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Abstract. Sequences that have evolved under recombination have a
‘mosaic’ structure, with different portions of the alignment having evolved
on different trees. In this paper we study the effect of mosaic sequence
structure on pairwise distance estimates. If we apply standard distance
corrections to sequences that evolved on more than one tree then we are,
in effect, correcting according to an incorrect model. We derive tight
bounds on the error introduced by this model mis-specification and dis-
cuss the ramifications for phylogenetic analysis in the presence of recom-
bination.

1 Introduction

Generally, phylogenetic analysis works under the assumption that the homol-
ogous sequences evolved along a single, bifurcating tree. Recombination, gene
conversion and hybridisation can all lead to violations of this basic assumption
and give rise to ‘mosaic’ sequences, different parts of which evolved along differ-
ent trees [12,21].

Simulation experiments have established that a mosaic sequence structure
can have a marked effect on phylogenetic reconstruction and evolutionary pa-
rameter estimation [13,17]. Our goal in this article is to characterise this effect
theoretically. Standard distance corrections assume that the sequences evolved
on a single evolutionary tree, so if we correct distance estimates using these meth-
ods we are essentially correcting according to an incorrect model. We show that
the effect of this model mis-specification is relatively small and derive explicit
bounds for the bias introduced by this failure to account for mosaic sequence
structure.

The result has important applications in conventional phylogenetic analysis.
As we shall discuss in Section 5.1, our characterisation of distance corrections on
mosaic sequences provides theoretical explanations for the various forms of bias
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observed experimentally in [17]. We can also apply the result to discuss the effect
of rate heterogeneity on phylogenetic reconstruction. Our observations comple-
ment the inconsistency results of [5] by limiting the zone for which distance
based methods are inconsistent.

However our principal motivation for this investigation was to better under-
stand the behavior of distance based phylogenetic network algorithms like split
decomposition [2] and NeighborNet [3]. We show that recombinant phylogenetic
information is indeed retained in corrected distance matrices, and justify the
family of network approaches that decompose distance matrices into weighted
collections of split metrics. NeighborNet and split decomposition are two mem-
bers of this family, though there is potential, and perhaps need, for several more.

Perhaps most importantly, we can finally provide a theoretical interpretation
of the form and branch lengths of the splits graph. A splits graph is not a
reconstruction of evolutionary history: the internal nodes in a splits graph should
not be identified with ancestral sequences [18]. These networks had long been
justified only in the weak sense that they ‘represent’ some kind of structure in the
data. As we will discuss, we can consistently view a splits graph as an estimation
of the splits appearing in the input trees (or, under a Bayesian intepretation,
the splits in trees with a high posterior probability).

To illustrate, suppose that we have a collection of sequences that evolved on
two different trees. Even so we compute and correct distances over all the sites,
giving a ‘wrongly corrected’ distance matrix d. Suppose that one third of the
sites evolved on T1 and two thirds on T2. If dT1 is the matrix of path length
distances for T1 and dT2 is the distance matrix for T2 then, as we will show,
the ‘wrongly corrected’ distance d will closely approximate the weighted sum
1/3dT1 + 2/3dT2 , as the sequence length increases. Since split decomposition is
consistent on distance matrices formed from the sum of two distance matrices,
the splits graph produced will exactly represent the splits in T1 and T2. Fur-
thermore, the weights of the splits in this graphs will be a weighted sum of the
corresponding branch lengths in T1 and T2 (where a split has length 0 in a tree
that doesn’t contain it).

This interpretation of splits graphs ignores some fundamental limitations of
the various network methods: existing methods are consistent on particular col-
lections of distance matrices and, as with tree based analysis, are affected by
sampling error and model mis-specification. However having the correct theoret-
ical interpretation should enable researchers to better design network methods
that overcome these difficulties.

2 Background

2.1 Markov Evolutionary Models

We briefly outline the aspects of Markov processes we need for the paper. For
further details, refer to [15,19] or any text book on molecular evolution.

Sequence evolution along a branch is typically modelled using a Markov
process. The process is determined by an n×n rate matrix Q, where Qij > 0 for
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all i �= j and Qii = −∑j �=i Qij . Nucleotide models have n = 4, while amino acid
models have n = 20. We assume that the process is time reversible, which means
that there exist positive π1, . . . , πn such that

∑n
i=1 πi = 1 and πiQij = πjQji for

all i, j. The values πi correspond to the equilibrium frequency for the process.
We assume that the process starts in equilibrium. Let Π denote the diagonal
matrix with π1, π2, . . . , πn on the diagonal.

Suppose that we run the process for time t. The probability of observing
state j at time t conditional on being at state i at time 0 equals Pij(t), where
P (t) is the evolutionary matrix

P (t) = eQt =
∞∑

m=0

Qmtm

m!
.

If we assume that the states are in equilibrium at the start then the probability
of having i at time 0 and j at time t equals Xij(t) = πiPij(t). The matrix
X(t) = ΠP (t) is called the divergence matrix.

The mutation rate rQ is the expected number of mutations per unit time, and
can be shown to equal the sum of the off-diagonal elements of d

dtX(t)|t=0 = ΠQ.
Hence

rQ =
n∑

i=1

∑

j �=i

πiQij = −
n∑

i=1

πiQii = −tr(ΠQ)

where tr(A) denotes the trace of a matrix A. The expected number of changes
between time 0 and time t therefore equals rQt. This is the standard unit for
measuring evolutionary divergence.

This general description includes many specific Markov models. The simplest
for nucleotide sequences is the Jukes-Cantor model [9]. The rate matrix for this
model is

Q =







−3α α α α
α −3α α α
α α −3α α
α α α −3α







which has only one parameter α > 0. Substituting into the above formulae we
see that the evolutionary matrix for this model is specified by

Pij(t) =

{
1
4 + 3

4e−4αt when i = j;
1
4 − 1

4e−4αt when i �= j,

while the mutation rate is rQ = 3α. Thus letting α = 1/3 gives a model with
expected mutation rate of 1 per unit time.

We assume that evolution of different sites to be independent. We use s[i] to
denote the state at site i in sequence s. The probability of observing sequence
s2 after time t given s1 at time 0 is then given by

P (s2|s1, t) =
∏

i

Ps1[i]s2[i](t).
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2.2 Distance Corrections

Rodŕıguez et al. [15] describe a general method for estimating the evolutionary
distance rQt between two sequences s1 and s2. Let Fij denote the proportion of
sites for which s1 has an i and s2 has a j (Actually, we can obtain better results
using 1

2 (Fij + Fji) since F should be symmetric). The general time reversible
(GTR) correction is given by

d̂ = rQ t̂ = −tr(Π log(Π−1F ))

where log is the matrix logarithm defined by

log(I + A) = A − 1
2A2 + 1

3A3 − 1
4A4 + · · · .

The correction formula is consistent: if F = X(t) then

−tr(Π log(Π−1F )) = −tr(Π log(eQt))
= −tr(ΠQ)t
= rQt.

Most of the standard corrections can be derived from this general formula.
For example, under the Jukes-Cantor model, suppose that we have observed that
the proportion of changed sites equals p. Our estimate for X(t) would then be
the matrix with p/12 on the off-diagonal (there are 12 such entries) and (1−p)/4
on the diagonal. Substituting into the general formula, we obtain the standard
Jukes-Cantor correction rQt = − 3

4 log(1 − 4
3p).

2.3 Trees, Splits, Splits Graphs, and Distance Matrices

A phylogenetic tree is a tree with no vertices of degree two and leaves identified
with the set of taxa X . A split A|B is a partition of the taxa set into two non-
empty parts. Removing an edge from a phylogenetic tree T induces a split of the
taxa set. The set of splits that can be obtained in this way from T is called the
splits of T and denoted Σ(T ). A given set of splits is compatible if it is contained
within the set of splits of some tree.

A splits graph is a bipartite connected graph G with a partition E(G) =
E1 ∪E2 ∪ · · · ∪Ek of E(G) into disjoint sets such that no shortest path contains
more than two edges from the same block and, for each i, G − Ei, consists of
exactly two components. (This definition is equivalent to the definition of [6]).
Some of the vertices are labelled by elements of X so that each edge cut Ei

induces a split of X . The set of these splits is denoted Σ(G). Note that every set
of splits can be represented by a splits graph, but this graph is not necessarily
unique. Every phylogenetic tree is a splits graph with every edge in a different
block.

Suppose that we assign lengths to the edges of T . The additive distance
dT (x, y) between two taxa x, y equals the sum of the edge lengths along the
path separating them. We can also assign length to the edges in a splits graph
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G, where all edges in the same block are assigned the same length. The distance
dG(x, y) between two taxa in G is then the length of the shortest path connecting
them.

Both dT and dG have an equivalent formulation in terms of splits. The split
metric δA|B for a split A|B is the (pseudo-)metric

δA|B(x, y) =

{
1 if x, y are on different sides of A|B;
0 otherwise.

Let λA|B denote the length of the edge (or in the case of splits graphs, edges)
corresponding to A|B. Both dT (x, y) and dG(x, y) equal the sum of the edge
lengths for all of the splits that separate x and y. Hence

dT (x, y) =
∑

A|B∈Σ(T )

λA|BδA|B(x, y) and dG(x, y) =
∑

A|B∈Σ(G)

λA|BδA|B(x, y).

Split decomposition [2] and NeighborNet [3] both take a distance metric d
and compute a decomposition

d = ε +
∑

A|B
λA|BδA|B

of d into a positive combination of split metrics and an error term ε. Furthermore,
both methods are consistent over a large class of metrics. If a set of splits S is
weakly compatible and

d̄(x, y) =
∑

A|B∈S

b̄(A|B)δA|B

then split decomposition will recover the splits A|B as well as the coefficients
b̄ [2]. NeighborNet will recover this decomposition when the set of splits S is
circular [4].

3 Correcting Distances Estimated from Mosaic Sequences

In a mosaic alignment, different sites evolved along different trees. Correction
formulae, such as those described above, make the assumption that the sequences
evolved on the same tree. When we apply these corrections to mosaic sequences
we are correcting according to an incorrect model.

We show here that the distance correction formulae work just how we would
hope, at least up to a small error term. Correcting a heterogeneous collection
of sequences using a homogeneous model does introduce error, but the error is
quite small compared to the distances themselves.

Suppose that the sequences evolved under the same model on k different
trees T1, T2, . . . , Tk. Furthermore, for each i, suppose that the proportion of sites
coming from Ti is qi. Let s1 and s2 be the sequences for two taxa, and let
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d1, d2, . . . , dk be the expected number of mutations on the path between these
taxa on trees T1, T2, . . . , Tk. We use

E[d] =
k∑

i=1

qidi

and

var[d] =
k∑

i=1

qi(di − E[d])2

to denote the mean and variance of the di’s.
Let F̂ab denote the proportion of sites with an a in sequence s1 and a b in

sequence s2. Then F̂ will approach

F =
k∑

i=1

qie
Qti

as the sequences become sufficiently long. We obtain upper and lower bounds
on the distance estimate computed from F .

First, however, we need to prove a small result in matrix analysis.

Lemma 1. Suppose that all eigenvalues of an n×n matrix X are real and non-
negative, and that there is a diagonal matrix D > 0 such that DX is symmetric.
Then tr(DX) ≥ 0.

Proof

Since D > 0 the inverse D−1 and square root of the inverse D− 1
2 both exist.

Define the matrix Y by

Y = D− 1
2 (DX)D−1

2 = D
1
2 XD− 1

2 .

Then Y is symmetric and has the same non-negative eigenvalues as X . It
follows that Y is positive semi-definite with non-negative diagonal entries. As

D− 1
2 > 0, the matrix DX has non-negative diagonal entries and tr(DX) ≥ 0. �

Theorem 1 Let F =
∑k

i=1 qie
Qti and let ρQ denote the constant tr(ΠQ2)

(rQ)2 . Then

E[d] − 1
2ρQvar[d] ≤ −tr(Π log(Π−1F )) ≤ E[d].

Proof

Let λ1, λ2, . . . , λn be the eigenvalues of Q. One of these is zero and all others
are negative. Let v1, v2, . . . , vn be a linearly independent set of eigenvectors,
where Qvj = λjvj for all j. Define ti = di

rQ
for all i, and t̄ = E[d]

rQ
. Then

E[d] − (−tr(Π log(Π−1F ))) = tr(Π(log(Π−1F ) − Qt̄))
= tr(ΠA)
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where A = (log(Π−1F ) − Qt̄). The matrix A has the same eigenvectors as Q.
Let αj denote the eigenvalue of A corresponding to the eigenvector vj . We derive
lower and upper bounds on αj .

For the lower bound we have

αj = log(
k∑

i=1

qie
λjti) − λj t̄

≥
k∑

i=1

qi log(eλj ti) − λj t̄

= 0

with the inequality following from the concavity of the logarithm (or Jensen’s
inequality). It follows that A has only non-negative eigenvalues so, by Lemma 1,
tr(ΠA) ≥ 0. Thus

0 ≤ tr(ΠA) = tr(Π log(Π−1F )) − tr(ΠQ)t̄ = tr(Π log(Π−1F )) + E[d]

For the upper bound, let x =
∑k

i=1 qi(eλj ti − 1). Then −1 < x ≤ 0 so
log(1 + x) ≤ x − 1

2x2 and

αj = log

(

1 +
k∑

i=1

qi(eλjti − 1)

)

− λj t̄

≤
(

k∑

i=1

qi(eλj ti − 1)

)

− 1
2

(
k∑

i=1

qi(eλjti − 1)

)2

− λj t̄

If we set y = λjti then y ≤ 0 and y ≤ ey − 1 ≤ y + 1
2y2. Thus

αj ≤
k∑

i=1

qi(λjti + 1
2λ2

j t
2
i ) − 1

2

(
k∑

i=1

qiλjti

)2

− λj t̄

= 1
2λ2

j




k∑

i=1

qit
2
i −

(
k∑

i=1

qiti

)2




= 1
2

λ2
j

(rQ)2 var[d]

Thus (var[d]
2 Q2/r2

Q − A) has non-negative eigenvalues, and

0 ≤ tr(Π(var[d]
2 Q2/r2

Q − A))

= var[d]
2 tr(ΠQ2)/r2

Q − tr(Π log(Π−1F )) + tr(ΠQ)t̄

= 1
2ρQvar[d] − tr(Π log(Π−1F )) − E[d].

�
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This general result implies error bounds for all the standard distance correc-
tions. For example, under Jukes-Cantor, we have ρQ = 4

3 so if the proportion of
observed changes approaches p then

E[d] − 2
3
var[di] ≤ −3

4
log(1 − 4

3
p) ≤ E[d]

For K2P with parameter κ = 2 expected num. transitions
expected num. transversions we obtain the bound

E[d] − κ2 + 2κ + 3
(κ + 2)2

var[d] ≤ −tr(Π log(Π−1F )) ≤ E[d].

The divergences between well aligned molecular sequences are typically small.
In this case, the error bound 1

2ρQvar[d] comes close to zero. Thus, when distances
are small, the corrected distances approximate the convex combination of the
distances from the different blocks of the mosaic sequences. We therefore have

Corollary 1. Let d̂ be the corrected distances estimated from mosaic sequences
evolved on trees T1, . . . , Tk, where for each i, the proportion of sites evolved on
Ti is qi. Let di be the distance matrix estimated from only those sites evolving
on Ti. Then

d̂ ≈
k∑

i=1

qidi.

Even if the bias is sufficient to have a significant effect on distance estimates,
this bias is well characterised. The lower bound E[d]− 1

2var[d] is very tight. The
distance correction differs from E[d]− 1

2var[d] only by a term of order O(d3), as
can be easily demonstrated from a Taylor series expansion.

Note also that the error bound 1
2ρQvar[d] depends only on the variance of

the block distances, and not on the number of different blocks. By taking k to
infinity, we see that Theorem 1 extends directly to a continuous distribution on
input distances.

4 Experimental Results

We performed two separate experiments to assess the tightness of the approxi-
mation established in Theorem 1 for the distance between two sequences. The
parameters for each run were

– The number of contiguous blocks k, set to k = 2 or 5.
– The height h (in expected mutations) of the root in the coalescent.

The k contiguous segments were determined by randomly selecting k − 1 break-
points without repetition. This gave the proportions q1, q2, . . . , qk of sites from
each tree. The distances di for each contiguous segment were sampled by con-
structing a coalescent with 30 leaves and height h, using the protocol outlined
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Jukes-Cantor, k = 2 and k = 5

K2P, k = 2 and k = 5

F84, k = 2 and k = 5

Fig. 1. Results of the first experiment. The estimated distance is computed using
a distance correction applied to the whole sequence. The weighted distance is the
mean E[d] of the distances for each contiguous block. Results are presented for
Jukes-Cantor, Kimura 2-parameter (K2P) and the Felsenstein 84 model (F84).
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in [10], then taking the distance between two fixed leaves. (In practice this sam-
pling can be performed without constructing the tree by simply determining the
time taken for the two lineages to coalesce.) A new coalescent tree is sampled
for each segment.

For the first experiment we selected the Jukes-Cantor (JC), Kimura 2-
parameter (K2P), and Felsenstein 84 (F84) models [19], scaled so that they
had rates of −tr(ΠQ) = 1. We used κ = 2 for K2P and F84, and equilibrium
frequencies πA = 0.37, πC = 0.4, πG = 0.05, πT = 0.18. for F84. These equal the
emperical frequencies observed by [20] for Human mtDNA. For each we com-
puted F = Π(

∑k
i=1 qie

Qti) analytically, then computed the estimated distance
−tr(Π log(Π−1F )) and the weighted distance E[d].

The results for this first experiment are presented in figure 1. We plot es-
timated distance −tr(Π log(Π−1F )) versus the weighted distance E[d]. The fit
is quite close, even when the distances become quite large. The actual error
(weighted distance - estimated distance) is extremely close to the error bound
from Theorem 1, differing only in the 5th or 6th decimal place (data not shown).

For the second experiment we wanted to compare the estimated distances to
weighted distances for randomly generated sequences. We selected the ti’s and
qi’s as for the first experiment. We used SEQGEN [14] to randomly evolve two
mosaic sequences of length 1200, where the sequences were evolved separately for
each contiguous segment. Even with no recombination, the presence of sampling
error means that the corrected distance computed from the sequences will differ
from the distance used to generate the sequences. As we wanted to distinguish
sampling error from the error introduced by recombination, we re-estimated
the distances for each contiguous segment. That is, for each i = 1, 2, . . . , k we
computed ai, the corrected distance computed from the sequences in the ith
contiguous segment.

Because some of the segments were short they were often saturated. We
resampled all cases when saturation occurred.

The results for this study are presented in figure 2, just for the Jukes-Cantor
case. Once again, the estimated distances closely approximate the weighted dis-
tances. The first two plots present the results for k = 2 and k = 5 blocks. The
lower plots compare the sampling error, measured as the absolute difference be-
tween the estimated distance and the average of the distance used to generate
the sequences, versus the error due to recombination. The plots indicate that the
two values are of roughly the same magnitude, with the sampling error being
somewhat larger.

5 Applications

5.1 The Consequences of Recombination on Traditional
Phylogenetic Analysis

Schierup and Hein [17] conducted an extensive simulation experiment to assess
the effect of mosaic sequence structure on features of reconstructed phylogenies.
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Fig. 2. Results of the second experiment. The top two plots give estimated
distance versus weighted distance for JC (k = 2, 5). The two lower graphs plot
the sampling error versus the error from the approximation .

They used the recombinant coalescent algorithm of [8] to generate genealogies
with varying rates of recombination, then evolved simulated DNA sequences
along these genealogies. Distances were corrected according to the Jukes-Cantor
model, and trees were constructed using a least squares heuristic. As the amount
of recombination increased, Schierup and Hein observed

1. a tiny decrease in the average distance between sequences.
2. a decrease in the time to the most recent common ancestor of all taxa, and

also in the average time back to the common ancestors of pairs of taxa
3. an increase in the total length (sum of branch lengths) of the topology

All of these observations can be predicted from Theorem 1. We showed that the
estimated distances will under-estimate the average distances from the various
input trees. This explains the decrease in average pairwise distances. The fact
that this decrease is very small indicates that the estimated distances are close
to the convex combinations of the input distances.
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The decrease in tree height and average time to least common ancestors is
therefore due more to the presence of conflicting signal than the negative bias
predicted by Theorem 1. The time to the most recent common ancestor in any
clock based phylogeny equals half the maximum divergence between taxa. A
given pair of taxa will most likely not be maximally diverged in all of the input
phylogenies, so the maximum divergence between sequences will decrease when
we take a convex combination from different trees.

The increase in total tree length follows from the proof of consistency for min-
imum evolution [16], at least for ordinary least squares (see [7]). If we estimate
branch lengths from a distance matrix from an incorrect tree, the tree length
will be longer than for the correct tree. Thus the incompatibilities introduced
by increased recombination will increase tree length.

5.2 Inconsistency of Phylogenetic Analysis under Variable Rate
Models

Chang [5] showed that distance based and maximum likelihood methods can
be inconsistent when evolutionary rates vary across sites. Using Theorem 1, we
can limit the zone of inconsistency for these methods. Variation in evolutionary
rates means that each site evolved on the same tree but the branch lengths can
differ. We can rescale so that the expected distance between two taxa equals
the distance between them in T . The inconsistency is due to the variance in
the distance caused by the varying rates. Bounding this rate variance makes
Neighbor-joining a consistent method.

Theorem 2 Suppose that sequences are evolved along a phylogeny T under a
stochastic model with rate matrix Q and variable evolutionary rates. Let ε be the
expected number of mutations along the shortest branch of T . If

var[d] <
ε

ρQ

then Neighbor-Joining (and most other distance based methods) applied to cor-
rected distances will return T with sufficiently long sequences.

Proof
We prove the result for a finite number k of possible evolutionary rate histories,
though the result extends immediately to a continuous rate distribution. Each
rate history corresponds to an assignment of branch lengths to T . For each i we
let Ti denote T with branch lengths modified according to the ith possible rate
history. Let di denote the additive distance for Ti. Since each of T1, . . . , Tk has
the same topology, the distance matrix E[d] formed from their weighted averages
is also additive on T .

From Theorem 1 the corrected distance −tr(Π log(Π−1F )) differs from E[d]
by at most 1

2ρQvar[d] = 1
2ε. Neighbor-joining therefore returns the correct tree

T [1]. �
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5.3 Split Decomposition and NeighborNet

Models for generating sequences under recombination combine three parts: the
sampling of the recombination history, the sampling of breakpoints, and the
evolution of the sites. After the recombination history and breakpoints are de-
termined, each site has an associated phylogenetic tree. While the trees are corre-
lated, we usually assume independence of each site given the trees (e.g. [11,17]).
The problem of reconstructing the complete recombination history therefore re-
quires a reconstruction of the contributing phylogenies.

Suppose that we have a mosaic alignment with a proportion of q1 of the
sites evolved on T1, q2 of the sites evolved on T2,...,qk sites evolved on Tk. For
each i let di denote the distance matrix for Ti. Since the trees Ti are highly
correlated there will be less variation in the individual distances than if the
trees had been sampled independently. If the sequences are sufficiently long,
the distance estimates computed for the whole sequence will approximate the
weighted average

d̄(x, y) =
k∑

i=1

qidi(x, y).

Each tree Ti can be decomposed into a non-negative linear combination of
split metrics, as we observed in Section 2.3. For each tree Ti, let bi(A|B) denote
the length of the branch corresponding to A|B, with bi(A|B) = 0 if A|B is not
a split of Ti. We set

b̄(A|B) =
k∑

i=1

qibi(A|B) ≥ 0.

Let S equal the union Σ(T1) ∪ · · · ∪ Σ(Tk) of the splits of T1, . . . , Tk. Then

di(x, y) =
∑

A|B∈S
bi(A|B)δA|B(x, y)

and

d̄(x, y) =
k∑

i=1

∑

A|B∈S
qibi(A|B)δA|B(x, y)

=
∑

A|B∈S
b̄(A|B)δA|B(x, y).

We therefore have

1. The distance matrix d̄ is in the positive cone generated by the split metrics
for splits in the trees T1, . . . , Tk

2. The coefficient of δA|B in this sum equals the sum of the branch lengths
corresponding to A|B in the input tree, where the branch lengths in Ti are
weighted by a factor qi.
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Split decomposition and NeighborNet both take a distance metric d and
compute a decomposition

d = ε +
∑

A|B
λA|BδA|B

of d into a positive combination of split metrics and an error term ε. Furthermore,
both methods are consistent over a large class of metrics. If the set of splits S
from the trees T1, . . . , Tk is weakly compatible and

d̄(x, y) =
∑

A|B∈S

b̄(A|B)δA|B

then split decomposition will recover the splits A|B as well as the coefficients b̄
[2]. In particular, if k = 2 then S is weakly compatible and split decomposition
will recover the splits. If S is circular then NeighborNet will also recover both
the splits and coefficients.

The splits in a splits graph therefore represent an estimate of the splits in
the trees generating the mosaic sequences. The lengths of the edges represent an
estimate of the corresponding branch lengths, weighted by the frequencies.

6 Discussion – Error and the Phylogenetic Analysis of
Recombination

We have established a general result for distance corrections on mosaic sequences,
and studied applications of this result to phylogenetic tree and network construc-
tion. The result characterises the signal present in distance matrices derived from
recombinant sequences, a fundamental step towards the design of new methods
for recovering this conflicting phylogenetic signal.

Building on the observations made in Theorem 1 we can identify (at least)
four sources of error that could cause the splits graph representation to be incor-
rect, even under the assumption that we have the correct evolutionary model.
The first is the (negatively biased) error term introduced by the approximation
in Theorem 1. This factor is tiny, however, and is likely to only affect splits with
small branch lengths or splits that only contribute to a small fraction of the
sites.

A second source of error is sampling. Here the combined network approach
seems to have an advantage over sliding window approaches. A consequence of
the Theorem is that the variance of the estimate E[d] is not significantly different
than the standard variance estimate for an alignment without recombination. On
the other hand, if we knew which sites evolved from which trees and estimated
these distances separately, the variances would be far higher.

The third source of error is the systematic error introduced by split decom-
position and NeighborNet. For certain classes of splits, both methods are consis-
tent. However if the splits in the trees contributing to the mosaic are not weakly
compatible (or in the case of NeighborNet, not circular) then the resulting splits
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graph could be misleading. There is a need to characterise how both methods
respond to these model violations, and scope for developing further methods for
decomposing distance matrices.

When the splits in S are not weakly compatible a fourth complication can
arise. A distance matrix can have two or more distinct decompositions into split
metrics. Consider the three clock-like trees T1, T2, T3 in figure 3. The average of
the distance matrices generated by these trees is exactly equal to the distance
matrix for T ∗. Even if the the proportions were not exact, it would always be
possible to decompose the estimated distance matrix into the non-negative sum
of six (rather than seven) split metrics [2]. This problem of non-recoverability
will become worse the more complicated the recombinations are, and poses a se-
vere challenge for the development, and experimental analysis, of recombination
reconstruction algorithms.
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Fig. 3. An example of non-recoverability. The three trees T1, T2, T3 generate
the same distance matrix as the single tree T ∗.
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