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the traits that are used as phylogenetic markers truly dis-
crete, tightly integrated, and functionally autonomous
modules? (2) At what point is the error associated with
relaxing the severity of the criterion for a character sig-
nificant enough to cause systematic error in phylogenetic
reconstruction? Answers to these questions will likely
vary from study to study and across systems. The de-
bate is not new and is not one that will likely be set-
tled with a few exchanges in the pages of Systematic
Biology. Nevertheless, we think it is one that has enduring
importance.

We are grateful for the opportunity provided by
O’Leary et al. (2003) to voice our perspective. We do
not expect the readership to come to a final resolution
favoring one view over another. However, for those in-
terested, we simply recommend a rereading of O’Leary
and Geisler’s (1999) original paper, Naylor and Adams’s
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Matrix representation with parsimony (MRP) is a
method that takes as input a collection of source trees,
recodes them as binary matrices, and returns a tree that
is closest to the source trees using a parsimony crite-
rion (Baum, 1992; Ragan, 1992). The average consensus
method, on the other hand, takes as input a collection
of weighted trees (i.e., with branch lengths) and uses a
matrix representation with distances (MRD) analysis to
seek the weighted tree that is closest to the source trees
using a least-squares criterion (Lapointe and Cucumel,
1997). MRP has been mostly used as an alternative to
data combination for assembling supertrees from source
trees bearing nonidentical but overlapping sets of leaves
(for reviews, see Sanderson et al., 1998; Bininda-Emonds
et al., 2002). The average procedure has also been em-
ployed to produce supertrees while taking into account
branch lengths (Lapointe and Kirsch, 2001). However,
both of these approaches can be used to combine source
trees with identical leaf sets, in the so-called consensus
setting (sensu Bininda-Emonds, 2003). In that particular
context, MRP and MRD represent two sides of the same
coin, and these methods are closely related consensus
techniques. Here, we briefly describe the coding and op-
timization steps of both approaches to identify their re-
semblances and differences, and we have used an exam-
ple to illustrate the equivalence among those seemingly
different methods, in the consensus setting. Finally, we

(2001) reanalysis, and O’Leary et al.’s (2003) rejoinder
herein. We leave it to the readership to come to their
own conclusions.
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note that the close relationship between MRP and MRD
may not hold in the supertree context.

CODING TREES FOR MRP
Given a rooted tree t representing the relationships

among a set of leaves (taxa) S = {1, . . . , n}, there exist a
variety of possible binary matrix representations m (e.g.,
Purvis, 1995; Ronquist, 1996; Wilkinson et al., 2001) cor-
responding to t. Here, we focus on the representation
originally introduced by Ragan (1992). We define a bi-
nary matrix m, with n rows representing the leaf set S of
t and p columns (or matrix elements, sensu Baum and
Ragan, 1993) representing the internal nodes of t. For
each such element of m, all terminal taxa (leaves) de-
scending from the corresponding node are scored 1, and
all others are scored 0. To polarize the elements, an ad-
ditional line is added to the matrix to represent an out-
group (or root) with all-zero values. A parsimony anal-
ysis of this binary matrix representation will recover the
corresponding tree it is encoding (Baum, 1992; Ragan,
1992) when zero-length branches, if there are any, are
collapsed. As a special case, a fixed number n of addi-
tional columns could be added to the matrix to represent
the terminal nodes of t, each one scored 1 for the cor-
responding taxon and 0 otherwise. These elements are
noninformative in a cladistic sense (i.e., they represent
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autapomorphic characters), and a parsimony analysis of
such an extended matrix will produce the same tree as
a binary matrix representation coding only for internal
nodes.

CODING TREES FOR MRD
Given a weighted tree t representing the relationships

among a set of leaves (taxa) S = {1, . . . , n}, there exist
a variety of possible distance matrix representations d
encoding t. For example, d can be coded as a square
n × n path-length distance matrix containing for every
pair of taxa a and b the sum of the branch lengths along
the path between a and b (Buneman, 1971). With no
loss of generality, that matrix d can code only for topo-
logical relationships by setting all branch lengths to 1.
These path-length or branch distance (sensu Zaretskii,
1965) matrices define unrooted trees, but rooted trees
also could be considered by adding an internal node (the
root) to the tree (and correspondingly in the matrix d)
to provide ancestor–descendent relationships. Any dis-
tance algorithm applied to this MRD will recover the
corresponding tree (whether rooted or not and with or
without branch lengths).

OPTIMIZATION CRITERION FOR MRP
Let T = {t1, . . . , tk} be a collection of rooted trees de-

fined on the same set of leaves S = {1, . . . , n}. If L(t1, t2)
denotes the parsimony fit of the binary matrix repre-
sentation m2 of t2 to the tree t1, the MRP consensus
tree tc is defined as the solution to the following mini-
mization criterion (Bryant, 2003; Thorley and Wilkinson,
2003):

L(tc , T) =
k∑

i=1

L(tc , ti ). (1)

It is computed by applying a parsimony algorithm to
a binary matrix combining the k matrix representations
mi of the corresponding trees ti of T (Baum, 1992; Ragan,
1992). When more than one parsimonious tree is obtained
from the combined matrix, a strict consensus of these
trees is computed to synthesize the results.

OPTIMIZATION CRITERION FOR MRD
Let T = {t1, . . . , tk} be a collection of weighted trees

(rooted or unrooted) defined on the same set of leaves
S = {1, . . . , n}, and let �(t1, t2) be the sum of squared
differences between the path-length distance matrices d1
and d2 associated with the trees t1 and t2. The MRD con-
sensus tree tc is the tree (with branch lengths) that min-
imizes the following criterion (Lapointe and Cucumel,
1997):

�(tc , T) =
k∑

i=1

�(tc , ti ). (2)

Practically, tc is obtained by applying a least-squares al-
gorithm (e.g., Cavalli-Sforza and Edwards, 1967) to a ma-
trix d̄ of average pairwise distances computed over the k
matrix representations with distances encoding the trees
of T or to the sum of pairwise distances (see Levasseur
and Lapointe, 2002). When more than one solution is ob-
tained, a strict consensus is computed to represent topo-
logical agreement among the consensus trees.

MRP MEETS MRD
There exists a nice correspondence between binary ma-

trix representations of trees and branch distance matri-
ces. Suppose that all branch lengths of a tree ti (includ-
ing terminal ones) are set to 1 and that terminal nodes
(leaves) are coded as additional elements in the encoded
matrix mi , the path-length distance di (a, b) between two
taxa a and b is then equal to the number of matrix ele-
ments of mi for which a and b disagree. In other words,
the Hamming (or mismatch) distance between any two
rows in the binary matrix representation of a tree is
exactly the branch distance between the corresponding
taxa.

To illustrate this relationship, consider the trees t1 and
t2 in Figure 1, with their corresponding binary matrices
m1 and m2 and branch distance matrices d1 and d2. These
branch distance matrices are exactly the Hamming dis-
tance matrices computed from the corresponding binary
matrices. The MRP consensus tree is obtained by combin-
ing the matrices m1 and m2 representing t1 and t2 in a sin-
gle data set m1+2, and applying a parsimony algorithm.
Similarly, the MRD consensus tree is computed from a
matrix d1+2 summing the branch distance matrices d1 and
d2 and applying a least-squares algorithm. That matrix
(d1+2) can also be derived by computing Hamming dis-
tances from the combined binary matrix representation
(m1+2), just like for individual matrices. The difference
between MRP and MRD then lies in the optimization cri-
terion selected to construct consensus trees from distinct
matrix representations (Eqs. 1, 2). In this particular ex-
ample, although not in general, parsimony and distance
algorithms produced the same pair of consensus trees,
which were identical to the source trees t1 and t2. Conse-
quently, the strict consensus of both MRP and MRD trees
is also identical (see Fig. 1).

DISCUSSION

We have shown that MRP and MRD are related meth-
ods when used in a consensus setting. Whereas the
coding steps of both approaches are equivalent, the op-
timization steps based on different criteria are not iden-
tical. The example presented in Figure 1 illustrates that
these methods can lead to the same results in specific
situations when used in a coherent fashion. However,
this may not always be the case, especially when the
trees combined differ in branch lengths and when path-
length distances are used instead of branch lengths to
compute the MRD consensus trees. Still, a weighted ver-
sion of MRP, using actual branch length as weights of the
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FIGURE 1. The relationship between MRP and MRD. The trees t1 and t2 can be coded either with binary matrix representations (m1 and m2)
or with path-length distance matrices (d1 and d2) by setting all branch lengths to 1. Similarly, the branch distance between two taxa in d1 and
d2 can be directly computed as the Hamming distance between the corresponding rows in m1 and m2. The combination of the different matrix
representations is used to compute MRP or MRD consensus trees by applying a parsimony or a distance algorithm to m1+2 or d1+2, respectively.
In the present case, both approaches produce the same two consensus trees, identical to t1 and t2. The strict consensus of those trees represents
the topological agreement between them.

corresponding matrix elements (and including terminal
nodes as extra columns), is equivalent to using path-
length distances for MRD. The correspondence in that
case is satisfied by accounting for weights when com-
puting Hamming distances among pairs of taxa. MRP
could then be used as an alternative consensus method
for weighted trees (see also Lapointe, 1998).

Generalization of our demonstration to the supertree
setting (sensu Gordon, 1986) is not possible because the
relationship between binary matrix representations and
branch distance matrices does not hold for trees bearing
nonidentical leaf sets. Therefore, MRP and MRD codings
are equivalent only when (1) all the trees combined are
defined on the same set of leaves (i.e., in the consen-
sus setting), (2) all branch lengths are set to 1, and (3)
Hamming distances are used to compute distance ma-
trices from binary matrix representations of source trees.
Under these very specific conditions, MRP and MRD dif-

fer only in terms of optimization criteria (Eqs. 1, 2). As
such, the discrepancies obtained with these methods, if
any, can be attributable to the well-known differences
between parsimony and distance algorithms in phylo-
genetic analysis (see Swofford et al., 1996).
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