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The idea of inferring phylogenies by se-
lecting trees that minimize the total tree
length can be traced back to the 19th cen-
tury and the mathematician Jakob Steiner. It
complies with Occam’s principle of scienti�c
inference, which essentially maintains that
simpler explanations are preferable to more
complicated ones and that ad hoc explana-
tions should be avoided. Parsimony meth-
ods, which infer phylogenies directly from
character data, are a well-known example
of this approach. They search for the tree
that requires the minimum number of mu-
tational changes to explain the evolutionary
change in the sequences studied. With evolu-
tionary distance data, the de�nition of sim-
plicity is less obvious. We must �rst decide
how the branch lengths are to be estimated
and then how the tree length is to be calcu-
lated from these branch lengths. In practice,
branch lengths are usually estimated within
the least-squares framework. Several differ-
ent least-squares methods are available to
choose from, each using a different model for
variances and covariances of the observed
distances. Several de�nitions of tree length
have also been proposed, differing from one
another by the treatment of negative branch
lengths. We shall discuss branch length es-
timation �rst (see also Searl, 1971; Bulmer,
1991; Swofford et al., 1996) and then the var-
ious de�nitions of tree length.

Let ±i j be the estimate of the evolutionary
distance between taxa i and j , obtained from
sequences or any other data, and let 1 D (±(i j ))
be a column vector containing all the ±i j esti-
mates, with (ij) denoting the index of the pair
i , j . Let T be the tree being studied, di j the
distance induced by T between taxa i and j
(i.e., d(i j) is equal to the length of the path con-
necting i to j in T ), and D D (d(i j )) a column
vector containing all ranked di j distances. Us-
ing matrix notation, the branch lengths of T
can be represented by a column vector B D
(bk ) with bk denoting the length of branch k,
whereas the topology of T can be represented
by a 0-1 matrix A D (a(i j )k ) such that (a(i j )k ) is

equal to 1 if the branch k lies on the path con-
necting i and j , but is equal to 0 otherwise.
With this notation we have D D AB , and the
branch lengths are estimated by minimizing
the difference between the observation 1 and
D. The ordinary least-squares (ordinary-LS)
approach involves minimizing the squared
Euclidean �t between 1 and D, that is, (D –
1)T (D – 1), which yields B D (AT A)¡1 AT 1.
However, this approach implicitly assumes
that each ±i j estimate is independent and has
thesame variance, which isnot generally true
because of the common evolutionary his-
tory of the sequences (or molecules) in ques-
tion, and because large distances are much
more variable than short distances. So, we
often use weighted least-squares (weighted-
LS), that is, (D – 1)T V¡1(D – 1), where V
is the diagonal matrix containing the vari-
ances of the ±i j estimates. This yields B D
(AT V¡1 A)¡1 AT V¡11. Weighted-LS accounts
for the variable variance of the estimates but
not for their dependencies. The minimum
variance and hence most reliable branch
length estimates are obtained by generalized
least-squares (generalized-LS), the formula
for which is identical to that of weighted-LS
except that V now equals the full variance–
covariance matrix of the ±i j estimates. How-
ever, generalized-LS is rarely used because
the full V matrix is usually poorly known,
and because the inversion of V requires a lot
of computing time. Ordinary-LS is a special
case of weighted-LS, which is obtained when
all variances are equal, whereas weighted-
LS is a special case of generalized-LS, corre-
sponding to the case in which all covariances
are null.

Minimization of these criteria sometimes
gives branch lengths with negative val-
ues, which does not correspond to any
biological process. The general approach
for dealing with this problem is non-
negative least-squares regression (Lawson
and Hanson, 1974), which applies to
generalized-LS and thus to weighted-LS
and ordinary-LS. Several algorithms (e.g.,
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Felsenstein, 1997; Makarenkov and Leclerc,
1999) have been designed for weighted-LS
or ordinary-LS on phylogenetic trees. How-
ever, incorporating the positivity constraint
is not straightforward, and these algorithms
tend to be more time consuming than the un-
constrained versions derived from the above
formulae.

In summary, estimating the branch lengths
by generalized-LS is theoretically superior to
using weighted-LS, which is in turn superior
to using ordinary-LS, and incorporating the
positivity constraint isdesirable. Note that all
these criteria can be used to infer whole phy-
logenies (and not only thebranch lengths cor-
responding to a given tree topology) by se-
lecting the tree for which they are minimum,
as introduced in phylogenetics by Fitch and
Margoliash (1967) and Cavalli-Sforza and
Edwards (1967). In this case, several authors
(e.g., Kuhner and Felsenstein, 1994) have
shown that the positivity constraint must be
accounted for; otherwise, highly suboptimal
trees can use negative branch lengths to pro-
duce a low apparent error.

Kid and Sgaramella-Zonta (1971) as well
as Rzhetsky and Nei (1993) proposed that
ordinary-LS without the positivity constraint
be used to estimate branch lengths. They
gave two different de�nitions of tree length.
Kidd and Sgaramella-Zonta (1971) de�ned
the tree length to be the sum of the abso-
lute values of the branch lengths, whereas
Rzhetsky and Nei (1993) de�ned the tree
length to be the sum of all branch lengths,
regardless of whether they were positive or
negative. In a third variant, suggested by
Swofford et al. (1996), one simply adds those
branch lengths that are positive and neglects
the negative ones. A fourth variant is to ac-
count for the positivity constraint during es-
timation, then sum the non-negative branch
lengths to obtain the tree length. We denote
these four variantsof the minimum evolution
principle as absolute-BL, all-BL, positive-BL,
and non-negative-BL. Note that these four
variants are not equivalent (see the �rst ex-
ample below), and that accounting for pos-
itivity during estimation is very different
from selecting the positive branch lengths or
using absolute values. For any of these four
de�nitions, the minimum evolution princi-
ple involves selecting the shortest tree as be-
ing the correct phylogeny.

Statistical consistency is a central issue
in phylogenetic inference. In the case of

distance-based methods, it is de�ned as fol-
lows. Let T be the correct tree, D the asso-
ciated tree distance matrix, and 1 the ma-
trix of estimated distances. Assuming that
1 is a consistent estimate of D, the more
data we have (e.g., the longer the sequences
used to estimate the pairwise distances), the
closer 1 is to D. Statistical consistency of
tree inference then means that T is obtained
with certainty as soon as 1 is suf�ciently
close to D. In other words, assuming that
the model used to estimate the pairwise dis-
tance matrix is satis�ed, the more data we
have, the higher is the probability of recov-
ering the correct tree. This property is essen-
tial and has been discussed at length (e.g.,
Felsenstein, 1978). Consistent methods are in
contrast with inconsistent ones (e.g., parsi-
mony in some cases), which may converge
towards a wrong tree when the amount of
data increases. Numerous phylogenetic in-
ference methods have been proved consis-
tent. Using ordinary-LS, weighted-LS, and
generalized-LS (with or without positivity
constraint) to infer phylogenies directly is
consistent, simply because these criteria have
value 0 for T when 1 D D and are strictly
positive for any other tree topology. The ag-
glomerative, distance-based algorithms are
also consistent, but the proof is more com-
plex (Atteson, 1997). Finally, Rzhetsky and
Nei (1993) demonstrated that the minimum
evolution principle is consistent when com-
bined with ordinary-LS and their own de�-
nition of tree length (all-BL).

This paper investigates the possible gen-
eralizations and extensions of the consis-
tency result of Rzhetsky and Nei (1993).
Ordinary-LS �ts poorly the features of evo-
lutionary distance data, as explained above.
Moreover, we have shown with computer
simulations (Gascuel, 2000a) that Rzhetsky
and Nei’s (1993) version of the minimum
evolution principle is not very ef�cient in
terms of topological accuracy and it is im-
proved by other simple approaches that bet-
ter take into account sequence data character-
istics. A similar conclusion was reached by
Kuhner and Felsenstein (1994), when com-
paring neighbor-joining (NJ; Saitou and Nei,
1987)and FITCH (Felsenstein, 1997). NJ is
based on Rzhetsky and Nei’s (1993) ver-
sion of the minimum evolution principle,
whereas FITCH is based on weighted-LS
with the positivity constraint. Numerous
authors (e.g., Swofford et al., 1996; Bryant



2001 GASCUEL ET AL.—LIMITATIONS OF THE MINIMUM EVOLUTION PRINCIPLE 623

and Waddell, 1998; Makarenkov and Leclerc,
1999; Gascuel, 2000a) have suggested that
the minimum evolution principle could be
combined with a more reliable estimation
of branch lengths, using weighted-LS or
generalized-LS and eventually the positiv-
ity constraint. The basic question we address
is determining whether such combinations
are statistically consistent. We also examine
the in�uence of the various de�nitions of
tree length. In the �rst section, we provide
positive results indicating that the proof of
Rzhetsky and Nei (1993), for example, ex-
tends to other tree length de�nitions. In the
second section, we show that, unfortunately,
the minimum evolution principle has serious
limitations when combined with weighted-
LS or generalized-LS. A discussion concludes
the paper.

STRENGTHS: CONSISTENCY RESULTS

Rzhetsky and Nei’s (1993) result is eas-
ily seen to extend to the positive-BL and
absolute-BL tree length de�nitions. A direct
consequence of statistical consistency is that
when 1 D D, the correct tree T has the short-
est length among all possible tree topolo-
gies. This shortest length property is nec-
essary for consistency. It is also suf�cient,
as we shall see. The length associated with
a tree topology relative to a distance ma-
trix is a continuous function of this ma-
trix. Therefore, when 1 is suf�ciently close
to D, the estimated tree lengths relative to
1 and to D become close, and T becomes
the shortest tree for 1 as it already is for
D; T is then inferred with certainty from
1. To prove consistency, Rzhetsky and Nei
(1993) thus demonstrated that when 1 D D
then all-BL(T) < all-BL(X ) holds for any
tree topology X different from T (using
ordinary-LS branch length estimates). More-
over, for any X we have all-BL(X ) · positive-
BL(X ) · absolute-BL( X ), and all-BL(T) D
positive-BL(T ) D absolute-BL(T) as soon as
1 D D. Combining these elements, we ob-
tain: positive-BL(T) < positive-BL( X ) and
absolute-BL(T) < absolute-BL( X ) when X 6D
T and 1 D D, and the result follows. Note
that this proof does not directly apply to
the non-negative-BL tree length de�nition.
To the best of our knowledge, the consistency
status in that setting is still unknown.

Moreover, we recently demonstrated
(Denis and Gascuel, 2000) that the minimum

evolution principle (combined with all-BL,
positive-BL, and absolute-BL tree length
de�nitions) remains statistically consistent
in a classical model, which generalizes
ordinary-LS but is contained in weighted-
LS. This model assumes that every taxon i
is associated with a strictly positive weight
wi , such that the variance of the ±i j estimate
is equal to 1=wi w j . The covariances of the
distance estimates are supposed to be null.
This model, combined with least-squares
estimation of branch lengths, is denoted
as taxon-weighted-LS. Ordinary-LS is ob-
tained when wi is the same for all taxa i .
Taxon-weighted-LS is clearly a special case
of weighted-LS. A usual application of this
model concerns the case where every taxon
represents a collection of individuals. For
example, in population genetics, suppose
we are studying the relationships between
groups of people and we take a represen-
tative sample of size wi for each group i .
The distance between the groups i and j is
then the average of the pairwise individual
distances, and, assuming that individual dis-
tances have the same variance, the variance
of the ±i j estimate is proportional to 1=wi w j .
This model can also be used to express
that distances associated with some taxa
(typically belonging to the outgroup) are
less reliable than other (ingroup) distances.

LIMITATIONS : INCONSISTENCY RESULTS

That the minimum evolution principle
is not statistically consistent when com-
bined with weighted-LS and generalized-LS
is demonstrated here on the basis of the
counter-example described in Figure 1 and
Table 1. Figure 1a represents the correct tree
T ; in this tree every branch has length 0.1,
so T has length 0.9 and (e.g.) ±12 D d12 D 0:2
and ±35 D d35 D 0:4. Any reasonable method
should infer T from 1, because T is the
unique tree that exactly represents 1. The es-
timated length of T is 0.9, for any tree length
de�nition and least-squares criterion. Table 1
provides a set of hypothetical variances of
the ±i j estimates, e.g., Var(±12) D 0.01 and
Var(±35) D 0.50. The variances are different
one from the other, and the covariances are
equal to zero, so we are in the weighted-LS
framework.

Figure 1b represents an incorrect tree
topology with the associated weighted-
LS branch length estimates, under both
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FIGURE 1. (a) The correct tree T , every branch has
length 0.1; (b) A shortest, incorrect tree; the uncon-
strained weighted-LS branch length estimates are indi-
cated by ordinary characters, whereas italic characters
refer to those constrained by positivity.

the constrained and unconstrained settings.
These estimates were obtained by using the
above formulae and non-negative-LS regres-
sion, respectively. Computing the length of
this incorrect tree, we �nd the all-BL length
is 0.8439, positive-BL is 0.8614, absolute-BL
is 0.8788, and non-negative-BL is 0.8290. In
other words, the four variants of the mini-
mum evolution principle would not choose
the correct tree because an incorrect tree ex-
ists that is shorter. This demonstrates that
none of these four variants of the mini-
mum evolution principle is statistically con-
sistent when extended to weighted-LS (and
thus to generalized-LS) estimation of branch
lengths.

However, this counter-example can be
seen as arti�cial, because the variances
(Table 1) are highly contrasted, some hav-
ing value 0.01 and the others 0.50. Moreover,

TABLE 1. Variances of the ±i j estimates.

i 1 2 3 4 5 6

1 —
2 0.01 —
3 0.50 0.01 —
4 0.50 0.01 0.01 —
5 0.50 0.01 0.50 0.50 —
6 0.01 0.50 0.01 0.01 0.50 —

these variances are quite different from the
variances expected with sequence data. In
this case, the variance of a distance estimate
is an increasing function of the real evolu-
tionary distance that is estimated (see below),
and, because the evolutionary distances are
supposed to be treelike, the variances must
be close to a tree distance. This is clearly not
the case with the variances in Table 1. Be-
cause of the four-point condition (Zarestkii,
1965), one would expect, for example,
that Var(±15) C Var(±26) ¼ Var(±16) C Var(±25),
whereas we have Var(±15) C Var(±26) D 1.00
and Var(±16) C Var(±25) D 0.02 (Table 1). In fact,
�nding a counterexample for absolute-BL is
not easy, at least with 6 taxa, which explains
why the variance matrix (Table 1) is special.
Finding a counter-example for all-BL is eas-
ier, because all-BL is generally strictly smaller
than absolute-BL. Thus, minimum evolution
combined with weighted-LS may conceiv-
ably provide good practical results for real-
istic variance matrices, especially in the case
of absolute-BL. However, depending on the
number of taxa and the tree length de�ni-
tion chosen, this combination might also lead
to inconsistency in some realistic con�gura-
tions. An interesting direction for further re-
search would be to characterize the inconsis-
tency zones of the variants of the minimum
evolution principle when it is combined with
weighted-LS.

The situation is quite different with
generalized-LS. Consider the example of
Figure 2 and Table 2. Figure 2a represents the
correct tree T ; in this tree every branch has
length 0.1, so T has length 0.5 and (e.g.) ±12 D
d12 D 0:2and ±23 D d23 D 0:3. Once again, any
reasonable method should infer T from 1,
because T is the unique tree that exactly
represents 1. The estimated length of T is
0.5, for any tree length de�nition and least-
squares criterion. Table 2 provides a hypo-
thetical variance–covariance matrix. The el-
ements in this matrix are obtained from the
evolutionary distances represented by T , as-
suming the Jukes and Cantor (1969) model
and using the following formula (Nei and Jin,
1989; Bulmer, 1991):

Covar(±i j , ±kl) D f (ci j,kl) D 3(e8ci j,kl=3

C 2e4ci j,kl=3 ¡ 3)=16

where ci j,kl is the length of the intersec-
tion of the paths i , j and k,l in T . For
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FIGURE 2. (a) The correct tree T , every branch has
length 0.1. (b) A shortest, incorrect tree, with the associ-
ated generalized-LS branch length estimates.

example, c12,12 D 0.2, c23,34 D 0.1, and c12,34 D
0.0, and we have Var(±12) D f (c12,12) ¼
1:315, Covar(±23,34) D f (c23,34) ¼ 0.590, and
Covar(±12,±34) D f (0.0) D 0.0. In the origi-
nal formula, the function f is divided by
the sequence length. This term is removed
from the values given in Table 2, because
it does not in�uence branch length esti-
mation, which is easily seen from the for-
mula B D (AT V¡1 A)¡1 AT V¡11. The use of
another model of sequence evolution, for ex-
ample, Kimura’s (1980) or any other, would
yield a similar variance–covariance matrix;
accordingly, the variance–covariance matrix
given in Table 2 can be seen as fully represen-
tative of sequence data (within the sequence
length factor, which is unimportant).

Figure 2b represents an incorrect tree
topology with the associated generalized-
LS branch length estimates. Because all
branches are positive, the estimated length
of this tree is equal to 0.4249 for any tree
length de�nition. As a result, this incorrect

TABLE 2. Variances (on the diagonal) and covari-
ances of the ±i j estimates.

ij 12 13 14 23 24 34

12 1.315
13 0.590 2.209
14 0.590 1.315 2.209
23 0.590 1.315 0.590 2.209
24 0.590 0.590 1.315 1.315 2.209
34 0.000 0.590 0.590 0.590 0.590 1.315

tree is preferred to the correct tree by any
of the four variants of the minimum evolu-
tion principle. The third possible tree topol-
ogy (separating f1,4g from f2,3g) has the same
estimated length (0.4249) and is also pre-
ferred to the correct tree by the minimum
evolution principle. Moreover, we replaced
the �ve branch lengths in T (Fig. 2a) with
values independently and uniformly drawn
from the interval [0.01, 1.0] and modi�ed
the variance–covariance matrix accordingly,
using the same formula as above. We then
observed that the minimum evolution prin-
ciple is consistent in only »25% of the tri-
als, whenever the variant that is used. This
means that the minimum evolution principle
is profoundly inconsistent when combined
with generalized-LS and when dealing with
sequence data.

DISCUSSION

Table 3 summarizes the various results
presented in this paper. To the best of our
knowledge, only the consistency of all-BL
combined with ordinary-LS was previously
published (Rzhetsky and Nei, 1993). The
practical impact of the inconsistency of the
combination of the minimum evolution prin-
ciple and weighted-LS remains to be studied,
and for generalized-LS, our results seem to
preclude any possible use of the minimum
evolution principle, at least with sequence
data.

Estimating the length of any branch of an
incorrect topology has no clear mathemati-
cal meaning, which probably explains the in-
consistency results. However, this does not
explain why the minimum evolution princi-
ple becomes consistent when combined with
ordinary-LS or taxon-weighted-LS, which
can be seen as “natural” from a biological
point of view but remains intriguing from a
mathematical standpoint.

In Figure 1 the length of the erroneous
branch separating f1,2,3g and f4,5,6g is ei-
ther negative or null, depending on the esti-
mation procedure. One might thus consider
modifying the minimum evolution principle
by rejecting any tree that requires negative
or null optimal value for any branch, as sug-
gested by Kidd and Sgaramella-Zonta (1971)
and others. However, we have observed
(Gascuel, 1997a) during computer simula-
tions that the correct tree very often contains
negative branch estimates, and Swofford
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TABLE 3. Consistency status of the variants of the minimum evolution principle.

All-BL Positive-BL Absolute-BL Non-negative-BL

Ordinary-LS Consistent Consistent Consistent Unknown
Taxon-weighted-LS Consistent Consistent Consistent Unknown
Weighted-LS Inconsistent Inconsistent Inconsistent Inconsistent
Generalized-LS Inconsistent Inconsistent Inconsistent Inconsistent

et al. (1996) suggested that “this extreme ap-
proach runs the risk of rejecting the correct
tree in certain realistic situations.” Such an
approach would therefore perhaps be statis-
tically consistent but most likely inef�cient
in practice.

As explained above, ordinary-LS is not
perfectly suited to deal with sequence
data, and weighted-LS or generalized-LS,
when possible, is preferable. However, as
we have shown, combining the minimum
evolution principle with weighted-LS or
generalized-LS presents serious limitations.
A well-founded solution for tree inference
is to directly minimize these criteria, us-
ing the positivity constraint. Several ef�-
cient algorithms exist for this purpose in
weighted-LS (De Soete, 1983; Felsenstein,
1997; Makarenkov and Leclerc, 1999), but
none in generalized-LS. Alternatively, we
can use agglomerative algorithms that per-
form local weighted-LS or generalized-LS es-
timations, require little computing time, and
are statistically consistent (Gascuel, 1997b,
2000b; Bruno et al., 2000).
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