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Abstract. A consensus tree method takes a collection of phylogenetic trees
and outputs a single “representative” tree. The first consensus method was
proposed by Adams in 1972. Since then a large variety of different methods
have been developed, and there has been considerable debate over how they
should be used.

This paper has two goals. First, we survey the main consensus tree meth-
ods used in phylogenetics. Second, we explore, pretty exhaustively, the links
between the different methods, producing a classification of consensus tree
methods.

1. Introduction

In a 1972 paper Edward N. Adams III presented “a new problem in the science
of classification... along with its solution” [1]. The problem Adams discussed was
how to combine information from rival trees into one representative tree. Adam’s
solution was the tree construction method that has since become known as the
Adams consensus tree.

Adams’ tree is now only one of many available consensus tree methods. My
goal in this paper is to both survey and classify consensus methods for trees, not
only reviewing the different methods but exploring connections between them.

1.1. Consensus methods and consensus trees. A consensus method sum-
marises a collection of trees without boiling everything down to one measure or
number. Fundamentally, it is nothing more than a function or algorithm that takes
a collection of trees (on the same set of taxa) and returns a single tree (on the same
set of taxa). Most methods identify common substructures in the input trees and
represent these in the output tree. Hence, by exclusion, they also identify areas of
conflict in the input trees.

There has been considerable debate over the use, or apparent abuse, of con-
sensus tree methods. I would argue that the problem has not been so much in the
decision to use consensus methods, but in the way that the consensus trees have
been interpreted. For some, a consensus method is not merely a tool for representa-
tion but a tool for new phylogenetic inferences. This is problematic: the invention
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of most consensus tools has been guided by combinatorial properties, rather than
phylogenetic inference criteria.

Nevertheless, consensus methods are a useful tool for phylogenetic inference,
but only when used in conjuction with a model or paradigm. For example, Nelson
[32] and Swofford [42] both observed that independently derived trees are unlikely
to have clades (or clusters) in common. Thus, if we accept some basic distribution
on trees, the clades appearing in most or all the input trees can be considered
reliable.

Another example might be the use of consensus tree methods to help find
improved trees within the parsimony paradigm. The intepretation and use of con-
sensus trees is guided by an objective criterion (tree length).

More controversial is the combination of analyses from different data sets. Bar-
rett et al. . [4] criticize consensus methods because the combined tree strict consen-
sus returns is not the most parsimonious. However if the goal was just to optimize
total parsimony score, one would be best to take several parsimonious, or almost
parsimonious, trees from each data set and use a consensus method designed to
optimize parsimony. If the goal is to represent conflict or agreement between the
two data sets, then a standard consensus method is well suited.

1.2. The variety of consensus methods. What cannot be denied is that
consensus trees have potential uses in a variety of different contexts, and different
methods are better suited for different problems. There is now a considerable
number of methods to choose from, and little detailed comparative work.

Hence the motivation for this survey and classification. My approach is de-
scriptive rather than prescriptive: I survey the methods and discuss, relatively
exhaustively, the connections between them. Section 2 describes the various con-
sensus methods. The connections between the methods are summarised in figure 2
which is, in a literal sense, a classification of consensus methods. Proofs are rele-
gated to the appendix.

I conclude the paper with a brief discussion on two variants of consensus tree
methods: consensus subtrees and consensus supertrees. The later is particularly
topical, given the current interest in constructing huge phylogenies. Supertrees are
in essence not more than generalised consensus trees. Perhaps it would be judicious
to reach a satisfactory consensus on the use of consensus trees before tackling their
generalisation.

1.3. Terminology. The entities being classified are called taxa. A group is a
subset of the set of taxa. A rooted (phylogenetic) tree is a rooted tree which has
every leaf identified with a unique taxon and every node that is not a leaf has at
least two children. A group is monophyletic on a tree if and only if it contains all
the descendents of its most recent common ancestor. The monophyletic groups of
a tree T are called clusters of T .

A collection of groups C is compatible if there is a rooted tree T such that every
group in C is a cluster of T . Note that a collection of clusters C is compatible if
and only if for each pair of clusters A and B in C either A is contained in B, or B
is contained in A, or A and B are disjoint. We say that a cluster A is compatible
with a tree T if it is compatible with every cluster of T .
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A rooted tree T refines another rooted tree T ′ on the same set of taxa if every
cluster of T ′ is a cluster of T . A rooted tree T is binary if every node that is not a
leaf has exactly two children. A binary tree cannot be refined any further.

A rooted triple ab|c denotes a grouping of a and b relative to c. We say that ab|c
is a rooted triple of T if the most recent common ancestor of a and b is a proper
descendent of the most recent common ancestor of a, b, c. The set of all rooted
triples of T is denote r(T ). Rooted triples are also called 3-taxon statements [45].

If X is a subset of the set of taxa and T is a rooted tree then T |X is the restric-
tion of T to X . It is formed by replacing each cluster A of T with the intersection
A ∩ X , discarding empty clusters. The restriction of a collection T = {T1, . . . , Tk}
of rooted trees to X equals {T1|X , T2|X , . . . , Tk|X} and is denoted T |X .

An unrooted (phylogenetic) tree is a tree without a root. Every leaf is identified
with unique taxon. Removing a branch (edge) of an unrooted tree divides the tree
into two connected parts. If A is the group of taxa on one side of the branch and
B is the group of taxa on the other, then A|B is said to be the split corresponding
to that branch. Splits are the unrooted equivalent of clusters.

A collection of splits S is compatible if there is an unrooted tree T such that
every split in S is a split of T . One can show that S is compatible if and only if
for every pair A|B, C|D of splits in S, at least one of A ∩ C, A ∩D, B ∩ C, B ∩D
is empty [13, 31]. We say that a split A|B is compatible with a tree T if it is
compatible with every split of T .

An unrooted tree T refines another unrooted tree T ′ on the same set of taxa if
every split of T ′ is a split of T . An unrooted tree T is binary if every node that is
not a leaf is adjacent to exactly three other nodes. A binary unrooted tree cannot
be refined further.

A quartet ab|cd indicates a separation of a and b from c and d. We say that
ab|cd is a quartet of an unrooted tree T if there is a split in T having a and b on
one side and c and d on the other. The set of quartets of a tree is denoted q(T ).

A weighted unrooted (rooted) tree is an unrooted (rooted) tree with strictly pos-
itive branch lengths. Branch lengths can represent an estimate of the amount of
change (e.g. number of mutations), or a level of confidence (e.g. bootstrap score).
We define the weight of a split in a tree to be the length of the corresponding branch.

We will use the standard parenthesis (NEWICK) representation for trees in the
examples. The non-singleton clusters correspond to nested matching parentheses so,
for example, ((a, b), (c, d)) denotes the rooted tree with clusters {a}, {b}, {c}, {d},
{a, b}, {c, d}, {a, b, c, d}. We use the same notation for unrooted trees, simply ig-
noring the position of the root.

2. A survey of consensus methods

2.1. Consensus methods based on splits and clusters.
2.1.1. Strict consensus tree. Perhaps the simplest of the all consensus methods

is the strict consensus tree [30]. Given a collection of unrooted trees, the strict
consensus tree contains exactly those splits common to all the trees in the collection.
When the collection consists of rooted trees the strict consensus tree contains those
clusters common to all the input trees.
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Example 2.1. Let T be the collection of rooted trees
{

((a, (b, c)), d), (((a, b), c), d)
}

.

The clusters {a, b, c, d} and {a, b, c} appear in both trees, so the strict consenus tree
is ((a, b, c), d).

Strict consensus trees have a natural generalisation to weighted trees. We com-
pute the strict consensus as for an unweighted tree, and then assign to each branch
the minimum weight of each of corresponding splits (clusters) in each of the input
trees.

2.1.2. Majority rule tree. The majority rule tree contains exactly those clusters
or splits that appear in more than half of the input trees [5, 29, 30, 42]. Thus
every cluster (split) of the strict consensus tree will also be a cluster (split) of the
majority rule tree, and the majority rule tree refines the strict consensus tree.

Example 2.2. Let T be the collection of three rooted trees
{

((a, (b, c)), d), (((a, b), c), d), (((a, b), d), c)
}

.

The clusters {a, b}, {a, b, c} and {a, b, c, d} appear in two out of three trees, so
the majority rule tree is (((a, b), c), d). Note that the strict consensus tree for this
collection is (a, b, c, d).

Example 2.3. Let T1 and T2 be the unrooted trees ((a, b, c), (d, e, f)) and
((a, d), (b, e), (c, f)). If T contains three copies of T1 and two copies of T2 then the
majority rule tree of T equals T1.

Barthélemy and McMorris [5] showed that the the majority rule tree is also a
median tree. Given two trees T1 and T2 the symmetric difference distance d(T1, T2)
between T1 and T2 is the number of splits (clusters) appearing in one tree but not
the other. The majority rule tree for T = {T1, T2, . . . , Tk} minimizes

(2.1) d(T, T ) =
k

∑

i=1

d(T, Ti)

making the majority rule a median of T with respect to the symmetric distance
metric.

The majority rule tree can be generalised by assigning a weight to each tree
and then taking the splits which appear in trees summing up to over half the total
weight. For example, if the total weight of trees was 10 and the split A|B appear
in trees of weight 4 and 2 then A|B would be in the majority rule tree. Jermiin et
al. [25] propose weighting schemes based on likelihood scores.

2.1.3. Loose consensus tree. The loose consensus tree was originally called the
combinable component tree or semi-strict consensus tree [10, 42]. We take its
present name from [6]. The loose consensus tree for a collection of rooted trees
T contains exactly those clusters that are compatible with every tree in T . Simi-
larly, the loose consensus of a collection of unrooted trees T contains exactly those
splits that are compatible with every unrooted tree in T . It follows that the loose
consensus tree refines the strict consensus tree.
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Example 2.4. Let T be the collection of rooted trees {((a, b), (c, d)), ((a, b, c), d)}.
The cluster {a, b} is compatible with both trees, however the cluster {c, d} is
not compatible with the cluster {a, b, c}. Hence the loose consensus tree for T
is ((a, b), c, d). The strict consensus tree for this collection equals (a, b, c, d).

Note that if T is a binary unrooted tree and A|B is a split compatible with T
then A|B must be a split of T , since T cannot be refined further. Hence if all the
trees in the input collection T are binary then the loose consensus tree will be the
same as the strict consensus tree. The same applies for the rooted case.

Queiroz [16] observed that the loose consensus tree can contain splits or clus-
ters that appear in only one of the input trees. This was identified as a shortcoming
when combining data because the splits or clusters appearing in more than one tree
are likely to be reliable while those appearing in only one tree may or may not be.
However the clusters and splits in the loose consensus tree are all compatible with
all of the trees. It is unlikely for a cluster to be compatible with a random tree, so
we can have some level of confidence in the reliability of these clusters.

2.1.4. Greedy consensus tree. Both Phylip [18] and Paup [43] allow additional
splits or clusters to be included in the majority rule tree. The splits (clusters) are
selected using what is called a greedy strategy.

Suppose that T is a collection of unrooted trees. We write out the set of splits
appearing in trees in T in order of frequency, with those splits appearing in the
largest number of trees coming first in the order and ties broken arbitrarily. A
collection of compatible splits S is built up step by step. The first split in the
ordering is put in S. The remaining splits are considered in order: if a split is
compatible with all of the splits already in S then it is included in S. At the end of
the process we will obtain a collection of splits corresponding to some phylogenetic
tree. This gives the greedy consensus tree for T . The same process works for
clusters.

One problem with the greedy approach is that if two clusters or splits appear
the same number of times, then they could be put in either order: this decision
made arbitrarily by the program. For example, in Phylip, the consensus of rooted
trees ((a, b), c) and ((a, c), b)) is either ((a, b), c) or ((a, c), b), depending on the order
of the trees in the input file.

Example 2.5. Let T be the collection of three rooted trees ((a, b, c), ((d, e), f)),
(((a, b, c), f), (d, e)) and (((a, b), c), (d, (e, f))). Then {a, b, c, d, e, f} and {a, b, c}
appear in three trees, {d, e, f} and {d, e} appear in two trees, while {a, b, c, f},
{a, b} and {e, f} appear in only one tree. The greedy consensus tree for these
trees is (((a, b), c), ((d, e), f)). The strict consensus tree is ((a, b, c), d, e, f) and the
majority rule tree is ((a, b, c), ((d, e), f)).

Every greedy consensus tree for a collection refines both the majority rule and
strict consensus trees.

Theorem 2.6. The greedy selection method produces a consensus tree which
refines both the majority rule tree and the loose consensus tree.

2.1.5. Nelson-Page and asymmetric median consensus trees. The original def-
inition of the Nelson consensus tree [32] was founded on the premise that one
cladogram can be wrong, but not two cladograms. The assumption is that clusters
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appearing in two or more trees are highly likely to be genuine. These clusters are
called replicated clusters, or replicated components, and the Nelson consensus tree is
defined to be the tree containing the replicated clusters together with the remaining
clusters that are compatible with all the replicated clusters.

There are problems with this definition. The set of replicated clusters might
not be compatible, so the method does not always give a tree [30, 35, 10]. As well,
there may be several distinct groups of non-replicated clusters that are compatible
with the replicated clusters and with themselves, and Nelson gives no indication as
to how this indeterminacy is to be resolved. As Nelson remarked: “The pitfalls of
philosophy are many, and some of them are deep.” [32]

Page [35] goes some way towards addressing these shortcomings. Each cluster
in the original trees is assigned a weight equal to one less than the number of
times that cluster appears in the input collection. The Nelson-Page Consensus
Tree is then taken to be the maximum weight compatible subset of this collection
of clusters. If there is more than one maximum weight compatible subset then the
Nelson Consensus tree equals the intersection of these maximal weight compatible
sets. This version of the consensus tree will not contain any unreplicated clusters.
These can easily be included, as suggested by Swofford [42]. Indeed, the approach
adapts well to any weighting scheme for splits and clusters.

If the input collection T contains unrooted trees and the splits are weighted by
the number of input trees they appear in, then the tree formed from a collection
of compatible splits with maximum weight is also an asymmetric median tree [36].
The asymmetric median tree T minimizes

da(T, T ) =

k
∑

i=1

da(T, Ti)

where da(T, Ti) is the number of splits in Ti that are not in T .
One drawback of the maximum compatible subset approach to consensus is that

finding a maximum compatible subset of characters is a computationally difficult
problem [15]. If there are too many taxa, it may not be possible to locate a
maximum weight compatible subset. In this case, a strategy such as the greedy
consensus tree (Section 2.1.4) seems preferable.

2.2. Cluster intersection methods. The consensus methods in this section
are only defined for rooted trees.

2.2.1. Adams consensus tree. Adams consensus was the first consensus method
for trees and, perhaps as a consequence, is one of the most popular [1, 2, 29, 30, 42,
45]. The method is defined for rooted trees and has no analogue for unrooted trees
[39]. It is perhaps most simply defined in terms of the algorithm for constructing
it. Before that, we need to give three or four new definitions.

First, suppose that π1, π2, . . . , πk are all partitions of the set of taxa. The
product of these partitions is the partition π for which two taxa a and b are in the
same block if and only if they are in the same block for each of π1, π2, . . . , πk. For
example, the product of ab|cde and ac|bde is a|b|c|de. The elements d and e are in
the same block of both partitions ab|cde and ac|bde.

Second, the maximal clusters of a rooted input tree Ti are the largest proper
clusters in T . The maximal cluster partition for Ti is the partition π(Ti) of the set
of taxa with blocks equal to the maximal clusters of Ti.
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The Adams tree is formed by recursively forming partitions π for T and re-
strictions of the trees of T .

Procedure AdamsTree(T1, . . . , Tk)
If T1 contains only one leaf then

return T1

else
Construct π(T ), the product of π(T1), π(T2), . . . , π(Tk).
For each block B of π(T ) do

Construct AdamsTree(T1|B , T2|B , . . . , Tk|B)
Attach the roots of these trees to a new node v.
return this tree.

end

Example 2.7. Let T1 be the rooted tree (((((a, b), c), d), e), f) and let T2 be the
rooted tree (((((d, e), f), a), b), c). The maximal cluster partition of T1 is abcde|f ,
the maximal cluster partition of T2 is defab|c and the product of these two partitions
is abde|c|f . Hence the Adams tree has three maximal clusters {a, b, d, e}, {c} and
{f}. The restriction of T1 and T2 to {a, b, d, e} is (((a, b), d), e) and (((d, e), a), b).
The maximal cluster partitions of these restrictions are adb|e and ade|b which have
product ad|b|e. Hence the Adams tree for T1 and T2 equals (((a, d), b, e), c, f).

In response to the criticism that the Adams consensus tree has little intuitive
justification, Adams showed that the tree preserves all nesting information common
to all the input trees. Given two groups A and B and a rooted tree T we say that
A nests in B if the smallest cluster containing A is a proper subset of the smallest
cluster containing B. If T represents ancestor-descendent relationships then this is
the same as saying that the most recent common ancestor of A is a strict descendent
of the most recent common ancestor of B. Adams showed that if A nests in B in
all of the trees in T then A nests in B in the Adams consensus tree for T .

Note that the Adams tree can contain nestings and clusters that are not in any
of the input trees (as in the example). However Adams showed that if A and B are
two clusters in the Adams tree such that A ⊆ B then A nests in B in every input
tree Ti [2]. A consequence of the nesting property is that the Adams consensus tree
also preserves the rooted triple information shared by the input trees. The Adams
consensus tree also introduces no new rooted triple information:

Theorem 2.8. Let T AD be the Adams consensus tree for the collection T =
{T1, T2, . . . , Tk}. Then

k
⋂

i=1

r(Ti) ⊆ r(T AD) ⊆

k
⋃

i=1

r(Ti).

2.2.2. Cluster height methods. This class of consensus methods contains the
Neumann consensus tree and its various extensions: the Durschnitt consensus tree
[33], the cardinality rule consensus tree [33], and the s-consensus trees [40, 41].
Each cluster in every tree in the collection is assigned a height, and this height
increases or decreases monotonically with respect to set inclusion. For any given
value h and any tree Ti in the collection there is a partition of the leaf set given
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by those maximal clusters with height less than h (or sometimes minimal clusters
with height greater than h). The Neumann consensus tree is constructed by taking,
for each value of h, the partition product of these partitions, where the partition
product is as defined for the Adams consensus tree. The variations on the Neumann
consensus tree each stem from use of a different height function.

The construction of the s-consensus tree is a little more complicated. A Neu-
mann consensus tree is built using the cardinality rule, and then clusters are re-
moved from this tree if they have too little consensus strength, this measure being
defined in [40, 41].

2.3. Consensus methods based on subtrees. All of the consensus meth-
ods discussed so far have used clusters or splits as the basic unit of information.
Now I describe a handful of consensus methods based on rooted triples and quar-
tets. There are several advantages of this approach, the main being that the set
of quartets (or rooted triples) common to two trees typically contains a lot more
information than the set of common splits or clusters. Two trees can share a lot of
rooted triples but not share a single cluster.

The consensus methods of Sections 2.3.1 and 2.3.3 originate from Kannan et
al. [26], with some modifications. Kannan et al. discuss a number of additional
consensus methods based on triples. However these are not defined for all possible
input collections, so I omit them from the survey.

2.3.1. Local consensus tree. Let T be a collection of rooted trees and let R =
⋂k

i=1
r(Ti) be the set of rooted triples appearing in all trees Ti of T . The set R is

compatible, which for rooted triples means that there is a tree T such that R ⊆ r(T ).
Given any set of compatible rooted triples R, we can use the algorithm of Aho

et al. [3] to construct a tree T such that R ⊆ r(T ) (see also [12, 14, 23, 34]).
The local consensus tree for T is the tree constructed by Aho et al. ’s algorithm
when given the set R of rooted triples appearing in every tree of T . Aho et al. ’s
algorithm is outlined in appendix A.

Example 2.9. We again consider the two trees T1 = (((((a, b), c), d), e), f) and
T2 = (((((d, e), f), a), b), c). There are exactly two rooted triples common to both
trees: ab|c and de|f . When we apply Aho et al. ’s supertree algorithm to these two
rooted triples we obtain the local consensus tree ((a, b), c, (d, e), f).

The local consensus tree is an example of an RVII consensus tree under the
terminology of Kannan et al. [26]. They describe an algorithm for constructing
an RVII tree in O(n2) for two trees. The algorithm is identical to that for con-
structing the Adams consensus tree. However the Adams tree is neither equal to
the local consensus tree nor is it an RVII tree. For example, the local consensus
tree of ((a, b, c), d) and (a, (b, c, d)) is (a, b, c, d) while the Adams consensus tree is
(a, (b, c), d).

The link between the local consensus tree and the Adams tree is less direct:

Theorem 2.10. Let T be a collection of rooted trees and let R be the set of
rooted triples present in all of the trees in T . Then the local consensus tree for T
equals the Adams consensus tree for the collection of all trees T such that R ⊆ r(T ).

Note that there exists no analogue of the Adams consensus tree for unrooted
trees and quartets [39].
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2.3.2. Prune and regraft tree. The prune and regraft tree is, as the name sug-
gests, constructed in two steps. First we prune leaves and taxa from all the trees in
the collection. Second we graft the pruned leaves back on to create a new consensus
tree. The method was invented by Gordon [20] and only applies to collections of
rooted trees. Our presentation differs considerably from that of [20] or [19], though
the tree constructed is the same.

An agreement set for a collection T = {T1, T2, . . . , Tk} is a subset X of taxa
such that removing all taxa not in X from every tree in T gives a collection of
identical trees. Equivalently,

T1|X = T2|X = · · · = Tk|X ,

where Ti|X denotes the restriction of Ti to X defined in Section 1.3. The tree Ti|X
is called an agreement subtree (or common pruned tree) of T .

The first step in constructing the prune and regraft tree is to determine a
maximum size agreement set for T . Farach et al. [17] describe an efficient algorithm
for computing maximum size agreement sets. Another is implemented in PAUP*
[43].

Let X be a maximum size agreement subset for T . Consider each cluster A of
T1|X in turn. (Choosing any other tree Ti ∈ T gives the same outcome.) Form a
new cluster AG from A by adding all taxa a such that A ∪ {a} is a cluster in the
strict consensus of T |X∪{a}. Recall that T |X∪{a} is the restriction of every tree in
T to the set of taxa X ∪ {a}. The prune and regraft tree is built up from all these
clusters AG (one for each cluster in T1|X) as well as all of the clusters in the strict
consensus tree for T . Finden and Gordon proved that these cluster do actually
form a tree [19].

Example 2.11. Once again consider the two trees T1 = (((((a, b), c), d), e), f)
and T2 = (((((d, e), f), a), b), c). The trees have two maximum agreement subsets,
{a, b, c} and {d, e, f}. Taking the first set, we have T1|X = ((a, b), c), a tree with
two clusters. Put A = {a, b}. Since {a, b, d} is not a cluster of T1 and T2 restricted
to X ∪ {d} = {a, b, c, d} the taxon d is not in AG. The same applies for e and f .
Hence the prune and regraft tree corresponding to X = {a, b, c} is ((a, b), c, d, e, f).

Example 2.12. The unique prune and regraft tree for

T = {(((a, e), b, f), (c, d)), ((a, (b, e)), (c, d, f))}

is ((a, b, e), (c, d), f).

Both the Adams consensus tree and local consensus tree have the property
that a rooted triple appearing in all trees will appear in the consensus tree. This
property does not hold for the prune and regrafted tree (cf. example 2.11), though
the complementary property does hold:

Theorem 2.13. If ab|c is a rooted triple in a prune and regraft tree for T then
there is at least one tree T ∈ T such that ab|c ∈ r(T ), that is, the prune and regraft
tree is co-Pareto with respect to rooted triples.

2.3.3. Q∗ and R∗ consensus trees. The Q∗ and R∗ methods complement the
local consensus tree. Whereas the local consensus method constructs a tree that
contains all of the rooted triples in a set, the Q∗ and R∗ consensus methods con-
struct trees with all quartets or rooted triples that are contained within a given
set.
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We will consider the unrooted case first. Let T be a collection of unrooted
trees. Let f(ab|cd) be the number of trees in T that have ab|cd in their quartet sets.
Construct the set of quartets ab|cd such that f(ab|cd) > f(ac|bd) and f(ab|cd) >
f(ad|bc) and denote this set by Qmaj . In other words, Qmaj is the set of quartets
that appear in more trees than the quartets they disagree with. It is clear that for
each set of four leaves {a, b, c, d} at most one of ab|cd, ac|bd, ad|bc is in Q.

We use the set of quartets Qmaj as input to the Q∗ method of Berry and
Gascuel [9]. This constructs the maximum refined tree T such that q(T ) ⊆ Qmaj .
We call this tree the Q∗ (Q star) consensus tree for T .

The R∗ consensus method for rooted trees is defined in a similar fashion. Let
Rmaj be the set of rooted triples ab|c that appear in more trees than their conflicting
triples ac|b or bc|a. The strong cluster algorithm of [8] can be used to construct the
maximum refined rooted tree T such that r(T ) ⊆ Rmaj . We call this the R∗ (R
star) consensus tree for T . When T contains exactly two trees the R∗ consensus
tree is identical to the RVIII consensus tree of [26].

Though the Q∗ and R∗ consensus trees are defined using quartets and rooted
triples, they have a close relationship with split and cluster based consensus trees.

Theorem 2.14. Let T be a collection of unrooted (rooted) trees. Every split
(cluster) in the majority rule tree for T and every split (cluster) in the loose con-
sensus tree for T is in the Q∗ consensus tree (R∗ consensus tree) for T .

2.4. Consensus methods based on recoding. The next three consensus
methods all use the same strategy: the input trees are converted into another kind
of data (sequences, distances), and these data are subsequently re-analysed using a
phylogenetic tree construction method.

2.4.1. Matrix representation with parsimony. Matrix representation with par-
simony (MRP) was devised independently by Baum [7] and Ragan [37] as a method
for combining phylogenies from different data sets. Here we discuss only the special
case when all the input trees have the same taxa, though the method extends to
unequal taxa sets.

Let T be a collection of unrooted trees. For each split A|B in each tree Ti we
construct a binary character that assigns a zero to each element in A and a one
to each element in B. It does not matter if we assign ones to A and zeros to B
instead. The set of binary characters is then used as input to Fitch parsimony.
(Refer to [44] for a review of parsimony criteria. Fitch parsimony corresponds to
finding Steiner trees with respect to Hamming distances.) The MRP consensus tree
is the strict consensus tree of the set of maximum parsimony trees for this data set.
The MRP consensus tree for a collection of rooted trees can be constructed using
an outgroup (zero-row).

Example 2.15. Let T1, T2, T3, T4 be the unrooted trees ((a, b, c), (d, e, f)),
((a, d, e), (b, c, f)), ((b, d, e), (a, c, f)), ((c, d, e), (a, b, f)). Let T be the collection
with four copies of tree T1 and one copy each of T2, T3, T4. This gives a binary
character matrix
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a 1 1 1 1 1 0 0

b 1 1 1 1 0 1 0

c 1 1 1 1 0 0 1

d 0 0 0 0 1 1 1

e 0 0 0 0 1 1 1

f 0 0 0 0 0 0 0

PAUP* [43] finds three maximum parsimony trees. They have a strict consen-
sus tree of ((a, b, c), (d, e), f) which is therefore the MRP consensus tree for T .
In contrast, the majority rule tree, greedy consensus tree, Nelson-Page tree and
asymmetric median tree all equal T1.

Despite the quite different mechanism for constructing consensus trees, the
MRP consensus tree is still closely related to the other consensus trees.

Theorem 2.16. The MRP consensus tree contains all of the splits (clusters)
of the loose consensus tree, and therefore all of the splits (clusters) of the strict
consensus tree.

The parsimony length of an MRP tree can be viewed as a measure of the fit
of the tree to the input collection. Given two trees, the length of the first tree
compared to the matrix encoding of the second tree gives an indication of how well
the first tree fits the second. What MRP does is generalise this notion to multiple
trees. Let l(T, Ti) denote the fit of T to the matrix encoding of tree Ti. Then
the score of a tree with respect to the combined matrix encoding used in MRP is
exactly

k
∑

i=1

l(T, Ti).

Thus, as a consensus method, MRP finds the tree that best fits the input trees.

2.4.2. Average consensus tree. The average consensus tree of Lapointe and Cu-
cumel [28] can be viewed as a distance based version of MRP. Distance matrices,
rather than binary encodings, are combined.

a

b d

e
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0.12

0.15

0.25
0.22

0.08

Average Consensus Tree
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T21T
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b d

e

0.1

0.1

0.1

0.1

0.6

0.1

0.3

a

c

b
d

e

0.1

0.1
0.1

0.1

0.3

0.1

0.1

c

a

b d

e

c

Buneman Consensus Tree

0.1

0.1

0.2

0.1

0.2

0.05

0.2

Figure 1. An example of an Average consensus tree and Bune-
man consensus tree. Branch lengths on the consensus trees are
given to two decimal places.
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The method is used for weighted trees: unrooted trees with branch lengths. The
path length between two taxa a and b on a weighted tree is the sum of the branch
lengths along the path between a and b. The path length distance matrix of a tree is
the matrix of path lengths between the taxa. There is a one-to-one correspondence
between weighted trees and path length distance matrices1 [22, 13].

The least squares difference between two weighted trees T1 and T2 is defined

∆(T1, T2) =
∑

a

∑

b

[d1(a, b)− d2(a, b)]2

where d1 and d2 are the path length distances for T1 and T2. The summation ranges
over the complete set of taxa. Given a collection T = {T1, T2, . . . , Tk} of unrooted
trees with branch lengths the average consensus tree is the unrooted tree Tc (with
branch lengths) that minimizes

∆(T, T ) =
k

∑

i=1

(Tc, Ti).

Equivalently, the average consensus tree is the tree with path length distances dc

minimizing
∑

a

∑

b

[dc(a, b) − d(a, b)]2

where d is

d(a, b) =
1

k

k
∑

i=1

di(a, b),

the average of the path length distance matrices of the input trees Ti.

Example 2.17. Let T1 and T2 be the two weighted unrooted trees in figure 1.
The additive distance matrices, and average matrix are

Taxon T1 T2 average

a 0 0 0

b 0.2 0 0.3 0 0.25 0

c 0.8 0.8 0 0.2 0.3 0 0.5 0.55 0

d 0.9 0.9 0.3 0 0.6 0.5 0.6 0 0.75 0.7 0.45 0

e 1.1 1.1 0.5 0.4 0 0.6 0.5 0.6 0.2 0 0.85 0.8 0.65 0.3 0

PAUP* [43] finds exactly one optimal least squares tree. It has the same shape as
T1 but different branch lengths (Figure 1).

The average consensus method is one of the few consensus methods for phyloge-
netic trees that incorporates branch length information into the computation of the
consensus tree. However it has a number of drawbacks. First, like the MRP tree,
there is no efficient algorithm for constructing the average consensus tree. Second,
it is not known whether or not the consensus method is even Pareto, i.e., whether
a split that appears in every tree also appears in the consensus tree.

1under the assumption that all branches have strictly positive length and all internal nodes
have degree at least three.
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2.4.3. Buneman consensus tree. The Buneman tree consensus method is a dis-
tance based analogue of the Q∗ consensus method (Section 2.3.3). It is a hybrid
between the average consensus tree and the tree construction method introduced
by Buneman [13]. As with the average consensus tree, we first compute the average
distance matrix

d(a, b) =
1

k

k
∑

i=1

di(a, b)

where di is path length matrix for Ti. We then construct the Buneman tree for d.
This tree contains exactly those splits A|B such that d(a, a′) + d(b, b′) < d(a, b) +
d(a′, b′) for all a, a′ ∈ A and b, b′ ∈ B. An efficient algorithm for constructing the
Buneman tree was given by Berry and Bryant [8]. This tree is called the Buneman
consensus tree for T .

Example 2.18. The Buneman consensus tree for the two weighted trees T1

and T2 in example 2.17 equals tree T1, with branch lengths given in figure 1.

The Buneman consensus tree avoids many of the disadvantages of average con-
sensus tree. It can be constructed quickly and is Pareto.

Theorem 2.19. Every split in the strict consensus tree for T will be a split in
the Buneman consensus tree for T .

3. A Classification of Consensus Methods

We have established that there are a lot of consensus methods to choose from,
but which one is best? What information does each method retain and how do we
interpret the output trees? In a sense we face a classification problem: we need to
produce a classification of consensus methods.

A consensus method is usually introduced by comparing the amount of infor-
mation it retains to the amount of information retained by the strict consensus
tree. The appeal of this approach is that the strict consensus tree is almost always
poorly resolved. Here we extend the comparison to classify all consensus methods.

Figure 2 is a classification of consensus trees. An arrow from consensus method
X to consensus method Y means that for all collections T , the consensus tree for T
made using method Y always refines the consensus tree for T made using method
X . We have indicated which methods are co-Pareto on splits or clusters (every split
in the consensus tree appears in at least one input tree), co-Pareto on rooted triples
(every rooted triple in the consensus tree appears in at least one input tree), and
Pareto on rooted triples (every rooted triple appearing in all input trees appears in
the consensus tree).

There are two complementary facets to the classification. First, the inclusion
results. These are either straightfoward or follow from Theorems in the text. Sec-
ond, the non-inclusion results. If there is no arrow from one consensus method to
another then we have an example collection for which the consensus tree produced
by the first method is not refined by the consensus tree produced by the second
method. There are considerably more non-inclusion results than inclusion results.
Many are straightfoward, only involving trees with three or four taxa. Most of the
less trivial counter-examples are given as examples in the text above.
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Strict

Buneman
Average

M.R.P.

Asymmetric med.

Greedy

Co−Pareto (rooted triples)

Prune & regraft

Adams

Local
Pareto (rooted triples)

Maj. rule

Loose

R* (Q*)

Nelson−Page

Co−Pareto(splits/clusters)

Figure 2. A classification of consensus methods. There is an
arrow from one method to another if every split in the consensus
tree produced by the first method is contained in every consensus
tree produced by the second method.

4. Beyond consensus: subtrees and supertrees

All of the consensus methods that we have discussed satisfy:

(1) All the input trees have equal taxa sets;
(2) The output tree has the same taxa set as the input trees.

In application, one or both of the properties may not be suitable. In this case we
must look beyond the consensus tree to subtree and supertree methods.

A consensus subtree method constructs a consensus tree for which (2) does not
necessarily hold. There are some cases when the removal of a taxon leads to a far
better representation of the branching structure shared by two or more trees. One
clear example is when a single distantly related taxa appears in different positions
on otherwise identical trees, a situation that can occur when using outgroups. The
wandering taxon is best removed from a consensus tree.

The most widely used consensus subtree method is the agreement subtree.
An agreement subtree, or common pruned tree, for a collection T is a tree T on
a subset X of the taxa set such that T = Ti|X for all i = 1, . . . , k [21]. Here
T = Ti|X means that T is the restriction of Ti to X (see section 2.2.1). The
problem of constructing maximum size agreement subtrees became popular with
algorithm designers, generating a flurry of papers with faster and faster algorithms.
The current record for two trees is held by [27] and for arbitrarily many (with
bounded degree) by [17]. The algorithm of [11] has been implemented as part of
PAUP*.
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Several alternative subtree techniques have been proposed by Wilkinson [45].

A consensus supertree method can construct a consensus tree when property (1)
is violated, that is, when the input trees contain different collections of taxa [21].
There are several important situations when this problem occurs. Supertrees are
used to combine analyses of several data sets, each of which contains information
for different groups of taxa. Supertrees are also used as part of divide and conquer
strategies for constructing large phylogenies.

Several consensus methods have been adapted to the supertree problem, in-
cluding the strict consensus tree [24], Adams consensus tree [38], MRP [7, 37],
and the average consensus tree [28]. Wilkinson and Thorley [46] have developed a
method producing supertrees on a subset of the total collection of taxa: a subtree
supertree method.

Appendix A. The algorithm of Aho et al.

Here we outline the supertree algorithm OneTree based on the algorithm of
Aho et al. [3]. The algorithm takes a collection of rooted triples R and a set of
leaves L and constructs a tree T with leaf set L such that R ⊆ r(T ), provided such
a tree exists.

Given a set or rooted triples R and set of leaves S define the graph [R, S] as
follows: take the leaves in S to be the vertices of the graph; add an edge between
two vertices a and b if there are any triples in R of the form ab|c, where a, b, c ∈ S.

For example, consider the graph [R, S] when

R = {ab|c, be|d, be|c, af |g, ef |b, bf |a, bf |c, cd|a, cd|f, cg|b}

and S = {a, b, c, d, e, f}. The triples af |g and cg|b are ignored, because g 6∈ S. The
graph has six vertices and five edges. Note that the edges (b, f), (b, e) and (c, d)
correspond to more than one rooted triple (Figure 3).

a

b

c

d

e

f

d,c a,f

c

b

a,c

Figure 3. The graph [R, S] for R =
{ab|c, be|d, be|c, af |g, ef |b, bf |a, bf |c, cd|a, cd|f, cg|b} and S =
{a, b, c, d, e, f}.

Two vertices are in the same component of [R, S] if there is a path from one
two the other. The algorithm computes the different components of [R, S] and then
recurses. To determine whether there is a tree T with leaf set L such that R ⊆ r(T )
we would call OneTree(R,L).
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Procedure OneTree(R,S)
1. If n = 1 then return a single vertex labelled by x1.
2. If n = 2 then return a tree with two leaves labelled x1 and x2.
3. Otherwise, construct [R, S] as described.
4. If [R, S] has only one component then return ‘No Tree’.
5. For each component Si of [R, S] do
6. If OneTree(R,Si) returns a tree then call it Ti else return ‘No Tree’.
7. end(for)
8. Construct a new tree T by connecting the roots of the trees Ti to a new root r.
9. return T .
end.

Appendix B. Proofs

Theorem 2.6. The greedy selection method produces a consensus tree which
refines both the majority rule tree and the loose consensus tree.

Proof. The algorithm for constructing the greedy consensus tree examines
splits in decreasing order of frequency. Hence those splits or clusters that appear in
more than half of the trees will be considered first for inclusion in S. These splits
(clusters) form the majority rule and are compatible, so will all be included in S.
The greedy consensus tree therefore refines the majority rule tree.

Let A|B be a split in the loose consensus tree, then A|B is compatible with all
splits in the input collection. When we consider A|B during the construction of the
greedy consensus tree, we will necessarily have that A|B is compatible with all of
the splits already in S. Hence A|B will always be included in S and become a split
of the greedy consensus tree. �

Theorem 2.8. Let T AD be the Adams consensus tree for the collection T =
{T1, T2, . . . , Tk}. Then

k
⋂

i=1

r(Ti) ⊆ r(T AD) ⊆

k
⋃

i=1

r(Ti).

Proof. Suppose that ab|c is a rooted triple in every input tree Ti. Then {a, b}
nests in {a, b, c} for every tree Ti and so by the main result of [2] we have that
{a, b} nests in {a, b, c} in TAD. Thus ab|c ∈ r(TAD).

For the other inclusion, choose ab|c ∈ r(T AD). There is some set S such that
the product partition given by the maximal subtrees of T1|S , . . . , Tk|S has a and b
in one block and c in another. Hence there is some tree Ti such that a and b are in
one maximal subtree of Ti|S and c is in another. It follows that ab|c ∈ r(Ti). �

Theorem 2.10. Let T be a collection of rooted trees and let R be the set of
rooted triples present in all of the trees in T . Then the local consensus tree for T
equals the Adams consensus tree for the collection of all trees T such that R ⊆ r(T ).

Proof. Let 〈R〉 denote the set of trees T such that R ⊆ r(T ). Both the Aho
et al. tree and the Adams tree are defined recursively, starting with the maximal
clusters and working down towards the leaves. If we can show that the partition
π1 given by the maximal subtrees of the Aho et al. tree for R is the same as the
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partition π2 given by the maximal subtrees of the Adams consensus tree for 〈R〉
then the result follows by recursion.

The Aho et al. tree is in 〈R〉 so the partition π2 equals the partition product of
π1 together with all the other partitions from trees in 〈R〉. Hence π2 is a refinement
of π1.

Let S be the set of all leaves in R. If a and b are in the same block of π1 then
they are in the same component of the graph [R, S] defined in Section A. Any two
leaves connected by an edge in [R, S] will be in the same maximal subtree of any
tree in 〈R〉. Hence any two leaves in the same component of [R, S] will also be in
the same maximal subtree in any tree in 〈R〉. Therefore a and b are in the same
maximal subtree in any tree in 〈R〉 and they are in the same block of π2.

The two partitions π1 and π2 are refinements of each other, so π1 = π2. �

Theorem 2.13. If ab|c is a rooted triple in a prune and regraft tree for T then
there is at least one tree T ∈ T such that ab|c ∈ r(T ), that is, the prune and regraft
tree is co-Pareto with respect to rooted triples.

Proof. Let TG be a prune and regraft tree for T and let ab|c be a rooted triple
in r(TG). Let X be the agreement set that gave TG and let C be the a cluster of
TG such that a, b ∈ C and c 6∈ C. By the construction of TG, the set C ∩ X is
non-empty.

We have that (C ∩ X) ∪ {a} is in the strict consensus tree for T restricted to
X∪{a} and (C∩X)∪{b} is in the strict consensus tree for T restricted to X∪{b}.
Since c 6∈ C, we have that (C ∩ X) ∪ {c} is not in the strict consensus tree for T
restricted to X ∪ {c} and so there is T ∈ T such that C ∩ X ∪ {c} is not a cluster
of T |X∪{c}.

Let A be a cluster of T such that A ∩ (X ∪ {a}) = (C ∩ X) ∪ {a}. Let B be a
cluster of T such that B ∩ (X ∪ {b}) = (C ∩ X) ∪ {b}. The clusters A and B are
compatible and both contain C ∩ X , so either A ⊆ B or B ⊆ A. W.l.o.g. A ⊆ B.
Hence a, b ∈ B.

Now B ∩ X = C ∩ X , so if c ∈ B then

B ∩ (X ∪ {c}) = (B ∩ X) ∪ (B ∩ {c})

= (C ∩ X) ∪ {c}

and so (C ∩ X) ∪ {c} is a cluster of T |X∪{c}, a contradiction. Thus c 6∈ B and
ab|c ∈ T . �

Theorem 2.14. Let T be a collection of unrooted (rooted) trees. Every split
(cluster) in the majority rule tree for T and every split (cluster) in the loose con-
sensus tree for T is in the Q∗ consensus tree (R∗ consensus tree) for T .

Proof. For each quartet ab|cd let f(ab|cd) be the number of trees Ti such that
ab|cd ∈ q(Ti).

Let A|B be a split in the loose consensus tree for T . Let aa′|bb′ be a quartet
such that a, a′ ∈ A and b, b′ ∈ B. By the definition of the loose consensus tree
there is at least one tree Ti with split A|B. It follows that aa′|bb′ ∈ q(Ti) and so
f(aa′|bb′) ≥ 1. Suppose that, for example, f(ab|a′b′) > 0. Then there is one tree Tj

such that ab|a′b′ ∈ q(Tj), and so there must be a split C|D of Tj such that a, b ∈ C
and a′, b′ ∈ D. But then a ∈ A ∩ C, a′ ∈ A ∩ D, b ∈ B ∩ C, and b′ ∈ B ∩ D so
the two splits A|B and C|D are not compatible. This contradicts the definition
of the loose consensus tree because A|B is compatible with all of the trees in T .
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Thus f(ab|a′b′) = 0 and, by the same argument f(ab′|a′b) = 0, which means that
aa′|bb′ ∈ Qmaj .

Hence all the quartets aa′|bb′ such that a, a′ ∈ A and b, b′ ∈ B are in Qmaj and
so A|B is in the Q∗ tree for Qmaj and therefore in the Q∗ consensus tree for T .

Now suppose that A|B is in the majority rule tree for T . Then A|B is a split in
over half of the trees in T and so any quartet aa′|bb′ such that a, a′ ∈ A and b, b′ ∈ B
is present in over half the trees in T . Since f(aa′|bb′) + f(ab|a′b′) + f(ab′|a′b) = k
and f(aa′|bb′) > k/2 we have that aa′|bb′ ∈ Qmaj . It follows that A|B is in the Q∗

consensus tree for T .
The proof for the R∗ rooted consensus tree follows the same lines. �

In the following, we identify binary characters with splits. Thus a split is com-
patible with a binary character if and only if it is compatible with the corresponding
splits.

lemma B.6. Let C be a collection of binary characters. If A|B is compatible
with every character in C then there is a maximum parsimony tree for C containing
split A|B. Furthermore, if A|B corresponds to a character in C then every maximum
parsimony tree for C has split A|B.

Proof. Suppose that A|B is compatible with every character in C.
Since each character in C is compatible with A|B every character must be

constant over all of B or over all of A. Let C1 be the set of characters that are
constant over A and let C2 be the remaining characters. Thus all the characters in
C2 are constant over B.

Choose an arbitrary taxa a from A and b from B. Put A′ = A ∪ {b} and
B′ = B ∪ {a}. Let C′1 be the set of characters in C1 restricted to taxa in B′ and let
C′2 be the set of characters in C2 restricted to A′.

Let T1 be a maximum parsimony tree for C ′1. It has taxa set B′. Let T2 be a
maximum parsimony tree for C ′2. It has taxa set A′. Let v1 be the node adjacent to
a in T1 and v2 the node adjacent to b in T2. Let T be the tree obtained by removing
a from T1 and b from T2 then joining T1 and T2 using a branch from v1 to v2. The
tree T contains the split A|B. We claim that T is a maximum parsimony tree for
C.

Let l(T1, C
′
1) be the length of T1 with respect to C′1 and let l(T2, C

′
2) be the

length of T2 with repsect to C′2. Let C be a character in C1 and let C ′ be the
character in C′1 that is the restriction of C to B′. By the choice of C1, the character
C is constant over all of A. Hence a parsimonious assignment of internal states for
C on T will be constant over the subtree of T with taxa set A, that is, the subtree
derived from T2. It follows that the length of C on T is the same as the length of
C ′ on T1 and, by symmetry, the length of T equals the length l(T1, C

′
1) of T1 plus

the length l(T2, C
′
2) of C2.

Now suppose that T is some other tree with the same taxon set as T . Let T 1

be T restricted to B′ and let T 2 be T restricted to A′. If we remove taxa from a
tree we cannot increase the length of the tree. Hence

l(T 1, C
′
1) ≤ l(T , C1)

and

l(T 2, C
′
2) ≤ l(T , C2).
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The length of T with respect to C is l(T , C1) + l(T, C2). Since the trees T1 and T2

are maximum parsimony trees for C ′1 and C′2 we have

l(T, C) = l(T1, C
′
1) + l(T2, C

′
2)

≤ l(T 1, C
′
1) + l(T 2, C

′
2)

≤ l(T , C1) + l(T, C2)

= l(T , C).

Thus the length of any other tree T with respect to C is at least as much as the
length of T , and T is a maximum parsimony tree for T . This proves the first part.

For the second part, suppose that A|B corresponds to a character in C. Let C ′ be
the set of characters in C that do not correspond to A|B. By the first part, there is a
maximum parsimony tree T for C ′ containing the split A|B. Each character in C−C ′

corresponds to the split A|B so has length one on T and l(T, C) = l(T, C ′)+ |C−C′|.
On any tree T that does not contain the split A|B the character corresponding to
A|B has length at least two. Thus

l(T , C) = l(T , C′) + l(T , C − C′)

≥ l(T, C′) + l(T, C − C′)

≥ l(T, C′) + 2|C − C′|

> l(T, C).

Hence all maximum parsimony trees contain the split A|B. �

Theorem 2.16. The MRP consensus tree contains all of the splits (clusters)
of the loose consensus tree, and therefore all of the splits (clusters) of the strict
consensus tree.

Proof. If A|B is in the loose consensus tree then A|B is compatible with every
split of every tree in T . Hence A|B is compatible with the binary psuedo-characters
given by splits of trees in T . By Lemma B.6, A|B is in every MRP tree. �

Theorem 2.19. Every split in the strict consensus tree for T will be a split in
the Buneman consensus tree for T .

Proof. If A|B is a split of a weighted tree T with strictly posistive edge lengths
and pathlength distance matrix d then

d(a, a′) + d(b, b′) < d(a, b) + d(a′, b′)

for all choices of a, a′ ∈ A and b, b′ ∈ B [13]. Let d1, d2, . . . , dk be the path length
matrice for T1, T2, . . . , Tk. Since A|B is a split in every tree Ti we have

d(a, a′) + d(b, b′) =
1

k

k
∑

i=1

(di(a, a′) + di(b, b
′))(B.1)

<
1

k

k
∑

i=1

(di(a, b) + di(a
′, b′))(B.2)

= d(a, b) + d(a′, b′)(B.3)

for all a, a′ ∈ A and b, b′ ∈ B. Hence A|B is a split in the Buneman tree for d and
therefore a split in the Buneman consensus tree for T . �
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39. M. Steel, S. Böcker, and A. Dress, Some simple but fundamental limits for supertree and

consensus tree methods, Syst. Biol. 42 (2000), no. 2, 363–368.
40. R. Stinebrickner, s-Consensus trees and indices, B. Math. Biol. 46 (1984), 923–935.
41. , s-Consensus index method: an additional axiom, J. Classif. 3 (1986), 319–327.
42. D.L. Swofford, When are phylogeny estimates from molecular and morphological data incon-

gruent?, Phylogenetic analysis of DNA sequences (M. M. Miyamoto and J. Cracraft, eds.),
Oxford University Press, 1991, pp. 295–333.

43. , Paup*. phylogenetic analysis using parsimony (*and other methods), vol. 4, Sinauer
Associates, Sunderland, Massachusetts, 1998.

44. D.L. Swofford, G.J. Olsen, P.J. Waddell, and D.M. Hillis, Phylogenetic inference, Molecular
Systematics (D.M. Hillis, C. Moritz, and B.K. Mable, eds.), Sinauer, 2nd ed., 1996, pp. 407–
514.

45. M. Wilkinson, Common cladistic information and its consensus representation: reduced
Adams and reduced cladistic consensus trees and profiles, Syst. Biol. 43 (1994), no. 3, 343–368.

46. M. Wilkinson and J. Thorley, Reduced consensus supertrees, Trends Ecol. Evol. 13 (1998),
283.

School of Computer Science and Department of Mathematics and Statistics, McGill
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