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Abstract

It is now routine for biologists to conduct evolutionary
analyses of large DNA and protein sequence datasets. A
computational bottleneck in these analyses is the recov-
ery of the topology of the evolutionary tree for a set of
sequences. This paper presents a practical solution to
this challenging problem. In particular, a new technique,
called hypercleaning, is presented that can be combined
with various tree-building algorithms to efficiently recon-
struct from sequence data the best supported edges of
the evolutionary tree. More precisely, the hypercleaning
technique computes from sequence data a small subset of
edges that is likely to contain most edges of the correct
tree. A tree-building algorithm then attempts to iden-
tify edges in the subset that are compatible with each
other and hereby produces an evolutionary tree. We also
propose a simple greedy agorithm that builds a tree by

~ FAddress: Département d'Informatique Fondamentale et
Applications, LIRMM, Université de Montpellier II, France.
Part of this work was done at the Département de
Mathématiques, EURISE, Université de Saint-Etienne, France.
E-mail: vberry@lirmm.fr

tSupported in part by a Bioinformatics Postdoc Fellowship
from the CIAR, Evolutionary Biology Program and by NSERC
and CGAT grants to D. Sankoff. Address: CRM Université de
Montréal. E-mail: bryant@crm.umontreal.ca

{Supported in part by NSERC Research Grant
0OGP0046613, a CITO grant, and a UCR startup grant.
Department of Computer Science, University of California,
Riverside, CA 92521. jiang@cs.ucr.edu.
McMaster University.

§Supported in part by a CITO grant and NSERC Research
Grant 160321. Address: Department of Computer Science,
University of Waterloo, Waterloo, ON, N2L 3G1, Canada. E-
mail: pkearney@math.uwaterloo.ca

TSupported in part by NSERC Research Grant
0OGP0046506, a CITO grant, and the Steacie Fellowship.
Address: Department of Computer Science, University
of Waterloo, Waterloo, ON, N2L 3G1, Canada.

mli@math.uwaterloo.ca

On leave from

E-mail:

”Department of Computer Science, Memorial University of
Newfoundland, St. John’s, NF A1B 3X5, Canada. Work done
at McMaster University. Email: harold@garfield.cs.umn.edu

**Department of Computer Science, University of Wa-

terloo, Waterloo, ON, N2L 3GI1,

h2zhang@wh.math.uwaterloo.ca

Canada. E-mail:

Tao Jiang?

Paul Kearney® Ming Li¥

Haoyong Zhang™*

screening the edges provided by hypercleaning in the de-
creasing order of support from sequence data. This tech-
nique is a substantial improvement over previous algo-
rithms in its ability to recover edges of the evolution-
ary tree. Hypercleaning also incorporates a detailed error
model that relates errors in the data to the topology of
the evolutionary tree. The results of a simulation study
that strongly support the practicality, efficiency and ef-
fectiveness of hypercleaning are also presented.

1 Introduction

Advances in DNA sequencing technology this decade
have resulted in an exponential growth in the amount
of sequence data available for biological analysis [8].
As a consequence, it is now routine for biologists
to conduct evolutionary analyses of large sequence
datasets [16, 17, 21]. However, standard methods for
inferring evolutionary trees from sequence data, such
as maximum likelihood [14] and maximum parsimony
[26], are plagued by computational difficulties.

An evolutionary tree T for a set S of sequences is
arooted and edge weighted tree where the leaves of T
are labeled bijectively by S. The topology of T (that
is, T without edge weights) describes the speciation
events resulting in the evolution of sequences in S
from the root. The edge weights of T are proportional
to the amount of evolution (sequence substitutions,
insertions and deletions) between speciation events.

This paper presents new insights on the difficult
computational problem of determining the topology
of an unknown evolutionary tree T' given only the set
S of sequences that label the leaves of T. This prob-
lem is of practical importance since once the topol-
ogy of T'is known, T can be rooted and edge weights
determined, resulting in a hypothesis describing the
evolutionary history of the sequences in 5. Determin-
ing the topology of T is considered to be the most
difficult computational step in the reconstruction of
T from S.

It is well-known that the topology of an evolu-
tionary tree can be specified by its set of edge-induced
bipartitions. An evolutionary tree T labeled by §



contains the bipartition (X,Y) of S if there is an
edge e in T such that T — {e} consists of two trees
where one is labeled by X and the other by Y. This is
denoted e = (X,Y) and we use the terms ‘edge’ and
‘bipartition’ interchangeably. A set of bipartitions is
compatible if there is a tree that contains these bi-
partitions. Compatibility of a set of bipartitions is
characterized by the property that for every pair of
bipartitions (A, B) and (C, D) in the set, at least one
of A or B is a subset of C' or D [11, 22].

One standard method for estimating evolution-
ary trees is to determine a support function that mea-
sures how well the sequence data S supports a bi-
partition (X,Y’) and then construct a tree topology
from the best supported bipartitions. An example of
this approach is the spectral decomposition method
of [18]. In this paper we describe a support function
based on quartet data.

The set of all possible bipartitions is enormously
large, and so, cannot be explicitly computed even for
moderately sized S. Instead, we present a polynomial
time algorithm for constructing a (polynomial-sized)
collection of bipartitions most strongly supported
quartet data.

1.1 Measuring the Support for a Bipartition
Recently the quartet method for constructing evolu-
tionary trees from sequence data has received much
attention in the computational biology community
[2, 6,9, 13, 20, 7, 25]. Given a quartet of sequences
{a,b,c,d} and an evolutionary tree T, the quartet
topology induced in T by {a, b, ¢, d} is the path struc-
ture connecting a, b, ¢ and d in T. Given a quartet
{a, b, c,d}, if the path in T connecting labels a and b
is disjoint from the path in 7" connecting ¢ and d, the
quartet is said to be resolved and is denoted abled.
Otherwise, the quartet is said to be unresolved and is
denoted (abed). The four possible quartet topologies
induced by a quartet are depicted in Figure 1.
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Figure 1: The four quartet topologies for quartet

{a7 b? c7 d}'

The quartet method first estimates the quartet
topology induced in T by each quartet in S. There
are many methods for estimating quartet topology,
including maximum likelihood [14], maximum parsi-
mony [15], neighbor joining [23] and the ordinal quar-
tet method [20]. Although many of these methods

cannot be feasibly applied to the entire dataset S to
infer the topology of T directly, they can be applied
feasibly to infer tree topologies of size four. Restrict-
ing the analysis to smaller subsets also allows the
alignment of a greater number of sites, while combin-
ing a large number of smaller analyses can lead to a
more stable phylogenetic estimation [27].

Let @ be the set of these () inferred quartet
topologies. The quartet topologies in ) can be
viewed as pieces of a larger puzzle T'. The second step
of the quartet method, quartet recombination, is to
recombine the quartet topologies into an evolutionary
tree topology T that is an estimate of 7. A number
of heuristics for quartet recombination are available.
There are methods based on clustering [24, 1, 4],
leaf insertion [25, 27], greedy selection and quartet
closure rules [13], semi-definite programming [2], and
smooth polynomial integer programming [19]. Exact
polynomial time algorithms for various restricted
cases are given by [6] and [10].

a C
{a,b,c,d} b>—<d
a C
{a,b,c.e} b>_<e
a d
b,d,

{ab.d.e} b:>—<:g

’ P

a,cde

b ¢ 2 { } . o
a b d

{bcde} :>—<:
C e

Figure 2: An evolutionary tree T and its set Qp of
induced quartet topologies.

The computational challenge of quartet recombi-
nation derives from the fact that the set @) of esti-
mated quartet topologies can contain quartet errors.
Define Q7 to be the set of quartet topologies induced
by sequence quartets from S (see Figure 2). The
quartet {a,b,c,d} is a quartet error if abled € Qrp
but abled ¢ (. Furthermore, {a,b,c,d} is a quartet
error across edge e in T if the removal of e from T
disconnects a and b from ¢ and d. Effectively, this
defines the distribution of quartet errors throughout
T. Quartet errors also permit us to assess how well ()
supports an edge e by counting the number of quar-
tet errors across e. This measure can be extended to
measure the support for any bipartition. For a bipar-
tition (X,Y) define Q(x,y) to be the set of quartet
topologies of the form za'|yy’ where 2,2’ € X and
v,y €Y. The distance from a set of quartets @) to a
bipartition (X,Y) is defined to be

Qx,y) — QI



Note that the number of quartet topologies in
Qx,y) is [X[(|IX] = DIY[(]Y] = 1)/4.  In order
to compare the support for two bipartitions, the
distance function must be normalized. We define the
normalized distance from @ to (X,Y) by

41Q(x,v) — Q|

@YD) = R oY =)

When (X,Y) is trivial (|X| = 1 or |Y| = 1),
the normalized distance is defined to be 0. We will
be using 4 as our bipartition support function: the
bipartitions with smaller distances from () are those
better supported by Q.

1.2 Interesting Neighborhoods of )

Using the normalize distance J defined above, we
can implicitly define a bipartition list that orders
all bipartitions of S by increasing distance from @.
Assuming that bipartitions of T are well-supported
by @ (a claim supported by the simulation study
presented in Section 3) and appear near the start
of the list, the task is to generate a bipartition

neighborhood of @) of the form
{(XY) [6(Q, (X, Y)) <7}

which is called the closed r-neighborhood of @.
When the inequality is strict it is called the open
r—neighborhood of Q.

When r = 0 the closed r-neighborhood of
corresponds to those bipartitions that have 0 quartet
topology differences with Q. There is an O(n*) time
algorithm, called the Q* method, for recovering this
set, of bipartitions [6]. However, the Q* tree is a very
conservative estimate of T since it includes only those
bipartitions with 0 quartet topology difference with
). We must search for bipartitions that are a greater
distance from Q.

When r = W the open r—neighborhood of
@ is compatible [7]. An algorithm that constructs
this r—neighborhood is called a local edge cleaning
algorithm. In this paper we provide an O(n®) time
local edge cleaning algorithm, the first polynomial
time algorithm for this problem. We observe that
the closed r—neighborhood of @ is not necessarily
compatible [19].

Although a local cleaning algorithm is guaran-
teed to return a set of compatible bipartitions, it is
not guaranteed to return all n—3 compatible, nontriv-
ial bipartitions of the underlying evolutionary tree 7T'.
In fact, the simulation study presented in Section 3
demonstrates that local edge cleaning often does not
obtain all bipartitions of 7. We widen the search by

introducing a parameter m > 0 and defining

2m

XY

Best(@Q,m) = {(X,Y)]4(Q,(X,Y)) < 2
Thus the set Best(Q, m') contains the set Best(Q,m)
for all m’ > m. Note that Best(Q,1) is the
set obtained by local edge cleaning and the limit
of Best(),m) as m tends to zero is the set of
bipartitions in the Q* tree.

An algorithm that constructs the set Best(Q, m)
is called a hypercleaning algorithm'. 1In this pa-
per we give a hypercleaning algorithm that takes
O(n®f(2m) + n” f(m)) time where f(m) = 4m?(1 +
2m)*™. For bounded values of m, the hypercleaning
algorithm runs in polynomial time making it fixed
parameter tractable. The simulation study presented
in Section 3 indicates that small values of m are suf-
ficient to recover all bipartitions of T'. In particular,
we have the following accuracy guarantee:

THEOREM 1.1. The hypercleaning algorithm recovers
all bipartitions (X,Y) in the underlying evolutionary
tree T with fewer than m(|X|—1)(|Y|—1)/2 quartet

E€rrors.

Hence, if @) is reasonably correlated to 1" then hyper-
cleaning is a powerful tool for estimating evolutionary
trees.

1.3 Constructing trees from strongly sup-
ported bipartitions
The focus of this paper is the efficient generation
of Best(Q,m), the set of bipartitions strongly sup-
ported by (). However, Best(Q, m) may contain in-
compatible bipartitions. How can a tree be obtained
from this set? Several options are considered here.
The first is a simple greedy algorithm, that at-
tempts to produce a tree that is as resolved as possi-
ble and that maximizes the agreement with the input
set (). More precisely, it tries to select a maximal set
of compatible bipartitions (X,Y), with the smallest
distance to @, i.e., minimizing Z(Xy) 3@, (X,Y)).
Let (X1,Y1), (X2,Y2), ..., (Xk,Ys) be the biparti-
tions in Best(Q, m) ordered by increasing normalized
distance to (). The greedy algorithm selects the fol-
lowing subset, called Comp(Q, m), of Best(Q, m):

o (X1,.Y1) € Comp(@Q,m)
o (X;,Y;) € Comp(Q,m)if (X;,Y;) is compatible
with all (X;,Y;) € Comp(Q, m) where ¢ < j.
TThe term “hyper” indicates that m can take on values

greater than 1.



Observe that Comp(Q,m) is a set of compati-
ble bipartitions and can be easily obtained from
Best(Q,m). The simulation study of Section 3
demonstrates that this simple algorithm obtains sys-
tematically and significantly better results than the
local cleaning algorithm even when m = 2 illustrating
the potential of hypercleaning.

Note that the above simple algorithm is only
a heuristic to select the maximal set of compatible
bipartitions that minimizes the sum of normalized
distances to (). For other criteria there are exact
polynomial time algorithms. For example, having
inferred a set Best(Q,m) with enough edges to
construct a tree, we can aim at selecting the maximal
set of compatible bipartitions (X,Y) minimizing

maz (x,v) {6(Q, (X,Y))},

which is the L., norm on bipartitions. For this
criterion, we can use the exact polynomial time
algorithm of [9] which runs in O(|Best(Q, m)|?) time.
Other criteria for which we have no exact polyno-
mial time algorithms also make sense. For example,
we may consider selecting the maximal compatible
subset T of bipartitions in Best(Q, m) that minimizes
|Qr — Q|. This criterion differs from the one used by
the greedy heuristic presented above in the sense that
each incorrect quartet topology inferred is here ac-
counted for only once and not with every bipartition
(X,Y) by which it is induced. This criterion is also
strongly related to the principle of the well-known
O(n*) time quartet puzzling heuristic [25] (whose el-
ementary step aims at producing a tree minimizing
the number of quartets of @ it contradicts), since in
a fully resolved tree every incorrect quartet inferred
implies a correct quartet not recovered. However, hy-
percleaning has an advantage over quartet puzzling
in that hypercleaning preselects the set Best(Q,m)
of bipartitions to which we can confidently restrict
ourselves (cf simulation results). When removing the
maximal resolution constraint, i.e. not seeking a tree
as resolved as possible, the O(n®+|@Q]) time heuristic
and bootstrap procedure of [3] can be consulted.

1.4 Summary of Results
In this paper we present an O(n®) time local edge
cleaning algorithm. This is the first polynomial time
algorithm for this problem [7].

A more powerful and flexible technique than local
edge cleaning, called hypercleaning, is introduced.
We give a polynomial bound on the number of
bipartitions inferred by the hypercleaning technique,
namely O(n3f(2m)), where f(m) = 4m?(1 + 2m)*™.

We present an O(n® f(2m)+n" f(m)) time hyper-

cleaning algorithm. When m is bounded this yields
a polynomial time algorithm.

We present a simulation study showing the signif-
icant increase in accuracy due to hypercleaning (even
with m = 2) over the local edge cleaning technique.
However, due to its efficiency, local edge cleaning re-
mains useful for processing large data sets. Results
also show that hypercleaning combined with a greedy
bipartition selection algorithm almost always recov-
ers the underlying evolutionary tree.

2 The Hypercleaning Algorithm

Let S = {s1,82,...,5.}, St = {s1,82,...,5k},
and @y be the subset of @ induced by S;. The
hypercleaning algorithm proceeds by first computing
sets of the form

BeStxy(kam): { (X,Y)|$€X,yEY,

there are fewer than m
quartet errors across (X,Y)

involving « and y}

for all z,y € S and 1 < k < n in time O(n®f(m))
where f(m) = 4m?(1 4 2m)*™. These sets are then
combined to form the sets

Best(Qr,m) = {(X,Y)[6(Q, (X,Y)) < 2m/(|X[|[Y])}

for all 1 < k < nin O(n®f(2m)+n" f(m)) time. Ob-
serve that Best(Q), m) = Best(Qn, m). Hence, the
time required to construct is O(n®f(2m) + n” f(m)).
We note that, unlike quartet puzzling [25], the re-
sulting set of bipartitions does not depend on the
ordering s, $2,..., 8y-
2.1 Computing Bestgy, (Qx, m)

Let « and y be two sequences in S and 1 < k < n.
We define a recurrence for Besty,(Qr, m) by the
following theorem:

THEOREM 2.1. If k = 1 then Bestyy(Qg,m) =0. If
k> 2 then

Bestyy(Qr, m) C Loy U Roy U My,

where

Loy = {(XU{st},Y) | (X,Y) € Bestoy(Qr-1,m)}
Ry = {(X,Y U{st}) [ (X,Y) € Bestoy(Qr-1,m)}
Mey = {({sr},Sk-1)}

Proof. When k = 1 there are not enough sequences

to form a bipartition, and so, Bestyy(Qk,m) = 0.
Suppose k > 2 and (X U{sp},Y) € Bestyy(Qr, m).



If (X U{si},Y) is trivial then either ¥ = {s;} for
i < kor X = 0. In the former case (X,Y) €
Bestyy(Qr—1,m). In the latter case (X U{s;},Y) €
Mgy. Suppose (X U {sx},Y) is not trivial. Since
(X U{sr},Y) € Bestyy(Qr, m) there are fewer than
m quartet errors across (X U {s;},Y) involving x
and y. It follows that there are fewer than m errors
across (X,Y) involving # and y, and so, (X,Y) €
Bestoy (Qr—1,m). W

The algorithm for computing Besty, (Qx, m) for
all z,y € S and 1 < k < n follows from Theorem
2.1: For all z,y € S, for k ranging from 1 to n,
and for all (X,Y) € Lyy U Ryy U My, place (X,Y)
in Bestyy(Qr,m) if there are fewer than m quartet
errors across (X,Y) involving z and y.

In order to analyze the complexity of this algo-
rithm a bound on the size of each set Bestyy (Qx, m)
is obtained. To begin, define

f(m) = 4m?*(1 4 2m)*™.

THEOREM 2.2. The number of bipartitions in
Bestyy(Qr,m), for any 1 <k <n, is O(nf(m)).

Proof. Let (X,Y) be a bipartition in Best,,(Qx, m)
with z € X and y € Y. We first bound the number
of bipartitions (X', Y”) € Bestyy(Q, m) with z € X’
and y € Y’ that are incompatible with (X,Y"). There
exists nonempty sets A = X NY and B = X'NY
since (X,Y) and (X', Y”) are not compatible.

Let G be a directed graph with vertex set X
and for each u,v € X, (u,v) is an edge of G if
ux|vy € (. Notice that an edge from a € A to
v € X — A indicates that {a, v, z, y} is a quartet error
across (X',Y") involving # and y since v,z € X’ and
a,y € Y’'. Tt follows that the number of edges from
vertices in A to vertices in X — A is less than m.

Analogously, a directed graph can be constructed
on vertex set Y with the result that the number of
edges from vertices in Y — B to B is less than m.

Notice that, for each a € A and b € B, {a,b, z,y}
is a quartet error across either (X,Y) or (X', Y"). Tt
follows that |A||B| < 2m. Consequently, |A| < 2m
and |B| < 2m.

The number of bipartitions (X’, Y”’) incompatible
with (X,Y) is bounded by the number of choices for
A C X such that |A] < 2m and there are less than m
edges from A to X — A in the above graph with vertex
set X. Similarly, the number of choices for B C Y
such that |B| < 2m and there are less than m edges
from Y — B to B in the above graph with vertex set
Y. We use the following lemma to give us this bound
where for a directed graph G, in(v) and out(v) denote

the out-degree and in-degree of a vertex. Similarly,
let in(V’) and out(V’) denote the number of edges
leaving or entering a subset V' of the vertex set.

LEMMA 2.1. Let G = (V, E) be a tournament. There
are at most (k + 2m/k)* subsets V' of V such that
[V'| = k and in(V') < m. Thus, by symmetry, there
are at most (k + 2m/k)* subsets V' of V such that
[V'| = k and out(V') < m.

Proof. Omitted. MW

When a = |A| and b = |B|, the number of
bipartitions (X’,Y”) is bounded by (a + 2m/a)®(b+
2m/b)°. Summing over all set sizes we have the bound

2m 2m
>3 (a+2mfa)(b+ 2m/b)°
a=1b=1
2m
< 2m(1—|—2m)2m2(a—|—2m/a)a
a=1
< Am?(1 4 2m)*™
NOVV let (Xl,Yl), (XQ,YQ), P ,(Xh,Yh) be

a maximal compatible collection of bipartitions
in Bestyy(Q,m). Every other bipartition in
Bestyy(Q,m) is incompatible with at least one
(X;,Y;). Since h = O(n) we have that |Best,, (Q, m)|
is O(nf(m)). N

There are O(n?) sets Best, (Qx, m) to construct.
Constructing each set Besty, (Qr, m) takes time pro-
portional to the size of Bestyy(Qr—1,m) times the
complexity of testing if a bipartition has fewer than
m quartet errors involving # and y. Without loss of
generality suppose the bipartition is (X U {s;},Y)
and is not trivial (trivial bipartitions have no quartet
errors). It follows from Theorem 2.1 that (X,Y) €
Bestyy(Qr—1, m). At this point assume that on the
previous iteration we have counted and stored the
number of quartet errors across (X,Y) involving x
and y. It then suffices to count the number of quar-
tet errors across (X,Y) involving z, y and si. There
are O(n) of these quartets to examine. It follows that
the complexity of constructing all sets Besty, (Qx, m)

is O(n® f(m)).

2.2 Computing Best(Qy, m)
We define a recurrence for Best(Qy,m) by the fol-
lowing theorem:

THEOREM 2.3. If k = 1 then Best(Qg,m) = 0. If
k> 2 then

Best(Qu,m) CLURUM



where
L = {(X U {Sk}ay) : (X,Y) € BeSt(Qk—lam)}
R = {(X,YU{sx}):(X,Y) € Best(Qx—1,m)}
M = Uges,_, Bestys, (Qr,m)

Proof. Suppose (X U {s;},Y) € Best(Qy,m) but
(X,Y) ¢ Best(Qr—_1,m). Tt follows that there are
less than m|X|(]Y| —1)/2 quartet errors across (X U
{s£},Y) but at least m(|X| — 1)(|]Y| — 1)/2 quartet
errors across (X,Y). Let siy denote the number of
quartet errors across (X U {sx},Y) involving s;; and
let sout denote the number of quartet errors across
(X U{sk},Y) not involving sj:

. m| X|([Y] - 1)
51n+50ut < 9
X|=-1(y|-1
S CORSI(R)
Y[-1
< mIZD

A key to the design of the hypercleaning algo-
rithm is that quartet errors are relatively sparse for
small m: there are | X|(|X|— D)|Y|(|Y] - 1)/4 quar-
tets across e = (X,Y) but only m(|X|-1)(|Y|-1)/2
quartet errors. This ratio suggests that we consider
the average number of quartet errors across e involv-
ing a pair of labels v € X and y € Y.

Each quartet error across (X U{s;},Y) involving
s; also involves two elements y; and ys from Y.
Hence, the average number of quartet errors across
(X U{sx},Y) involving s, per element of ¥ is less
than

om(|Y] - 1)/2Y] < m.

This implies that there exists y € Y such that s
and y are involved in less than m quartet errors
across (X U {s;},Y). In particular, (X U{sz},Y) €
Bestys_(Q,m) for some y € Sx_1. M

The algorithm for computing Best(Qy,m), for
1 < k < n follows from Theorem 2.3: For k ranging
from 1 to n, and for all (X,Y) € LURU M,
place (X,Y) in Best(Qy, m) if there are fewer than
m(|X| = 1)(|Y] = 1)/2 quartet errors across (X,Y).

In order to analyze the complexity of this algo-
rithm a bound on the size of each set Best(Qy,m) is
obtained. Let f be defined as in Section 2.1.

THEOREM 2.4. The number of bipartitions in
Best(Qg,m), for any 1 <k < n, is O(n®f(2m)).

Proof. Let (X,Y) € Best(Q,m). FEach quartet
error across (X,Y) involves 4 pairs of the form z €
X and y € Y. Suppose every pair z € X and
y € Y is involved in at least 2m quartet errors
across (X,Y). This requires at least 2m|X|[Y|/4 =
m|X|[Y|/2 quartet errors across (X,Y). However,
this is a contradiction since (X,Y) € Best(Q,m).
We conclude that (X,Y) € Besty, (Qx, 2m) for some
pair x € X and y € Y. This yields the following:

|Best(Qr,m)| < Y |Bestyy(Qk,2m)]

z,y€eS

By Theorem 2.2 it follows that Best(Qr,m) is
omn3f(2m)). N

There are O(n) sets Best(Qy, m) to construct.
If (X,Y) € Best(Qz—1,m) then to determine if
(X U{sr},Y) € Best(Qr,m) (or to determine if
(X, Y U {s}) € Best(Qp, m)) we can assume that
on the previous iteration we have counted and stored
the number of quartet errors across (X,Y). To
this we add the number of quartet errors across
(X U {sx},Y) that involve si. There are O(n3)
of these quartets to examine. Finally, there are
|Best(Qr—1,m)] = O(nf(2m)) bipartitions (X,Y).
Otherwise, if (X,Y) € Bestys, (Qk, m) then we
can use an adaption of the path covering algo-
rithms of [5, 6] in O(n*) time. Finally, there are
|Bestys, (Qr,m)| = O(nf(m)) bipartitions (X,Y)
and z takes on O(n) values. This results in the time
complexity of O(n®f(2m) + n” f(m)).

The overall complexity to compute Best(Q,m)
is O(n®f(m) + n°f(2m) + n" f(m)) = O(n°f(2m) +
n”f(m)). This establishes the problem of determin-
ing Best((),m) as fixed parameter tractable [12].
Like other fixed parameter tractable problems, we ex-
pect more efficient implementations to be achieved.

2.3 Local edge cleaning

To improve the complexity of the hypercleaning algo-
rithm when m = 1 we introduce an intermediary set
of bipartitions. Let = be a sequence in S and define
the set of bipartitions Best;(Q,1) = {(X,Y) |z € X
and there are less than (|Y| — 1)/2 quartet errors
across (X,Y) involving #}. Then Best,(Q, 1) is com-
patible, and can be constructed in O(n?) time by
first computing sets of the form Besty,(Qx,1), for
all z,y € S and 1 <k < n and then computing sets
of the form Best;(Q), forall z € Sand 1 <k <n
using the following recurrence:

THEOREM 2.5. If k = 2 then Best,(Qx,1) =
{{z},{y})}. When k > 3 we have

Best;(Qr,1) C Ly UR, UM,



L, = {(XU{s},Y):(X,Y) € Best(Qx-1,1)}
R, = {(X,YU{sr}):(X,Y) € Besty;(Qr-1,1)}
M, = Besty, (Q,1)

Proof. Omitted. MW

Finally, Best(Qy, 1) can be constructed for 1 <
k < n using the following recurrence in O(n®) time:

THEOREM 2.6. If k = 2 then Best(Qg,1) =
{{z},{y})}. When k> 3 we have

Best(Qg, 1) CL'UR UM’

where
L' = {(XU{s},Y):(X,Y) € Best(Qr-1,1)}
R = {(X,YU{s}):(X,Y) € Best(Qr-1,1)}
M' = Bests, (Qk,1)

Proof. Omitted. MW

3 Simulation Results

The simulation study was designed to address the
following questions:

e Does hypercleaning obtain more edges of the un-
known evolutionary tree than local edge clean-
ing?

e How large must m be so that Best(Q, m) con-
tains all edges of the unknown evolutionary tree?

To answer these questions, DNA sequences were
artificially evolved using the Kimura 2 parameter
model of evolution [26] with transition/transversion
ratio of 5 : 1 on an evolutionary tree 7 sampled
from the Ribosomal Database Project prokaryotic
tree [21]. This tree T represents the evolutionary
history of the TRP saccharophilum subgroup and
contains 10 leaves. The tree appears in Figure 3.
Site-to-site rate variance was simulated using the
gamma function with parameter 1.

To better explore the parameter space, sequence
length and edge length were varied. More specifically,
the sequence length was varied over values 100,
200, 500 and 1000. The evolutionary tree T was
scaled by factors 0.25, 0.5, 1.0 and 2.0 so that
trees with recently diverged sequences and trees with
distantly diverged sequences were examined. For

each set of sequences generated, a quartet set ) was
obtained by applying the ordinal quartet method[20]
to the sequences. The hypercleaning algorithm was
then applied to @ to obtain Best(Q,0), Best(Q, 1),
.., Best(Q,5). Similarly, the sets Comp(Q,0),
Comp(Q, 1), ..., Comp(Q,5) were obtained.

The results appear in Table 1. Each cell of the
table is indexed by an edge length scaling factor,
a value of m between 0 and 5 and a sequence
length. Fach cell contains four values computed as
the average over 200 trials.

o The first value is the percentage of the nontrivial
edges in T that appear in Best(Q, m). It is clear
from the results that as m increases Best(Q, m)
approaches 100%. In particular, Best(Q,5)
almost always contains every nontrivial edge of
T. Notice that Best(Q,3) approaches 100% for
sequence lengths greater than 200. This clearly
demonstrates that hypercleaning is effective for
small values of m.

e The second value is the number of bipartitions
in Best(Q,m) expressed as a percentage of the
number of nontrivial edges in 7. The ratio of
the first value to the second value is the density
of nontrivial edges of T in Best(Q, m). As m
increases it is clear that this density decreases
rapidly supporting the assumption that edges of
T cluster near the beginning of the bipartition
list defined by the support function d.

e The third value is the percentage of the nontriv-
ial edges in T that appear in Comp(Q, m). The
third value measures the accuracy of the local
cleaning algorithm (m = 1) and of the greedy
algorithm (m > 1) that selects edges of T from
Best(Q,m). In all cases, there is a significant
improve of hypercleaning with only m = 2 over
local cleaning (i.e., when m = 1). However, it’s
lower time complexity makes local cleaning still
useful for dealing with larger data sets.

For moderate sequence lengths of 200 to 500,
Comp(Q, m) contains approximately 85% of T’s
nontrivial edges. Since T has 7 nontrivial edges
this implies that Comp(Q, m), on average, con-
tains all edges of T except 1. The model tree
T used in the simulation contains a very short
edges that is difficult to recover. For a less chal-
lenging tree it is expected that accuracy will only
improve. Note that as sequence length increases
so does accuracy. This is to be expected since as
sequence length increases so does the amount of
information available for recovering edges of 7.



Trp.sacchatTreponema saccharophilum str PB

o Trp.CA#Treponemasp. str CA

env.spUN2#clone UN2

——————————0O Trp.matop#Treponema maltophilum

Trp.succin#Treponema succinifaciens str 6091

O Trp.pectin#Treponema pectinovorum

Trp.bryant#Treponema bryantii str RUS-1

str.spA012#tr.5p40-12
env.spUN39¢#clone UN39
E env.spUN10#clone UN10
Figure 3: The TRP saccharophilum subgroup tree.
The values for m = 1 indicate the number of  [1] H. J. Bandelt and A. Dress. Reconstructing the

nontrivial edges of T obtained by local edge
cleaning. Comparing these to the m = 5 values
it is clear that hypercleaning in conjunction with
the greedy algorithm is much more effective at
obtaining nontrivial edges of 7.

The fourth value is the number of bipartitions
in Comp(Q, m) expressed as a percentage of the
number of nontrivial edges in T. This provides
a measure of the degree of resolution of the tree
inferred by the greedy heuristic. In all cases,
Comp(Q,2) gives an almost fully resolved tree
(in some cases the tree is already fully resolved),
which explains that few more improvements are
observed when resorting to higher values of m,
i.e. going from m =2 to m = 5.

In the study, Best(Q,5) most often contains
all nontrivial edges of T and Comp(Q,5) is
100%. However, Comp(Q,5) does not contain
all nontrivial edges of T. This indicates that
for some bipartition (X', Y”) not in T and some
bipartition (X,Y) in 7, that §(Q, (X', Y)) <
J(@Q,(X,Y)). Consequently, the greedy algo-
rithm is fooled since an incorrect bipartition is
ranked ahead of a correct edge of T. Future re-
search includes the development of less simplis-
tic algorithms for selecting a set of compatible
bipartitions from Best(Q, m).
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