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Abstract

The comparison of the gene orders in a set of genomes can be used

to infer their phylogenetic relationships and to reconstruct ancestral gene

orders. For three genomes this is done by solving the “median problem

for breakpoints”; this solution can then be incorporated into a routine for

estimating optimal gene orders for all the ancestral genomes in a fixed

phylogeny. For the difficult (and most prevalent) case where the genomes

contain partially different sets of genes, we present a general heuristic for

the median problem for induced breakpoints. A fixed-phylogeny optimiza-

tion based on this is applied in a phylogenetic study of a set of completely

sequenced protist mitochondrial genomes, confirming some of the recent

sequence-based groupings which have been proposed and, conversely, con-

firming the usefulness of the breakpoint method as a phylogenetic tool

even for small genomes.
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1 Introduction.

The origin and early diversification of the eukaryotes is one of the fundamental

problems of evolutionary theory. The widely accepted endosymbiotic origin of

the mitochondrion and its consequent evolution, in key respects independent of

the evolution of the nuclear genome, make it a natural focus of phylogenetic

studies. Indeed phylogenies based on a number of mitochondrial genes have led

to a far clearer understanding of the phylogeny of unicellular eukaryotes—the

protists and the fungi—than was ever possible based on morphological classifica-

tions alone (Burger et al. 1999, Gray et al. 1998, 1999, Lang et al. 1997,1998a,b,

1999, Paquin et al. 1997, Turmel et al. 1999). Nevertheless, this approach is

limited by the relatively small number of genes present in all or most mitochon-

dria, and the finite amount of phylogenetic information that can be extracted

from the sequence comparison of any of these genes. For some time we have

advocated the quantification of gene order changes within the mitochondrion as

an independent measure of genomic divergence that can be used to supplement

sequence comparison data (Sankoff et al. 1992).

Early work in the construction of phylogenies from gene order data used a

distance based approach. Sankoff (1992) estimated the distance between two

gene orders using a heuristic algorithm for minimizing a weighted measure of

the number of reversals and transpositions of chromosome fragments, as well as

the insertion and deletion of individual genes, necessary to transform one order

into the other. Exact polynomial time algorithms for calculating the minimum

number of reversals, of translocations, or of reversals and translocations, needed
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to transform one gene order into another were developed by Hannenhalli and

Pevzner (1995a), Hannenhalli (1995), and Hannenhalli and Pevzner (1995b),

respectively. Distance matrix methods could then be used to reconstruct a

phylogeny.

As attention focused on exact and efficient algorithms for rearrangement

distances, phylogenetic questions were somewhat neglected. This was partly

due to the lack of realism in measuring genomic divergence in terms of reversals

only, with all reversals of equal weight. It was also due to the limited aim of

distance matrix methods in estimating only the phylogenetic tree, and not the

characters of the ancestors associated with the internal nodes of the tree. This

contrasts with methods such as parsimony or likelihood which avoid reducing

the data to pairwise distances prior to phylogenetic reconstruction, and thus

conserve information necessary for inferring ancestral structures. The latter

methods would require us to compare more than two genomes at a time, whereas

two only suffice with distance-based methods. Comparison of more than two

genomes at a time, however, has been shown to be NP-hard (Caprara 1999).

Moreover, even heuristic approaches to such comparisons work well only for very

small problems (cf Hannenhalli et al. 1995, Sankoff et al. 1996).

To circumvent these difficulties, Sankoff and Blanchette (1998) introduced

the notion of breakpoint phylogeny. For two genomes containing the same genes,

breakpoints are simply pairs of consecutive genes g1 and g2 which occur in

order g1g2 in one genome but not in the other. Adjacency is also considered

disrupted if the two genes have different orientation to each other in the two
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genomes; e.g. g2 succeeds g1 but with opposite reading direction in one genome

while they are adjacent on the same DNA strand in the other genome. The

number of breakpoints correlates with the evolutionary divergence of the two

genomes. In contrast to rearrangement distances, this is easily extended to three

or more gene orders: the median problem, though it is computationally costly for

large genomes (Pe’er and Shamir 1998, Bryant 1998). Solutions to the median

problem can be combined and iterated to optimize the ancestral genomes in a

given tree topology. For moderate numbers of genomes, all possible topologies

can be evaluated to solve the phylogenetic problem. Blanchette et al. (1999)

have demonstrated the applicability of the method by showing the plausibility

of breakpoint phylogenies constructed on the basis of the relatively small (37

genes) mitochondria of metazoans, from humans to nematodes.

Unfortunately the notion of breakpoint does not carry over in a straightfor-

ward way when the genomes being compared do not have the same set of genes.

The shared genes in two genomes may be ordered in exactly the same way but

because of intervening genes that belong to only one or the other, the number

of breakpoints may be large. It is more appropriate in this context to consider

induced breakpoints, the breakpoints remaining when the genes belonging to

only one or the other genome are discarded. When comparing a set of three or

more genomes which vary greatly in the number of genes they contain, it also

becomes necessary to normalise the number of induced breakpoints between two

genomes by the number of genes they share.

In the present paper we propose and test heuristics for the median problem
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for (normalised) induced breakpoints on unequal genomes, including a partic-

ularly rapid version – O(n log n), where n is the length of the longest genome.

We then incorporate this routine into a procedure for optimizing the gene order

inferred at each ancestral node of a fixed phylogenetic tree. This methodol-

ogy is applied to a set of completely sequenced protist mitochondrial genomes,

confirming some of the recent sequence-based groupings which have been pro-

posed and, conversely, confirming the usefulness of the breakpoint method as a

phylogenetic tool even for small genomes.

2 Definitions and problems

2.1 Signed genomes and the breakpoint distance

A genome A is represented by a (circular) ordering A = 〈a1, a2, . . . , an, a1〉. To

indicate which genes lie on the same DNA strand, each gene is signed either

positive (ai) or negative (−ai), depending on whether it is on the strand read

(transcribed) in the clockwise or the counterclockwise direction, respectively.

Reversing both the gene order and the signs of all the genes of a genome therefore

gives an alternative representation of the same genome. We let G(A) denote the

set of genes in A, including both positive and negative copies of each gene.

The set of genes in a genome is referred to as its gene content. For each

ai ∈ G(A) we let succ(ai, A) denote the successor of g in A. In this example,

succ(ai, A) = ai+1 and succ(an, A) = a1. Note that succ(g,A) = h if and only

if succ(−h, A) = −g.
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A breakpoint in a genome A with respect to another genome B on the

same gene set is an ordered pair of genes (g, h) such that succ(g,A) = h and

succ(g,B) 6= h. An adjacency in a genome A with respect to another genome

B is an ordered pair of genes (g, h) such that succ(g,A) = h = succ(g,B).

Let A be a genome and let W be a set of genes. We let A|W denote the

genome A with all genes not in W removed, and all remaining genes left in

the same order. This is called an induced genome of A. The (normalised)

breakpoint distance between two genomes A and B is then defined

d(A,B) = 1
2|G(A)∩G(B)| |{g ∈ G(A) ∩ G(B) : succ(g,A|G(B)) 6= succ(g,B|G(A))}|

(2.1)

The scaling factor 1
2|G(A)∩G(B)| is pertinent only when there is variation in gene

content between genomes, as in the mitochondrial genomes we study here.

Because it focuses only on induced breakpoints, and is normalised, our break-

point distance is relatively robust against missing data, such as genes absent in

some organisms or excluded for the methodological reasons invoked in Section

3.2.

2.2 The breakpoint median problem

Let A = A1, . . . , AN be a collection of genomes and define

G(A) = G(A1) ∪ G(A2) · · · ∪ G(AN ) . (2.2)

We will assume that each gene g ∈ G(A) appears in at least two genomes, as

genes appearing in only one genome do not contribute to gene order information.
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The median score Ψ(X,A) of a genome X with gene set G(X) = G(A) is

defined to be

Ψ(X,A) =
N∑

i=1

d(X, Ai) (2.3)

and the breakpoint median problem is to find X with G(X) = G(A) that min-

imizes Ψ(X,A). The breakpoint median problem is NP-hard, even for three

genomes with equal gene content (Pe’er and Shamir 1998). In Section 5.1 we

present a fast heuristic for the breakpoint median problem for genomes with

unequal gene sets.

2.3 The breakpoint phylogeny problem

Let T = (V,E(T )) be a binary rooted tree with N leaves. We direct all edges of

T towards the root. To each leaf we assign a different genome Ai from the input

collection A = A1, A2, . . . , AN . A valid assignment of genomes to internal

nodes of T is a function X from V to the set of genomes satisfying:

1. For each leaf v ∈ V , X (v) is the genome already assigned to v.

2. For each internal node v ∈ V with children u1, u2 we have G(X (v)) =

G(X (u1)) ∪ G(X (u2)).

The second condition models the situation in eukaryotes where, it is believed, all

known mitochondrial genes were present in the ancestral mitochondrial genome

and gene content has evolved only through deletion. For ease of presentation

we let G(v) denote G(X (v)), which is constant over all valid assignments X .
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The length of a tree T with respect to the input genomes A and a valid

assignment X is defined

l(X ,A, T ) =
∑

(u,v)∈E(T )

d(X (u),X (v)) (2.4)

and the breakpoint phylogeny problem is to find a valid assignment X

minimizing l(X ,A, T ).

The median breakpoint problem is equivalent to the breakpoint phylogeny

problem applied to a rooted tree with one internal node that has N children

labelled by the input genomes to the median problem. Hence, the breakpoint

phylogeny problem is also NP-hard. In Section 5.1 we present an iterative

heuristic for the breakpoint phylogeny problem for genomes with unequal gene

sets.

3 Gene order data for early eukaryotes

3.1 The evolution of the eukaryotes

Prior to plants, animals and fungi, a large number of mostly unicellular eukary-

otes (protists) diverged from the common eukaryotic ancestor. Their classifi-

cation has traditionally been difficult since they lack the differentiated tissues

organized into organs that help categorize plants and animals. However, con-

trary to prokaryotes that virtually lack morphological character, protists can be

classified based on ultrastructural features, such as features of the flagellar ap-

paratus or the shape of mitochondrial cristae. Although not without exception,

animals, fungi, plants, green and red algae all manifest flattened cristae, while
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Euglena, the trypanosomatids (like Leishmania) and heteroloboseans possess

discoidal cristae. Still another large grouping, including the ciliates (such as

Parmecium), the slime molds and the stramenopiles, have tubular cristae (Gray

et al. 1998).

Among the organisms characterized by flattened cristae, sequence analysis

of several mitochondrial genes has indicated a common ancestry for animals

and fungi (Paquin et al. 1997), a close relationship between red and green algae

(Burger et al. 1999), and the origin of the land plants within the latter. Several of

the subgroups within the discoidal cristae grouping can also be linked through

gene sequence comparison. The same can be said within the tubular cristae

group, particularly those within the stramenopiles, where links are evident be-

tween the chrysophytes, the synurophytes, the oomycetes and the bicosoecids.

Within each of these large groupings, however, the earliest relationships remain

unclear.

3.2 The data

GOBASE (http://megasun.bch.umontreal.ca/gobase/ gobase.html) is a rela-

tional organelle genome database, which integrates sequence data, information

on evolution, taxonomy, biochemistry, RNA secondary structure, physical maps

and more (Korab-Laskowska et al. 1998).

The major body of data contained in GOBASE consists of mitochondrial

sequence data drawn from the Entrez database system and taxonomy data ex-

tracted from the NCBI Taxon database. These data are obtained on a regular
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basis by a custom-made tool, POP2, which reads the Entrez data in ASN.1 for-

mat, extracts the data relevant to the molecular features defined in GOBASE,

and stores this information in GOBASE tables.

The production of gene orders from sequence data cannot be totally auto-

mated. Genes may overlap, may be fragmented and scattered across the genome

(especially the rRNA genes), may be unrecognized or unannotated in the Entrez

file, or annotated in an idiosyncratic way. As a first step, maps are produced

from an entry, and a gene order with signed genes is derived from that. Maps

are posted on the GOBASE website. Many of the mitochondrial sequences

are produced in the laboratories affiliated with the Organelle Genome Megase-

quencing Program and the Fungal Mitochondrial Genome Project (e.g. Burger

et al. 1999, Lang et al. 1997, Paquin et al. 1996, Paquin et al. 1997, Turmel et

al. 1999), and prepublication maps of these are also posted.

For the purposes of the analysis in the present paper, duplicate genes were

excluded from some of the genomes because of the inability of our method to

handle these duplicates. Most of these were tRNA genes. As far as possible, we

tried to identify homologous sets of mitochondrial tRNA genes across as many

protists as possible, taking into account the corresponding amino acid, the an-

ticodon, the translation table appropriate to the organism and, in the few cases

where it was possible, positional correspondences in closely related genomes.

In the remaining instances where the duplicates remained indistinguishable, we

deleted both from the gene order.

As explained at the end of Section ??, this introduces little bias into the
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comparison, though the loss of data does decrease the precision of the esti-

mates. In other cases, where entire fragments of the genome were duplicated,

we simply deleted the fragment which seemed the secondary one, based on com-

parisons with closely related genomes or by conforming to the strandedness of

the majority of the genome.

For some genes in some genomes, part of the gene is located in one position

and the rest elsewhere, in such a way that other genes intervene between two

fragments. We retained only the position of the longer fragment. Where there

was fragmentation of a gene into several pieces, the genome was excluded from

the analysis.

Finally, we excluded all ORFs (hypothetical proteins) from the data unless

there was good evidence that the same ORF appeared in two or more genomes.

Two other criteria served to exclude other genomes from the analysis; too

few genes, such as in the trypanosomatids where, moreover, no tRNAs appear

in the gene order, and an a posterior filter where a genome turned out to bear

no more than random resemblance to any of the other genomes in the data set.

The data we analyzed are summarized in Table 1.

TABLE 1 GOES NEAR HERE
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4 A practical heuristic for the breakpoint me-

dian problem

We now discuss algorithms for the breakpoint median problem. In Section 4.1

we discuss connections with the traveling salesman problem (TSP) that have

been exploited in earlier work. The reduction to the TSP breaks down when

the input genomes have unequal gene sets, but we can still use the literature

on TSP as a source for algorithms for the general case. We found that a simple

insertion algorithm performed best. A high level description of the algorithm is

given in Section 4.2 and an O(Nn log n) time version is described in Section 4.3.

Here, N is the number of genomes in the input to the median problem, while

n is the number of genes in the union of their gene sets. The application and

variability of the heuristic are explored in Section 4.4.

4.1 The breakpoint median problem and the TSP

The breakpoint median problem was first investigated by Sankoff and Blanchette

(1997) who showed that when all genomes have the same gene set, the median

problem can be converted into an instance of the traveling salesman problem

(TSP). Though the TSP is itself NP-hard, there exist an impressive range of

heuristics, lower bounds, branch and cut methods and iterative improvement

techniques that can be used to solve the TSP for even moderately large problem

instances. (Reinelt (1991) gives a comprehensive survey of TSP methods.)

The reduction to TSP breaks down when we consider the induced break-
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point median problem for genomes with unequal gene sets. The equivalent TSP

problem would be one with multiple distance matrices defined on overlapping

sets of cities—the length of a tour being the summed length of the respective

induced tours. Many of the standard lower bounds, heuristic and exact methods

for TSP cannot be translated to this general framework (e.g. spanning tree and

matching based methods, Lin-Kernighan local search, Held-Karp lower bound).

While we were able to construct a linear programming formulation of the in-

duced breakpoint problem, the large number of variables required prevented the

practical application of branch and cut style methods.

We implemented divide and conquer methods, tour amalgamation methods,

k-opt search methods and various insertion methods. These were applied to

triples of genomes taken from the eukaryote mitochondrial data set. Though the

comparison was relatively informal, the insertion-based heuristics were clearly

superior, and were adopted as our heuristics of choice.

4.2 A suprisingly effective heuristic for gene insertion

In this section we give a high level description of the algorithm. Implementation

details, and efficiency gains, will be discussed in Section 4.3.

The insertion algorithm works by inserting the genes one by one into a par-

tially complete genome. The place of insertion is chosen to minimize the induced

breakpoint median score Ψ(X,A), where X is the partially completed genome.

The heuristic is therefore an analogue of insertion-based heuristics from the trav-

eling salesman problem (Reinelt 1991). There is a subtle difference that makes
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the breakpoint median heuristic perform well whereas the original TSP heuristic

performs quite badly. At each iteration we solve an induced subproblem, since

the definition of the breakpoint distance is only affected by the relative order

of shared genes. The induced subproblem captures far more important struc-

tural information of the whole problem than the simple restriction of a distance

matrix to a subset of cities.

We pay particular attention to the insertion order of the genes. Clearly we

want to use as much information as we can as early as possible. If the first genes

that we insert only appear in a few genomes then the induced input genomes,

with gene sets restricted to those genes already inserted, will be relatively small

and uninformative. We therefore select an ordering that inserts genes in such

a way that the genes appearing in the largest number of genomes are inserted

first.

To formalise this intuition, letA = A1, A2, . . . , AN be a collection of genomes

and put G = G(A). For each g ∈ G define the frequency of g by

freq(g,A) = |{Ai ∈ A : g ∈ G(Ai)}|.

A linear ordering g1 < g2 < · · · < gn of genes in G is monotonic decreasing if

freq(gi,A) > freq(gj ,A) implies i < j. We can generate a random monotonic

decreasing ordering of G by partitioning G according to frequency, randomly

ordering the set of genes with a particular frequency, and concatenating these

orderings.

So as not to disguise the basic structure of the algorithm we present high

level pseudocode here and leave detailed implementation details to the next
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section.

Priority insertion heuristic

1. Choose a random monotonic decreasing order g1, g2, . . . , gn of G.

2. med← 〈g1〉

3. for k equals 2 to |G| do

4. Insert gk into med so as to minimize Ψ(med,A).

5. end(for)

6. return med

end.

4.3 Implementing the heuristic

The bottleneck in the Priority insertion heuristic is line 4 where we determine

where to insert the next gene. At iteration k there are 2(k − 1) places to insert

the new gene gk since we could insert before h or −h for each of the k − 1

genes h already in med. For each insertion position we need to calculate the

corresponding increase in Ψ.

Suppose that we are maintaining a table containing the successors of every

gene in a genome A. If we insert a new gene x into A between genes g and h

then we will change exactly four entries in the successor table: the entries for x,

−x, g and −h. Let B be another genome on the same gene set, and suppose we

have inserted x into B between genes g′ and h′. The change in d(A,B) resulting

from these insertions can be computed by examining the successor table entries

for x, −x, g, −h, g′, and −h′, counting the number of new adjacencies and the
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number of new breakpoints. Hence we can update d(A,B) in constant time.

In order to exploit the constant time update of breakpoint distances when

the genomes have unequal gene sets we need to have some way of updating the

induced genomes. Put Gk = {g1, g2, . . . , gk}. At iteration k we use the following

induced genomes:

1. Ai|Gk
for each i = 1, . . . , N .

2. med|G(Ai) for each i = 1, . . . , N .

We use a data structure that enables us to store each of these 2N genomes and

update them at each iteration in O(N log n) time.

Given a signed genome A and a subset of genes X we construct a balanced

binary tree with leaves corresponding to genes in A and subtrees ordered in such

a way that a postorder traversal of the tree gives the genes in the correct order.

We assign a flag to each node in the tree indicating whether or not a subtree

below that node contains any elements of X (Figure 1).

FIGURE 1 GOES NEAR HERE

We can insert new genomes into A or X, rebalance the tree, and update

flags, all in O(log n) time. The successor of a gene in the induced genome is

found by continuing a postorder traversal, skipping over subtrees that do not

contain elements of X. Hence we can update our table of genomes in O(N log n)

time.
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Running simulations we noticed that the algorithm tended to insert a gene

gk so as to introduce an adjacency with one of the input genomes. Since the

search through all insertion locations is a bottleneck in the priority insertion

algorithm, we implemented a second version of the heuristic. In this version,

which we call fast priority insertion, we restrict the insertion locations for

gk to those positions immediately before or after genes that are a predecessor

or successor of gk in one of the input genomes. This reduces the number of

positions to O(N) at each iteration, giving an algorithm taking O(Nn log n)

time in total.

We note that it is possible to construct a pathological case where fast pri-

ority insertion and priority insertion will insert in different positions. However

we found (see Section 4.4) that the advantages of an increase in speed far out-

weighed the possible loss of optimality.

4.4 Applying the heuristic

Both insertion heuristics have some degree of randomness in the way they break

ties. Improved genomes can be obtained by repeating the heuristics many times.

In order to choose an appropriate number of iterations we require an idea of the

distribution of median scores returned by the heuristics.

While the median heuristic can be applied to an arbitrary number N of

genomes, the application to the breakpoint phylogeny problem below requires

the use of the median heuristic for up to three genomes. Hence our experimental

work focused on the case of three input genomes.
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We choose ten arbitrary triples of genomes from the data set, the only crite-

rion affecting our choice of triples being that some of the triples should contain

closely related species while others should contain distantly related species. The

composition of the triples is given in Table 2.

The priority insertion algorithm and the fast priority insertion algorithm

were run 10000 times on each triple. Our aim was to estimate how many it-

erations are necessary to be adequately confident that the best score returned

is equal to, or very close to, the best score that would be returned by 10000

iterations.

For each heuristic and each triple, we determined the best median score, the

number f(< ε) of times the heuristic returned a score that is within ε = 0.05

(normalised) breakpoints of this best score. This gives an estimate pε of the

probability of getting to within ε of the best score in a particular iteration. The

probability of getting within ε of the best in k iterations is then 1 − (1 − pε)k.

Therefore, to be 99% confident of performing enough iterations we need to

perform

kε =
log(0.01)

log(1− pε)

iterations.

In Table 2 we summarise our experimental results for the median heuristic

algorithms.

TABLE 2 goes near here.
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First note that there is little difference in the scores obtained by the two

heuristics. In triple 5, the priority insertion heuristic returns a score slightly

less than the fast priority insertion—but the situation is reversed in the next

triple. The number of iterations required is close to the same between each

heuristic. Since the fast priority takes a lot less time to compute, we adopt it

as the median heuristic in later analyses.

In most of the triples, 50 iterations more than suffices to be 99% sure of

obtaining a score close to the score that would be obtained after 10000 iterations.

There are two exceptions: triple 2 and triple 6, where neither heuristic frequently

locates a near-optimal median. We would hope that detailed examination of

these two examples might lead to future improvements of the heuristics. In the

meantime we need to increase the number of iterations performed.

5 A heuristic for the fixed topology breakpoint

phylogeny problem

5.1 The median iterate heuristic for breakpoint phylogeny

The heuristic for the median problem developed in Section 4 is at the heart of

our approach to breakpoint phylogeny.

The basic idea is to assign random genomes to the internal vertices of the

tree, then iteratively improve the tree by changing one genome at a time. For

a given vertex v, we apply the median algorithm to the three genomes assigned

to neighbours of the vertex. If the median score of the median returned by
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the algorithm improves on the sum of the existing edge lengths from v to its

neighbours, then we assign the new genome to v. By repeated passes through

the tree we will eventually obtain a local optimum. We can then repeat the

whole process many times, each time initializing the genomes randomly then

iterating until reaching a local optimum.

We implemented two strategies for passing through the tree at each iteration.

In the first, we traversed the tree in a postorder traversal, finishing the iteration

with an assignment to the root vertex. In the second version we performed two

passes at each iteration, a post-order traversal followed by a pre-order traversal.

The double pass approach was motivated by the desire to communicate order

information as quickly downward through the tree as upward through the tree.

The experimental performances of both strategies are described in the following

section.

The double pass iterative improvement heuristic is outlined in the following

algorithm. Refer to Section 2.3 for notation and definitions.

Median iterate heuristic for breakpoint phylogeny

1. Let X be a randomly chosen valid assignment for T.

2. repeat

3. for each internal vertex v in a postorder traversal of T do

4. Let u1, u2, u3 be the neighbours of v.

5. Let M be the median genome returned by a breakpoint median

heuristic applied to X (u1), X (u2), and X (u3).

6. If d(X (u1),M) + d(X (u2),M) + d(X (u3),M)
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< d(X (u1),X (v)) + d(X (u2),X (v)) + d(X (u3),X (v)) then

7. X (v)←M

8. end for

9. for each internal vertex v in a pre-order traversal of T do

10. Let u1, u2, u3 be the neighbours of v.

11. Let M be the median genome returned by a breakpoint median

heuristic applied to X (u1), X (u2), and X (u3).

12. If d(X (u1),M) + d(X (u2),M) + d(X (u3),M)

< d(X (u1),X (v)) + d(X (u2),X (v)) + d(X (u3),X (v)) then

13. X (v)←M

14. end for

15.until convergence conditions reached.

end.

There are a number of possibilities for convergence conditions. In our anal-

ysis of eukaryote mitochondrial data (Section 6.2) we simply repeated this loop

50 times, later observing that at this point there had been no, or very little,

improvement in the tree length for some time.

Finally, the randomness introduced in the selection of initial genomes neces-

sitates repeated calls to the median iterate heuristic. Each time, a new random,

initial assignment is chosen. We made 120 calls to the heuristic when analysing

the eukaryote mitochondrial data (see below, Section 6.2).
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5.2 Selecting phylogenies

When the number of genomes is small, we can evaluate each possible tree indi-

vidually, then select the tree with the minimum breakpoint phylogeny length.

However when the number N of genomes is large, as in the mitochondrial genome

data set, an exhaustive tree search becomes infeasible. At present, we use the

breakpoint phylogeny algorithms to discriminate between three competing phy-

logenetic hypotheses. There is clearly scope for future work in the simultaneous

construction of phylogenies and ancestral gene orders.

6 Experimental results: estimating the phylogeny

of early eukaryotes

6.1 Three evolutionary hypotheses

Applying the normalised induced breakpoint distance (eqn. ??) to all pairs of

genomes in Table 1 for which we could establish a usable gene order (indicated

by an entry under “Genes”), resulted in a matrix which we used for the initializa-

tion of our phylogenetic analysis. Two genomes, Malawimonas and Monosiga,

manifested uniformly high values indicating random genome order with respect

to all the other genomes, and were thus dropped from the analysis. The matrix

remaining was submitted to two distance matrix analyses, neighbor-joining and

the Fitch-Margoliash procedure, which both produced the tree in Figure 2.
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FIGURE 2 GOES NEAR HERE.

These initial results indicate that the mitochondrial gene orders, as compared

by our normalised induced breakpoints measure, contain a clear phylogenetic

signal. The red algae form a monophyletic group; so do the stramenopiles.

The large jakobid mitochondrial genomes, thought to most closely represent the

ancestral form (Lang et al. 1997), group with other early-branching lineages.

In addition, the ciliates group with the stramenopiles, a configuration which is

sometimes seen in phylogenies constructed with single gene sequences. Only

the plants and green algae, which, according to a great diversity of scientific

evidence, should also form a monophyletic group, do not seem to have conserved

sufficient commonality in their mitochondrial gene orders for them to be grouped

together. This is, however, consistent with the rapid evolution of these orders

known to occur among other green algae, such as those listed in Table 1.

More detailed phylogenetic techniques, to be discussed in the following sec-

tions, do not do any better in reconstructing the plant-green algae group. In-

deed, the noise caused by the inclusion of the green algal genomes has a dis-

torting effect on other parts of the tree, particularly the ciliate branching and

possibly the remoteness of Marchantia from the red algal group. (There is a

consensus that the plant-green algae group shares some common ancestry with

the red algae.) For further investigation of protist phylogeny, then, we reduced

our data set through the elimination of the Prototheca gene order, which seems

highly derived, as well as that of Pedinomonas, which has a very small number
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of genes.

FIGURE 3 GOES NEAR HERE

The distance matrix methods applied to the 18 remaining genomes produced

the phylogeny in Figure 3. This is almost identical to what is obtained from the

tree in Figure 2 by simply deleting the Prototheca and Pedinomonas branches.

In the ensuing sections, we will refer to the evolutionary history implied by this

tree as Hypothesis H1.

Note that the what remains of the plant-green algae group still does not

group with the red algae. Thus for the more detailed analyses below, we pos-

tulate another hypothesis, H2, as represented in Figure 4.

FIGURE 4 GOES NEAR HERE

Finally, we construct a more speculative hypothesis, H3, which would place

the cryptophyte Rhodomonas salina on the lineage leading to the red and green

algae on plants, based on the possibility that flattened cristae may be mono-

phyletic (Figure 5). This also has the effect that Naegleria gruberi, the sole

representative of the organisms with discoidal cristae, now branches earlier,

more in line with the ancient divergence thought to have occurred with this

group.
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FIGURE 5 GOES NEAR HERE

6.2 Practical tree length evaluation

We then applied the breakpoint phylogeny algorithms to compare the three

competing phylogenetic hypotheses. The aim of our experiment was to examine

the relative efficiencies of the single pass and double pass breakpoint phylogeny

algorithms and to determine whether there was significantly more support for

one of the tree hypothesis H1, H2, or H3. The results of any heuristic algorithm

must always be interpreted with a degree of caution, as must any exact algorithm

for any simplified model.

We ran both the single pass and double pass breakpoint phylogeny algo-

rithms on each of the three trees H1, H2 and H3. We used the fast priority

insertion algorithm to evaluate median genomes at the internal nodes, calling

the algorithm 50 times for each median calculation. After each initial random

assignment of genomes to internal nodes we made 50 passes through the tree.

In the case of the double pass algorithm, this corresponds to 100 single passes

through the tree. Finally, we restarted the single pass and double pass algo-

rithms 120 times with different assignments of initial internal genomes.

The results of the experiment are summarised in Table 3.

TABLE 3 GOES NEAR HERE.
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After 120 calls to the median iterate heuristics, both with single and double

passes, the shortest tree length found was for tree H1. In fact, every call to the

median iterate heuristics for tree H1 returned a length that was shorter than

all calls to the median iterate heuristics for trees H2 and H3.

To estimate whether the result was caused by variability in the heuristic,

we calculated the mean and standard deviations of the tree lengths returned by

each of the 120 calls to the heuristic. While it is not clear which distribution is

best suited for the calculation of confidence evidence, what is clear is that for

any reasonable choice of distribution, the minimum tree length returned for H1

is significantly shorter than those returned for H2 or H3.

That our analysis selects the same tree produced by distance matrix methods

suggests that this tree indeed represents the phylogenetic signal contained in

the induced breakpoint data and, we believe, the mitochondrial gene orders

themselves. In the case of the green plants, for example, these orders do not

seem sufficiently conserved to reflect their common ancestry with the red algae.

It is of interest that this same methodology – normalisation of the number

of induced breakpoints as input to phylogenetic methods – does a much better

job on the phylogeny of green plants and other plastid-containing protists when

applied to the chloroplast genome instead of the mitochondrial genome (Sankoff

et al. 2000b).

A final observation from our experimental study is that there is little differ-

ence in performance between the single and double pass heuristics—except that

the double pass heuristic runs, of course, twice as slowly.
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7 Conclusions

This work highlights the potential of the induced breakpoint method for genomes

with differing gene sets. The fact that we were able to obtain phylogenies as

clear as many that are derived from sequence comparison attests to the amount

of phylogenetic information which resides in gene order.

The results of our provisional phylogenetic analysis may be summarized as

follows:

• The stramenopiles cluster together, usually but not always monophyleti-

cally, and there is a tendency for the ciliates to be a sister group.

• The jakobids, and other early branching (as previously revealed by se-

quence analysis) protists group together.

• The red algae group together.

• The phylogenetic signal is too weak to group all plants and green algae

together. And after discarding the most highly diverged green algae from

the analysis, though the green plants are close to the other phyla with

flattened cristae mitochondrial genomes in the phylogeny, they do not all

form a monophyletic group.

• The phylogenetic relationships at the earliest level – among the stra-

menopiles, alveolates and other tubular cristae mitochondrial genomes,

and among the flattened, discoidal and tubular groups, remain uncertain,

awaiting further mitochondrial sequences which fit the criteria for inclu-
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sion in our analyses.

Our conclusions regarding the breakpoint median and breakpoint phylogeny

algorithms may be summarized:

• The fast priority insertion heuristic is an effective and rapid construction

algorithm for breakpoint median heuristics. The loss of accuracy in com-

parison with the priority insertion algorithm is negligible, but the gains in

speed are immense.

• Breakpoint parsimony tree lengths can be effectively estimated using a

median iterate algorithm with a single pass through the tree. Uncertainty

due to the variability of tree lengths returned can be addressed by making

repeated calls and determining confidence statistics.

There are a number of directions for further work. The first problem is the

development of a practical tree search method. There are a number of obsta-

cles. Though we have dramatically improved the computation time required to

evaluate a tree since the work in (Sankoff et al. 2000a), this factor still restricts

the total number of tree evaluations that can be made. Further improvements

in efficiency could be expected from an optimized implementation of the algo-

rithm. Currently we are developing a method where, instead of focusing on one

median at a time, genes are inserted into all internal genomes simultaneously.

This will hopefully improve both speed and accuracy.

The variability in scores resulting from the use of a heuristic can still make

it difficult to discriminate between neighbouring trees with close tree lengths.
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This might possibly be resolved by application of the breakpoint phylogeny

lower bound of (Bryant 2000) to determine whether a global optimum has been

obtained.

Though it is a useful exercise to consider gene order only, a more accurate

approach might take into account both gene order and gene complement (i.e.

the genes present in each genome) in a single measure.

Finally, this work underscores the interest inherent in the evolution of the

mitochondrial genomes, especially at the earliest times.
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Figure 1: A data struture for quickly calculating sucessors in an induced genome.

The genome is 〈1,−3, 7,−6, 2,−4, 8, 5, 9, 1〉 and X = {1, 6, 4, 8}. We place a tick on

nodes that have descendents in X (positive or negative).
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early branching

red alga

alveolates

stramenopiles

9. Reclinomas americana

8. Jakoba libera

1. Acanthamoeba castellanii

7. Dictyostelium discoideum

20. Rhodomonas salina

12. Naegleria gruberi

19. Porphyra purpurea

18. Cyanidioschyzon merolae

17. Chondrus crispus

10. Tetrahymena pyriformis

6. Paramecium aurelia

2. Chrydodidymus synuroideus

3. Ochromonas danica

4. Phytophtora infestans

11. Thraustochytrium aureum

5. Cafateria roenbergensis

16. Prototheca wickerhamii

14. Pedinomonas minor

15. Nephroselmis olivacea

13. Marchantia polymorpha

Figure 2: Distance-matrix analysis of protist evolution. Lengths of branches not

to scale. Root is near Reclinomonas (9). Stramenopiles and alveolates cluster

together. Jakobids and other early branching protists group together. Green

algae and plants (bold) scattered throughout the phylogeny.
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1. Acanthamoeba castellanii

7. Dictyostelium discoideum
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15. Nephroselmis olivacea

13. Marchantia polymorpha

19. Porphyra purpurea

18. Cyanidioschyzon merolae

17. Chondrus crispus

Figure 3: Distance tree without Prototheca and Pedinomonas. Hypothesis H1.
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19. Porphyra purpurea

18. Cyanidioschyzon merolae

17. Chondrus crispus

early branching

red alga

alveolates

stramenopiles

10. Tetrahymena pyriformis

6. Paramecium aurelia

2. Chrydodidymus synuroideus

3. Ochromonas danica
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5. Cafateria roenbergensis

11. Thraustochytrium aureum

9. Reclinomas americana

8. Jakoba libera

1. Acanthamoeba castellanii

7. Dictyostelium discoideum

20. Rhodomonas salina

15. Nephroselmis olivacea

12. Naegleria gruberi

13. Marchantia polymorpha

Figure 4: Hypothesis H2 grouping plants and green algae with red algae
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Figure 5: Hypothesis H3 grouping all organisms with flattened cristae
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Organism (Accession number) Classification Genes tRNAs
TUBULAR CRISTAE

1. Acanthamoeba castellanii (U12386) lobose amoeba 56 16
2. Chrysodidymus synuroideus stramenopile (synurophyte) 53 19
3. Ochromonas danica stramenopile (chrysophyte) 57 22
4. Phytophthora infestans stramenopile (oomycete) 60 23
5. Cafeteria roenbergensis stramenopile (bicosoecid) 54 22
6. Paramecium aurelia (X15917) alveolate (ciliate) 39 3
7. Dictyostelium discoideum (D16466) slime mold 48 17
8. Jakoba libera jakobid 88 24
∗ Plasmodium falciparum (M76611) alveolate (apicomplexan)
∗ Plasmodium yoelii (M29000) alveolate (apicomplexan)
9. Reclinomonas americana (AF007261) jakobid 97 26
10. Tetrahymena pyriformis (AF160864) alveolate (ciliate) 43 7
† Theileria parva (Z23263) alveolate (apicomplexan)
11. Thraustochytrium aureum stramenopile (labyrinthulid) 53 19

DISCOIDAL CRISTAE
‡ Malawimonas jakobiformis malawimonad 68 25
12. Naegleria gruberi heterolobosean 61 17
† Leishmania tarentolae (M10126 ) trypanosomatid
† Trypanosoma brucei trypanosomatid

FLATTENED CRISTAE
13. Marchantia polymorpha (M68929) land plant 69 24
§ Arabidopsis thaliana (Y08502) land plant
14. Pedinomonas minor ( AF116775) green alga 21 8
15. Nephroselmis olivacea green alga 65 26
16. Prototheca wickerhamii (U02970) green alga 63 26
∗ Chlamydomonas eugametos (AF008237) green alga
∗ Chlamydomonas reinhardtii (U03843) green alga
∗ Chlorogonium elongatum (Y13644) green alga
17. Chondrus crispus (Z47547) red alga 50 23
18. Cyanidioschyzon merolae (D89861) red alga 59 22
19. Porphyra purpurea (AF114794) red alga 55 24
20. Rhodomonas salina cryptophyte 67 27
‡ Monosiga brevicollis choanoflagellate 50 22
‡ fungal,animal fungal,animal

Table 1: Sequenced mitochondrial genomes. Data from gene maps in GOBASE
(Korab-Laskowska et al. 1998). Gene numbers affected by the exclusion of
some duplicate genes (see text). Organisms numbered 1-20 used in analysis.
Other organisms excluded for the following reasons: ∗ fragmented rRNA genes,
† too few genes, ‡ no gene order resemblances with (other) protist mitochondrial
genomes, § trans-spliced genes.

41



Genomes Min. score f(< 0.05) k0.05 actual iter.
PRIORITY INSERTION

1 4,5,11 1.387 1532 28 7
2 1,5,10 1.087 530 85 39
3 2,9,16 1.339 1062 42 1
4 17,18,19 1.127 1780 24 6
5 4,12,20 1.471 2302 18 3
6 8,9,19 1.015 177 258 76
7 12,15,20 1.089 1862 23 2
8 3,11,19 1.373 1973 21 1
9 3,7,8 1.115 1637 26 9
10 7,12,17 1.252 1790 24 6

FAST PRIORITY INSERTION
1 4,5,11 1.387 1498 29 4
2 1,5,10 1.087 515 88 3
3 2,9,16 1.339 1037 43 22
4 17,18,19 1.127 1776 24 2
5 4,12,20 1.473 2234 19 2
6 8,9,19 1.014 133 344 26
7 12,15,20 1.089 1811 24 2
8 3,11,19 1.373 1935 22 1
9 3,7,8 1.115 1622 27 5
10 7,12,17 1.252 1623 27 19

Table 2: Performance of the priority insertion and fast priority insertion heuris-
tics. Triples taken from the mitochondrial genome data set. We performed
10000 iterations of each heuristic on each triple. f(< 0.05) is the number of
iterations returning a score that is within 0.05 (normalised) breakpoints of the
minimum. k0.05 is the estimated number of iterations required to get within
0.05 of the minimum after 10000 iterations. actual iter. is the number of the
first iteration within 0.05 of the minimum.
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Hypothesis: H1 H2 H3

Passes: Single Double Single Double Single Double

min. length 8.14 8.125 8.517 8.517 8.547 8.563

max. length 8.436 8.396 8.853 8.867 8.928 8.894

av. length 8.265 8.253 8.651 8.643 8.691 8.697

st. dev. 0.063 0.056 0.059 0.056 0.068 0.065

Table 3: Application of the median iteration heuristics to the gene order data or

sequenced mitochondrial genomes. Both single pass and double pass heuristics

were called 120 times. The statistics presented are those for the tree lengths

returned by each call to each heuristic.
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