O(n?N) time using dynamic programming, though we
will omit details and correctness proof besatthe problem can be solved using the algo-
rithm we present in the following section.
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4.3. Improving the bound with Lagrange multipliers

We have seen how Lagrange multipliers can be applied to the breakpoint median prob-
lem. Here we show how to apply them to the breakpoint phylogeny problem. We use one
Lagrange multiplier for each nodein the tree and each signed gene G*(v). (The set
G* (v) was defined in Section 2.4.) Denote this Lagrange multipliex[by ¢g] and the ar-
ray of Lagrange multipliers by. As before, we defing[v, #] = 0 for all v andi[v, g] =0

forall g ¢ G (v).
Let par(v) denote the parent ofin 7 and roo{7’) the root ofT . Let¢ be an assignment
for T. For each signed genedefine

(. A.T.\) =1, (¢. A T)+ Y Afu.sucdg. ¢(par))|g= )] (31)
uz#root(T)
which is equivalent to
L@ A TN =Y de(pw),¢)+ i[u,sucdg, ¢ ()lg=w)]- (32)
(u,v)€E(T)
Theweighted local optimum bound is then defined
LA, T, A= Z min{lg(w,A, T,)): ¥ is an assignment faf andA} (33)
g€GE(A) v
- D D Mvsl (34)
v#£root(T) geGE(A)
For all choices ok, the boundL (A, T, 1) is a lower bound fot(¢, A, T):

Lemma 10. Let A =[A1, Ao, ..., Ay] be a vector of genomes and T a tree with leaves
labelled 1,2,..., N. For all assignments ¢ for T and A and all choices of A we have
e, A, T)=LA,T, ).

Proof.
Ig.AT)= Y (¢, AT)
g€GE(A)
= > L@ATH- Y Y ivgl
geGE(A) v#£r00(T) geGE(A)
> Z min{l,(, A, T,1): ¥ is an assignment faf andA}
g€GE(A)

- > ) vl

v#£r00(T) geGE(A)
=LA, T,A). O (35)

We return to computational issues. We show théA, T, 1) can also be computed in
O(n2N) time, wheren is the number of genes ard the number of genomes. Lgtbe
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foreach node v in a post-order traversal of T do
if v is a leaf then
Let i be the label of v.

mlv, h] = {O ifh= s.ucc(g, Ap)
L 0o otherwise
else
Set m[v,h] < Oforall h € Qi(v). Let u1 and u be the children of v.
foreach child u; such that g € G= (u;) do
X; < ming {m{u;, x]+ Mu;, x]: x € GEw;) - {g, —g}).
Y; < miny{m[u;, y]: y € GFw;) — (g, —g}}.
Z; < ming{mfu;,z]: z € GE@;) — {g, —g}}.
€T IE@I
foreach signed gene h € gi(v) —{g,—g}do
if h € G*(u;) then
| mlv, h] < m{v, k] + Alv, k] + min{m[u;, h], ¥; + €},
else
Lm[v,h] < m[v, h] + min{X;,Y; + Z; +€}.

Let v be the root of T'.
Return miny, {m[v, h]: h ¢ {g, —g}}. end.

Algorithm 1. Dynamic programming algorithm that computes gip(, A, T, 1).

a signed gene ig*(A). We construct a array[v, k] indexed by nodes of and signed
genes inG*(A). Algorithm 1 fills in the array and returns the minimumigty, A, T, 1)
over all valid assignmentg.

Theorem 11. If vg istheroot of T and m isthe array constructed using Algorithm 1 then

min{m[vo, h]: h ¢ {g. —g}}
= rrlllfin{lg(w,A, T,\): ¢ isanassignment for A and T'}.

Proof. For each node of T let T, denote the subtree @f rooted atv, let E(T,) denote
the edges in this subtree and define

L. A T)= Y (de(p(x).0(»)+ A[x.sucdg. ¢ (Mlg=))])- (36)

(x,y)€E(Ty)

Thus ifvg is the root ofT thenT = T,,, andiy (¢, A, Toy) =1,(¢, A, T).

We claim that after the algorithm has finished, the value pf, 2] equals the minimum
of I,(y, A, T,, L) over all assignmentg such that suag, v (v)) = k. The proof is by
induction on the height of.

Induction base. If v is a leaf which has labél andg € G(v), thenl, (v, A, T;,,1) =0
for all assignmentgr. By the definition of an assignment we must have ggce (v)) =
sucdg, A;) for all assignmentsy. Thus we setn[v, h] = 0 for h = sucdg, A;) and
m[v, h] = oo for h £ sucdg, A;).
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Induction step. Next suppose thatis not a leaf and that the claim holds for all descen-
dents ofv. We will construct an assignmedgtfor which

e sucgg, ¢(v)) =h,
o l,(¢,A, Ty, L) =m[v, h], and
o lo(p,A, Ty, M) <Ig(, A, Ty, ) for all assignmentgr with sucdg, ¥ (v)) equal toh.

We initialise¢ as any assignment for which sugce (v)) = k.

Let u; anduy be the children ob. Fix i € {1, 2} and consider three cases (i), (ii) and
(iii).

Case(i). g € Gt (u;) andh € G (u;).
Choosey that minimizesn[u;, y]. If

1
mlu;, h] <mlu;, y] + ——
[ui, h] [ui, y] GEu)|
then seth = h, otherwise set = y. By Ehe induction hypothesis we can gr) for all
nodesx in T, so that sucg, ¢ (u;)) = h andly (¢, T,,;, A, L) = m[u;, h]. For all assign-
mentsy such that suag, ¥ (v)) = h we have

L, Tuy, AL X)) + dg (Y (i), ¥ (v) + Aluj, h]

) 1
> mln{m[ui, h]l, mlu;, y]+ m} + Alu;, h]
=1g(¢, Tu;. AL N) +dg(p (i), p(v)) + Aluy, ],

noting that

Mui, @ W)Igeun] = Mui, ¥ (W)lg= (] = Mui, hl.
Case (ii). & ¢ G* (ui).
For any assignment we have

Le(Pr, A, Ty, M) +dg (Y (i), ¥ (v)) =0.

For each node in T,, we set¢(x) to be an arbitrary genome with gengs (v). For all
assignmentgr such that suag, v (v)) = & we then have

0= Lo (¥, A, Ty &) + do (W (), ¥ () + A[ui, ¥ (0) g (37)
= lg(¢’ A7 Tu,- El A') + dg (¢(ul)7 1)D.(l})) + )"[uiv ¢(U)|gi(1¢i)]v (38)
noting that

Muis @)l wp ] = Mui, ¥ ()| g= @ | = Mui, 91 =0.
Case (iii). g € GF(u;) buth ¢ G*(u;).
Choosex, v,z € Gt (u;) — {g, —g} that minimizem[u;, x] + Alu;, x], m[u;, y], and
Au;, z] respectively. If
1

m[ui,y]—i—k[ui,z]—l—m<m[ui,x]+k[ui,x], (39)
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then sef = y, removez from ¢ (v) and insert it directly aftek. Thusi[u;, ¢ (v)|g=«,)] =
z. If (39) does not hold then we sbt= x, removex from ¢ (v) and insert it directly after
h, giving Alu;, ¢ (v)|g=(,,)] = x. Case (iii) applies to at most one of the childigrandu,
so there is conflict between the two children over the successoino (v).

By the induction hypothesis we can geix) for all nodesy in 7,,; so that sucg, ¢ (u;))
=h andlg (¢, A, Ty, ) = m[u;, h]. Forall assignmentg such that suag, ¥ (v)) = h we
have

LW, Tuy, AL A +dy (Y (i), Y (0) + i, W (0) g+ |
> min{m[ui, x]+ Alug, x], mlu;, y1+ m + Alu;, z]}

=lo(@. A, T, M) +dg (¢ (ui), $(v) + A [ui, d (W)l g(uy) |-
Bringing things together, we have that for all assignmenssich that suag, ¥ (v)) = A,

2
Ly, A, Ty, X)) = Zlg(w, Tuis AL N) +dg (W (i), ¥ () + Aui, ¥ (0)| gy

i=1

2
> L@ Ty ALK + dg (6 (ui), p(0)) + Auti p (W) |G+ ]
i=1
=1lg(¢, A, Ty, L)

Furthermorel, (¢, A, T,, 1) equals the value:[v, h] computed by Algorithm 1.
This proves the induction hypothesis. To prove the theorem we observe ¢hatiifi-
mizesl, (¢, A, T, L) andug is the root ofT then

lg(#, A, T, L) =m[vo, sucdg, ¢ (v))] = min{m[vo, h]: h € GFvo}. O
4.4. Choosing the best Lagrange multipliers. sub-gradient optimization

As with the breakpoint median problem, we want to find values Xosuch that
L(A, T, 1) is maximized. It is, of course, not necessary to find a global optimum: every
choice ofA gives a lower bound. Nevertheless we do want to find the best bound that we
can.

We are faced, then, with the problem of maxting the high dimensional, concave,
continuous and piecewise linear functibfA, T, 1). Once again, we employ sub-gradient
optimization.

For each signed gerec G (A) let ¥, be an assignment that minimizgséyg, A, T, 1).

For each node # root(7T) and each signed getes G* (1) define

flu,h1=|{g: ¥g(parw))| g, = h}|- (40)

In pseudo-Englishf [u, i] is the number of genegfor which i equals the successor of
in the genomey, (v) restricted toG* (1), wherev is parent ofs.
Define the arrayA = (A[v, k]) by

Alv, h] = flv,h] =1 (41)
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for all nodesv # root(T)) andh € G*(v). Whenh ¢ G*(v) we letAv, ] = 0. The array
A provides the sub-gradient. The following is the phylogeny analogue of Theorem 8.

Theorem 12. If A isnon-zerothenthereise > Osuchthat L(A, T,A+¢A) > L(A,T,)).

Proof. The functionL(A, T, ) is piecewise linear: the space of alican be divided up
into closed regions on which ever§{v, h] is constant and.(A, T, 1) is linear. There is
& > 0 such thak and\ + €A belong to the same region. This is true eveh ifes on the
boundary between two regions.

For eachg € G*(A) there is an assignmetit, that minimizes botti, (v, A, T, 1) and
le(f, A, T, +¢eA). Expandind (v, A, T, L) we obtain

Le(Yrg, A, T, A +eA) — L(Yg, A, T, 1)
= Y eafusuedg vswigw)] 2
(u,v)€E(T)
Thus

LA, T,A+eA)—L(A,T,L)
=< 3 (lg(wg,A,T,l—{—eA)—(Sg(lpg,A,T,k)))

g€GEA)

—( > > sA[u,g])

(u,v)EE(T) geGE(A)

N
= > > eAlussucdg v Wlgzw)] - D D eAli.gl

g€GE(A) (u,v)eE(T) geGE(A) i=1

= > > eAluhl(flu.h]—1)

heGE(A) u#rool(T)

= > > e(fluhl—1)(flu.hl - 1)

heGE(A) u#rool(T)
>0. O

ThusA is an ascent direction. All three line-sehistrategies are available in the imple-
mentation (see Section 5).

4.5. Comparison with other breakpoint phylogeny lower bounds

There are currently no other lower bounds for the breakpoint phylogeny problem with
genomes that have unequal gene sets. Hence we consider the case when all genomes in
A have equal gene sets, and compare the existing bounds with the breakpoint phylogeny
bounds we have derived.

The normalised breakpoint distance becomes a metric when we restrict our attention to
genomes on the same gene set. We can therefore apply the standard “once around the tree
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Steiner bound” as suggested by [19]. legtay, ..., a, be an ordering of the leaf labels
1,2,..., N given by a pre-order traversal &f. If we define

1
ST(A,T)= > (d(Aay, Agp) +d(Auy, Aag) + -+ +d(Aay_y, Aay) + d(Aay, Aay))
and then for all assignmengs
ST(A,T)<1(¢,A,T).

This bound applies to all metric spaces irrespective of their structure, so one would expect
it be quite weak. It is, however, very quick to compute and [19] claim that it eliminated a
large proportion of bad trees when applied tdritbae real and multiple simulated datasets.
The two additional bounds that we consider stem from two different character encod-
ings of gene order data. In the first, Maximum parsimony on binary encodings of genomes
(MPBE) [6], we use binary characters tertbte whether or not a particular adjacency
is present in a genome. There is one site for each ordered pair of signed(gebges
The sequence representing a genafipehas a 1 at the site corresponding(tg b) if
sucda, A;) = b, and 0 otherwise. A second encoding, with we shall call the SB-encoding,
was introduced by Sankoff and Blanchette in quite a different context [29]. In this encod-
ing, the sequences have one site for each signed gene and the state set equals the set of
signed genes. The sequence representing a gederhas sucg, A;) at the site corre-
sponding to signed gene
With both encodings, we use the Hamming distance to measure the difference between
sequences. LMPBE(A, T) denote the minimum length & under the MPBE encoding
and letSB(A, T) denote the minimum length @f under the SB-encoding.

Theorem 13. Let A =[A1, Ao, ..., Ay] be a vector of genomes, all with the same set of
genes. Let T beatreewith leaveslabelledby 1, 2, ..., N. Let ¢ bean arbitrary assignment
for T and A. Then

1 1
STIA,T)X —/———MPBEA, T < —/——SBA, T) =LA, T
A DS g MPPEA D S gz SR D =LAD)

< mxax{L(A, 7,0} <I($,A,T).

Proof. The space of binary encodings with metrjgd® (A)| times the Hamming distance

is a metric space for which the distance between encodings of genomes equal the respec-
tive normalised breakpoint distances. Sitize Steiner bound holds for all metric spaces,
ST(A, T) < g=ea MPBE(A, T).

Every SB sequencg can be converted into an MPBE encoding: the MPBE sequence
has a 1 at positioku, b) if the SB sequence hasbaat positiona; otherwise it has 0. The
Hamming distance between two converted SB sequences equals their original distance. We
therefore have an isometric mapping from SB sequences to MPBE sequences. Not every
MPBE sequence can be converted into a corresponding SB sequence. For example, the
binary character encoding may have a 1 at positi@ns) and(a, c¢) for b # c. Therefore
the isometric mapping takes SB sequences into a strict subset of MPBE sequences. Finding
a minimum length assignment for SB encodings on a #eis therefore equivalent to
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finding a minimum length assignment on a restricted subset of MPBE sequences. This
restriction can only increase the minumum possible length.
To prove thatSB(A, T) = ‘ng(A)lL(A, T) we observe that

mwin{lg(w, A, T): ¢ is an assignment faf andA}

equals ¥|G(A)| times the minimum number of changes along the tree for the site corre-
sponding tog in the SB encoding of the genomes. Hence

1
——SB(A, T
IGE(A)] A
= 1 Z min{l, (¥, A, T): ¥ is an assignment fok andT '} (43)
g2eGE(A) v
=L(A,T). (44)

The remaining inequalities follow from Lemma 10 and the observationitb&t 7, 1) =
L(A,T)ywhen,=0. O

Theorem 13 has considerable practical licgtions for tree searching. Using the SB
encoding, we can compute local optimum bounds using efficient phylogenetic estimation
software such as PAUR32)].

5. Discussion and futurework

The lower bounds described in this paper have been implemented as part of the package
GOTREE, available fromhttp://www.mcb.mcgill.ca/~bryanThe package is based on the
nexus class library of Paul Lewis [16].

| have applied the bound to the gene order d&ts analysed in [2,30], each time com-
paring the lower bounds to heuristic upper bounéaumber of different trees. The results
were mixed. In general:

1. The lower bound for the breakpoint median problem fell within 1% (on average) of
the upper bound when genes had equal gene content.

2. The lower bound for the breakpoint phylogeny fell within 8% (on average) of the upper
bound when genomes had equal gene content.

3. For both problems, the bound worsened considerably when genomes had unequal gene
content: the average median bound fell to 12% of the upper bound while the phylogeny
bound dropped to 50% of the upper bound.

4. In all cases, Lagrangian optimization led to a significant improvement in the bound.

5. Implementation accuracy plays a sigréfint role in any simulation experiment.

These preliminary observations can be tested by applying the methods to a large and vary-
ing range of gene order data. One could alserapt simulation experiments with synthetic
data to detect potential biases and areas for improvement. Such experiments must be con-
ducted with care, though. The underlying preses of the evolution of gene order are still
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not well understood, and we can only draw lindii@onclusions using simplistic probabilis-

tic models. Secondly, the performance of the bounds can only be measured compared to
heuristic upper bounds, as we have as yet eams for generating random synthetic data

for which the most parsimonious assignment is known.

However the real test of these bounds will be in application, particularly in algorithm de-
velopment and tree searching. We are currently exploring their incorporation into a branch
and bound technique. There are many computational obstacles to overcome.

A second direction for future work is the extension of these results to other measures
of gene order divergence. Upper bound heuristics for parsimony based on edit distances
have been developed by [3,19], though, as fagalpoints, there is little guarantee that
the heuristics are obtaining global optima. Moret et al. [18,19] use randomly generated
data to argue that edit based heuristics outperform breakpoint heuristics when estimating
phylogenies and ancestral gene orders. Whether or not the same applies for real genomes,
in all contexts, depends on the accuracy &meadth of the model used to generate the
synthetic data. The development and validation of models for gene order evolution is an
area of active and ongoing research.

6. For further reading

The following references could also be of interest to the reader: [4,7,9,14,17,24,26].
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