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The Size of a Maximum Agreement Subtree
for Random Binary Trees

David Bryant, Andy McKenzie, and Mike Steel

ABSTRACT. In computational biology, a common way to compare two rooted
trees that classify the same set L of labelled leaves is to determine the largest
subset of L on which the two trees agree. In this paper we consider the size
of this quantity if one or both trees are generated randomly, according to two
simple null models. We obtain analytical bounds, as well as providing some
simulation results that suggest a power law similar to the related problem of
determining the length of the longest increasing sequence in a random permu-
tation.

1. Introduction

Hierarchical relationships in evolutionary biology and linguistics are often rep-
resented by rooted binary trees with leaves labelled by the species under study.
Frequently two trees that classify the same set of species will differ if they have
been obtained from different data sets, or by using different methods. In these
situations it is useful to know what is the largest subset of species on which the two
trees agree. Informally, a “maximum agreement subtree” for a pair T1,T» of trees,
each having the same set L of labelled leaves, is a tree t with leaves lying in a largest
possible subset of L, so that the ¢t can be embedded in both 77 and T,. A maximum
agreement subtree (MAST) offers a way of summarising what information two (or
more) trees have in common. The concept was introduced by [6] and {9].

The first polynomial-time algorithms for computing a MAST for two trees
were developed independently by [8] and [13]. Later it was shown that computing a
MAST for three or more trees is an NP-hard problem, though solvable in polynomial
time if a degree bound is placed on at least one of the input trees [2]. The algorithm

*

2000 Mathematics Subject Classification. Primary 92B10, 60J20; Secondary 92D10, 68R10.
Key words and phrases. trees, phylogeny, maximum agreement subtree, distributions on

trees.
We thank the New Zealand Marsden Fund (UOC-MIS-005) for supporting this research.

55



56 DAVID BRYANT, ANDY MCKENZIE, AND MIKE STEEL

of [3] for computing MAST trees has been implemented as part of the widely used
phylogenetic analysis software PAUP* [15].

In this paper we are not concerned with algorithms for finding a MAST. Rather,
we investigate the probability that the size of a MAST for two binary trees exceeds
any given value when one or both of the trees are randomly generated. We also
consider the expected size of a MAST under the two models we consider.

These questions are relevant to biology when comparing evolutionary trees for
the same set of species that have been constructed from two quite different types of
data. It may be suspected that one or both of the data sets contain no phylogenetic
information; for example with DNA sequence data this can occur if the sites are
sufficiently saturated due to high mutation rates. In this case one or both of the
reconstructed trees are essentially random and so it is useful to know how much
agreement one should expect between the two trees purely by chance.

This question is also closely related to a classical problem in combinatorics.
Suppose we generate a permutation i, ...,Z, on the numbers 1,...,n uniformly
at random and ask for the longest monotone increasing subsequence z;(1), . .., Ty(s)-
Then, the ratio (s/y/n) converges in probability to 2 as n tends to infinity ([4],
p.369).

This result has some bearing on the MAST problem. Let us call a rooted
binary tree a comb phylogeny if every non-leaf vertex is unlabelled and is adjacent
to at least one labelled leaf. From the result on permutations it follows that, for
two comb phylogenies generated uniformly at random on the same set of n labelled
leaves, the size of the MAST divided by +/n converges in probability to 2 as n tends
to infinity.

However comb phylogenies are rather special, and it is interesting to inquire
as to whether a power law for the size of maximum agreement subtrees holds in
general for more interesting probability distributions on leaf-labelled binary trees.
Our analytic results show that a +/n behaviour is an upper bound for the expected
size of the MAST for an underlying uniform distribution. Simulations also support
a power law similar to \/n as a lower bound for the expected size.

We end this section by noting that the deterministic minimum size of a MAST
of two binary trees has been investigated by [7]. These authors found that the
relative depths of the two trees was an important factor in setting lower bounds on
the size of a MAST.

2. Terminology

In this paper a phylogeny on L is a rooted binary tree T consisting of a root
vertex of degree two, unlabelled interior vertices of degree three, and leaf vertices
of degree one that are labelled bijectively from the set L.

We will let L(T) = L denote the set of labelled leaves of T, the leaf set of T.
Usually we will take L = [n] = {1,...,n}.
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- Phylogenies are widely used to represent evolutionary relationships in biology,
where they are sometimes also referred to as “rooted binary phylogenetic trees”.
The leaf set L corresponds to the extant species under study, while the remaining
interior vertices correspond to speciation events.

Let T be a phylogeny with leaf set L(T) = [n], and let S be a subset of [n]
of size at least two. The induced phylogeny T'|s is the phylogeny on S obtained
by taking the minimal subtree of T that connects all the leaves in S, and then
supressing any resulting non-root vertices of degree 2. For example, in Figure 1, we
have t = T|{12,3,5;- We will generally use the lower case letter t to denote induced .
phylogenies.

We denote the set of phylogenies on leaf set [n] and the size of this set by
|RB(n)|. Tt is a classical and well known result that |[RB(n)| = (2n — 3)!! where
(2n — 2)!

(271—3)": (2n—3) X (2'n—5) X -+ XH5x3= (;l—_—l)—!é‘n—__T’

Let T and T’ be two phylogenies on the leaf set [r] and let S be a subset of [n]
of size s > 1. Then a phylogeny t on S is an agreement subtree for the pair T,T" if
Tis=Ts=t.

If, in addition, ¢t has the maximum number of leaves amongst all agreement
subtrees for the pair T, T’ we say that t is a mazimum agreement subtree (or MAST)
for T, T’. The number of leaves in any MAST is called the size of the MAST, and
is denoted M (T, T”). That is,

C M(T,T') = max{|S| : S C L, T|s = T'|s}

See Figure 1 for an example of a pair of phylogenies that have a MAST of size
four. Note that a MAST may not be unique; moreover the number of MASTs for
two phylogenies on a leaf set of size n can grow exponentially with n [11].

1 23 46 5 16 4 23 5 1 23 5
T T t

FIGURE 1. The phylogeny ¢ is a MAST for the phylogenies 7" and
T'. We have M(T,T') = 4.

- 8. The Yule-Harding and Uniform Models

There has been considerable interest in investigating models for the generation
of phylogenies. Such models can be useful for testing speciation hypotheses, or as
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null models for Bayesian approaches to phylogeny. We now discuss two natural
models that have been used for generating phylogenies.

The Yule-Harding model (also called the “Markov model”) can be defined in
several apparently different ways. One definition, which emphasises the link with
the speciation process, is in terms of edge addition. One starts with a tree on two
randomly selected species from L. To the tree so-far constructed, a leaf v is selected
uniformly at random, its incident edge is subdivided, and the resulting degree-two
vertex is made adjacent to a new leaf, labelled uniformly at random by one of the
remaining elements of L that are not already a leaf label of the tree. This process
is repeated to give a tree with L(T) = L. The underlying rationale for this process
are the assumptions that speciation is instantaneous, always occurs as bifurcations,
is independent across lineages, and that the probability of speciation is the same
for all lineages at any given time [12].

A second model is the Uniform model in which equal probability is assigned to
each possible phylogeny on the leaf set L. Thus, under this model the probability
of a particular phylogeny is 1/|RB(n)|, where n = |L|. This model is sometimes
referred to as the “proportional-to-distinguishable-arrangements (PDA) model”.
As with the Yule-Harding model, the Uniform model can also be realized by a
certain speciation scenario (for details see [14]).

For any stochastic model that generates phylogenies, if we are given a phylogeny
T with a leaf set L of size n, we will let P,,[T] denote the probability that a randomly
generated phylogeny on L is T.

As explicitly noted by [1], the Yule-Harding and Uniform models on phylogenies
satisfy the following two properties:

¢ Exchangeability If T and 7" are phylogenies on [n] and 7" can be ob-
tained from T by permuting the elements of [n] then P,[T] = P,[T”].
¢ Sampling consistency. For a phylogeny T on [n], and s < n we have

(31) Pn[T[{1,2,...,s} = t] = Ps[t] ’

where t is a phylogeny on [s]. ™~ s

In Figure 2 we show the results of some sirrfﬁlations that suggest a povier law

relationship between the expected value of M(T,T") and n under the Uniform and

Yule-Harding models. All simulated expected values were based on 1000 randomly

generated trees. The simulations also suggested that M(7T,T") has an approxi-
mately normal distribution about its mean.

4. Upper Bounds

We now derive an upper bound for the probability that two randomly generated
trees have a MAST of size greater than or equal to any given value s. In the two
subsequent sections we determine this upper bound explicitly for the Uniform model
and recursively for the Yule-Harding model.
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FIGURE 2. A log-log scaled plot of the expected size of a MAST
vs number of leaves on each tree (n). Simulated values for the
Yule-Harding (e) and Uniform (x) models. The least-squares line
of best fit for the Yule-Harding model data (-) has a slope 0.506
and an intersect of 0.595. For the Uniform model the least-squares
line (--) has slope 0.487 and intersect 0.603.

Given phylogenies T and T” on [n], and a subset S of [n] let

. ' .
@1) XS-—-{ 1, ifT|s =T"|s;

0, otherwise.

The number of agreement subtrees with s leaves for T' and 7" is then counted by

(4.2) X = > Xs.
SC[n]:|S|=s

Now suppose that phylogenies T' and 7" on [n] are randomly generated according
to some model. Let ¢, s be the expected number of agreement subtrees of T' and
T’ of size s.

LEMMA 4.1. Suppose that phylogenies T and T' on a leaf set L of size n are
randomly generated under a model that satisfies exchangeability and sampling con-
sistency. Then,

PMET) 2 o <= (1) 2 R

tERB(s)
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TABLE 1. The simulated expected number of leaves for the MAST
of two randomly generated trees on n leaves under the Yule-
Harding and Uniform models. The simulated upper five percent
value represents the smallest value of s : P[M(T",T") > s] < 0.05.
All simulated values are based on 1000 randomly generated trees.
The bound upper five percent value is the value of s such that the
upper bound on P[M (T, 7”) > s] in Lemma 4.1 is less than or equal

to 0.05.
Yule-Harding model Uniform model )
Number of || Simulated | Simulated Bound Simulated | Simulated Bound
leaves (n) || E[M(T,T")] | upper 5% | upper 5% || E[M(T,T')] | upper 5% | upper 5%
8 4.2 6 6 4.1 6 6
16 6.1 8 9 5.9 8 9
32 8.9 11 13 8.2 11 12
64 12.6 16 18 11.6 14 17
128 17.8 21 25 16.2 19 23
256 25.1 29 35 22.7 26 32
512 35.3 40 50 31.6 36 45
1024 49.4 54 70 43.8 49 63

Proof. The event {M(T,T') > s} is equivalent to the event ‘{j((s) > 1} so
PM(T,T') 2 s] =P[X®) > 1] LEX®] =g, .= >  E[Xg]
SC[n]:|S|=s
n
= Z ]P[XS = 1] = <S>P[X{l,2,...,s} = 1]1
SC[n]:|S|=s
where the last equality is by exchangeability. Now,
PX(12,.6 = U =Po[T |12,y = T'|{1,2,....5}]
= Z ]Pn[T |{1,2,...,s} =t and Tll{l,’.’,.,,,s} = t]

tERB(s)
= Z 11Drt[fz—"{l,z‘..,s} = t]2 = Z Ps[t]z,
teERB(s) teRB(s)

where the last equality follows from the sampling consistency property. Upon sub-
stituting back for this term, we obtain the upper bound as stated in the lemma. O

Table 1 shows that the bound described by Lemma 4.1 provides an approximate
estimate of the tail of the distribution of M(T,T’). By comparing the estimate
of the smallest value of s for which P[M(T,T") > s] < 0.05 obtained from the
analytical bound, with values obtained from simulations, we see that the former
tend to overestimate the latter by between 0 and 30 percent in the range shown.

4.1. Uniform Model. We derive some analytic bounds for the Uniform model
when one or both phylogenies are randomly generated. In this section we will sup-
pose that T is either a fixed phylogeny on [n], or is generated according to any
distribution on phylogenies on [n] (regardless of whether or not this distribution
satisfies sampling consistency or exchangeability). We will further suppose that T’
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is independently generated by the Uniform model for phylogenies on [n]. We let
M,, denote the random variable M (T,T").

PROPOSITION 4.2. Suppose T' and T’ are phylogenies on [n] with T fixed or
random, and 7" independently generated according to the Uniform model.

1

&

P(M, > 5] < ¥ = (Z) TEETR

Proof. Following the proof of Lemma 4.1 we have
PM,>s]< > PXs=1]
SC[n]:|S|=s

Now, regardless of whether T is fixed, or selected according to any distribution, we
have

PXs=1] = ZP[T'LS' =t|P[Tls = Z ‘RB =t= |RBl(S)1

and the result now follows. O

As we show in the following theorem, the asymptotic behaviour of the quantity
¥n,s depends on the limiting value of the ratio %. As usual we write f(m) ~ g(m)

to denote that lim,, o f—(% = 1. Itis also useful to have the concept of exponential

convergence to zero, and we write f(m) —exp 0 if, for some constant € € (0, 1), and
some integer mg, f(m) < €™ for m > my.

THEOREM 4.3. Suppose T and T’ are phylogenies on [n] with T fized or random,
and T' independently generated according to the Uniform model.

(i) The ezpected number of agreement subtrees of size s for the pair T, T is

¢'n,s 2 2 72" S 6 S

where Y(n, s) = Hf;ll( - %) and where the function 6 satisfies the con-
dition 6(s) ~ 1 '
(ii) Let
fiH(s) = max{yns : n < s2/A%}; £ (s) = inf{¢hn s : m > s%/A%}.
IfA> %, I (8) —exp 0, while if A < \;5' [y (s) — o0 as s — 00.
(iii) For A > Z5 let g(n) =P[M, > A/n]. Then g(n) —exp 0.
(iv) For any A > f there ezists a value m so that, for alln > m,

E[M,] < AVn.

Proof. Let
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Since (2s — 3)!! = (s(f;);!;s)!_l, we can apply using Stirling’s approximation (see [5]),
which states that s! ~ v/27s5t1/2¢=5_ to deduce that 6(s) ~ 1. Now,
n! n°Y (n,s
wn,s ( )

T sln—s)(2s—3)1  sl(2s— 3
and it can be checked that the right hand side of the this equation now equals
NES (’gsif) Y (n, s)6(s) which establishes part (i).

For part (ii), the result for f;" follows from part (i) by observing that Y (n, s) <
1, and that /s0° —eyp 0 for a = % < 1. The result for f; also follows from

part (i) by noting that, provided n > c;s? for some positive constant ¢;, then
Y (n,s) > cz > 0 for an associated constant cp, and lim,_,, 1/s8° = oo for § > 1.

For part (iii) and part (iv) let us select € > 0 sufficiently small so that A—e > \/LE

Then we may select, for each n > ;15, an integer s, such that (A—¢)/n < s, < AV/7.
Now,

(4'3) P[Mn > /\\/T_L} < P[Mn > sn] < ¢n,sn7
and since ¢, s, < max{yk,s, : k < s2/(X — €)?} it follows from (4.3) that
(4.4) PIM, > M) < f5_(s0)

By part (ii) the right hand side of (4.4) converges to zero exponentially with s,, and
thereby with n. This establishes part (iii).

For part (iv) note that, since M,, is bounded above by n, the following inequality
holds for any positive real value of s < n,

(4.5) E[M,] < sP[M, < s]+ nP[M, > s] = (n - s)P[M,, > s] + s,

where the second equality holds because P[M,, < s] = 1 — P[M,, > s]. With ¢
chosen as before, take s = (A — €)y/n in (4.5). From part (iii), since A — e > %,
we have lim,_,o, nP[M,, > (A — €)4/n] = 0 so m can be selected sufficiently large so
that nP[M,, > s,] < ey/n for all n > m. Part (iv) now follows from (4.5). O

4.2. Yule-Harding Model. For the Yule-Harding model we can derive a
recursion for the term 37, » () Ps[t]? that occurs in Lemma 4.1.

THEOREM 4.4. For s > 2, let Ny := 3, p( ) Ps[t]?.
(i) Ns satisfies the recursion
) s—1 1
4. No=—= _S"(5)'N.N,_, here s>2, Ny=1.
(4.6) (8_1)2;1(9 N, N, where s > 2, N

(ii) Let as = s!Ng. Then, for s > 2, a, satisfies the recursion

s—1
2
(47) Ag = m garas_r .
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(iil) Let y(z) = > oo, asz®. Then y = y(x) satisfies the differential equation,

d
(4.8) P g —rty= 2%, y(0)=0,3'(0)=1.

Proof. We first derive recursion (4.6), then show that y(z) satisfies (4.8). Let t
be a phylogeny on [s]. Let t; and t2 be the two rooted subtrees of ¢ obtained by
deleting the root of t, where we may assume that ¢; has at most half the leaves of
T. A fundamental recursion for the Yule-Harding model (Equation 5.3 from [10])
states that, for any value of s,

it = 2 (7).

Consequently, by squaring this last equation we see that, for s odd, N, can be

expressed as
4 s\ 72 9 2
3

t1,t2
where L(t1), L(t2) form a partition of [s]. Thus,

(3_1)2Z(>~1 Z P.[t:])? 2 Py [t2]?

t1€RB(r) t2€RB(s—1)

%

4 S -1
-<s-1>z§(r) Nl
T<2

which establishes (4.6) when s is odd. For s even the additional term for r = § is

% (s—1)2 Z (s/2> Py /o[t1]Pss2lta]”

where t1,to each have § leaves for which the leaf sets form a partition of [s]. So,
for s even, N, satisfies the recursion

4 NoNep, 21
(s —1)? > T o1 (;Z)Ns/i"

thereby justifying Equation (4.6) in this case also. This completes the proof of part
(i)

Part (ii) follows directly from part (i).

N, =

r<s/2 ("‘)

For part (iii) note that, for y(z) = 3 oo, asz® we have

(4.9) i sasz® = xy'( Z sla.z® = 2%y () + =y (z) .

s=1 s=1

Multiplying both sides of (4.7) by ﬁzl-ﬁxs, then summing over s, gives

oo () [~ oo [s—1
1 2 K] s 1 s s
5 g sagx” — 2 Ll % 4 +§ E T = E E ArQg—r | T .
s=1 s=1 s=1 s=1 Lr=1
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Recognising the right-hand side as y(ac)2 and using the relationships of (4.9) gives

2y (x) ~ 5oy () + 53(@) = y(@)?.

Multiplying both sides by two, and setting appropriate initial conditions, completes
the proof of part (iii). O

5. Concluding Remarks

It would be instructive to develop an analogue of Theorem 4.3 for the Yule-
Harding model by determining the asymptotic behaviour of N, (perhaps by ex-
ploiting Theorem 4.4).

A further interesting problem would be to determine analytical lower bounds
(or some power law) on the expected size of M(T,T’) under the Uniform or Yule-

Harding models.

Results on the /expected size of the MAST for three or more random trees may
also be of interest.
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