
June 12, 2000

Algorithmic aspects of tree

amalgamation

Sebastian Böcker∗
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Abstract. The amalgamation of leaf-labelled trees into a

single (super)tree that “displays” each of the input trees is

an important problem in classification. We discuss various

approaches to this problem and show that a simple and well

known polynomial-time algorithm can be used to solve this

problem whenever the input set of trees contains a minimum

size subset that uniquely determines the supertree. Our re-

sults exploit a recently established combinatorial property

concerning the structure of such collections of trees.
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1. Introduction

In evolutionary biology and other fields involving tree-like classification,

one is often faced with the following tree-amalgamation problem: How can

one combine — or “amalgamate” — trees that classify different but over-

lapping sets of species into one big supertree [15]? More precisely, given a

collection of trees, each of which has its leaves (vertices of degree one) la-

belled bijectively by some species from a given “large” collection of species,

we wish to amalgamate these input trees into a single supertree (parent tree)

in such a way that each input tree is “displayed” by that supertree.

Clearly, it may be impossible to amalgamate the input trees in this way,

and just determining whether this is the case is known to be an NP-hard

problem [16]. Furthermore, even when the trees can be amalgamated, there

may be exponentially many supertrees. For example, there may be a su-

pertree that has internal vertices of high degree, in which case any “refine-

ment” of this tree also gives a supertree. Yet, even if every supertree is

binary, an exponentially large number of supertrees can occur, see [5, 6].

In this paper, we consider the question of determining whether the col-

lection of input trees uniquely determines a possible supertree. We begin by

introducing some terminology. We will view (leaf-labelled) trees as graphs,

rather than representing them via systems of splits.

Definitions 1.

• We consider trees whose leaves (degree-one vertices) are labelled,1 and

whose remaining vertices (of which we assume that there exists at least

one) are unlabelled and of degree at least three. Such a tree is also

called a phylogenetic tree or, even more specifically, a phylogenetic

X-tree where X denotes the set of its labels. If all of the non-leaf

vertices have degree three, the tree is said to be a binary tree. An edge
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incident with a leaf is said to be a pendant edge, every other edge is

said to be interior.

• For a tree T, let L(T ) denote the set of leaf labels of T, and for a col-

lection F of such trees, let L(F) denote the union
⋃

T∈F L(T ). Recall

that the number i(T ) of interior edges of T never exceeds |L(T )| − 3,

and equality holds if and only if T is binary (see for instance [6]).

• The excess of a collection F of trees, denoted exc(F), is defined by

exc(F) := |L(F)| − 3−
∑

T∈F
i(T ).

We shall see that if F has positive excess then it contains too many

leaves to define a (unique) tree (Lemma 1). In this paper, we will be

paying particular attention to collections of trees F for which exc(F) =

0 holds. We will call such collections excess-free.

• Given a tree T and a subset L ⊆ L(T ), we denote by T |L the phy-

logenetic tree obtained from the smallest connected subgraph of T

containing (the leaves labelled by) L, by making this subgraph “home-

omorphically irreducible” (i.e. by suppressing all degree two vertices).

We refer to T |L as an induced subtree of T and, more specifically, as

the subtree of T induced by L. Note that T |L is binary whenever T is.

• Given two trees T, T ′ with L(T ) = L(T ′), we write T ≤ T ′ if — up

to a label-preserving isomorphism — T can be obtained from T ′ by

contracting some interior edges of T ′.

• Suppose that F := {T1, . . . , Tr} is a collection of trees. We say that

a tree T displays F if Ti ≤ T |L(Ti) holds for all i = 1, . . . , r. The

collection F is said to be compatible if it is displayed by at least one

tree T, in which case F is said to define T if T is the only tree with leaf

set L(F) that displays F . Note that a tree T that is defined by some

collection F of trees is necessarily binary. We say that F is definitive

if F is compatible and defines a tree T.
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• A quartet tree is a binary tree T with |L(T )| = 4.

In general, it appears to be a difficult problem to determine whether or

not a given collection F of trees is definitive. However, we show that it has

a polynomial time solution whenever the input trees comprise or, at least,

contain a definitive and excess-free subset F ′ of binary trees. Our results

lean heavily upon, and provide a nice application of, a recent combinatorial

result concerning the reconstruction of leaf-labelled trees from “tight” sets

of subtrees (cf. [7] for a general account and [6] for a rigorous proof). To

explain our results in more detail, note that (i) given a collection F of input

trees, a tree T is said to be implied by F if there exists a compatible subset

F ′ ⊆ F such that T is displayed by every tree T ′ that displays F ′, and that

(ii) there exist arbitrarily large collections F of quartet trees such that every

tree implied by a proper subset F ′ ⊆ F is already contained in F ′ (cf. [9]).

In contrast, we will show here that “dyadic” closure operations (using just

two trees at a time) suffice to reconstruct the unique supertree T defined by

an excess-free, definitive collection F of trees in O
(|L(F)|2) time.

This results suggests to search for an efficient algorithm that would, given

an arbitrary collection F of trees, return an excess-free and definitive subset

F ′ ⊆ F with L(F ′) = L(F) in case such a subset exists and, otherwise, the

information that such a subset does not exist. Such an algorithm, however,

cannot be expected to exist because — as we will show in the last section

— this task belongs in fact to the class of NP-complete problems.

Yet, remarkably, we can still find the unique supertree T for a compatible

collection F that just contains (but does not necessarily coincide with) an

excess-free, definitive collection F ′ ⊆ F of quartet trees with L(F ′) = L(F)

by using another, already existing algorithm (also based on dyadic closure

operations) in O
(|L(F)|5) time. As pointed out already in [7], this gener-

alizes in particular results obtained in [12] where dyadic closure operations
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were shown to suffice for supertree construction if the set of input trees

contained all the “short quartets” of the supertree.

So, to summarize clearly what we can and what we cannot do in polyno-

mial time (unless P= NP holds), we distinguish four cases regarding a given

collection F of input trees:

Case (++): F is compatible and contains an excess-free, definitive subset

F ′ with L(F ′) = L(F);

Case (−+): F is incompatible and contains such a subset F ′;

Case (+−): F is compatible and does not contain an excess-free, definitive

subset F ′ with L(F ′) = L(F);

Case (−−): F is incompatible and does not contain such a subset F ′.

In case (++), there exists a unique supertree for F , and the algorithm

referred to above will find it in polynomial time. In case (−+), the same

algorithm will output in polynomial time that no supertree can exist. In

case (+−), the algorithm might provide enough information to find one

or several supertrees, it might also establish that F is definitive — yet, it

might also get stuck without providing this information. And in case (−−),

the algorithm might output that no supertree exists, or it might get stuck

without doing so.

So, whenever this algorithm finds several supertrees or gets stuck before

being able to decide whether F is compatible or not, we learn (in polynomial

time) that no excess-free, definitive set F ′ with L(F ′) = L(F) is contained

in F ; while if it finds a unique supertree or establishes that F is incompatible,

we have solved the supertree problem for F , yet we do not learn from this

solution whether or not an excess-free, definitive subset F ′ with L(F ′) =

L(F) is contained in F . So, this special question remains unanswered only

in case the problem that we really want to solve (i.e. the problem of deciding

whether F is definitive or incompatible) can be solved in polynomial time.
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Our approach complements some earlier results that also deal with special

cases where one can easily determine whether or not F is compatible, and,

if so, definitive. For example, if

⋂

T∈F
L(T ) 6= ∅

then one can determine in polynomial time (in |L(F)|) whether or not F
is compatible [1] and if so whether F is definitive [16]. Alternatively, if the

number of trees in F is bounded, then there is also an algorithm that runs

in polynomial time in |L(F)| for answering these last two questions, see [16].

Some heuristic and approximation-based approaches to tree amalgamation

have also been proposed, particularly for (possibly incompatible) collections

of quartet trees. Two such heuristic methods include Quartet puzzling, in-

troduced by Strimmer and von-Haeseler [17], and a novel approach based

on semi-definite programming by Ben-Dor et al. [3]. A polynomial time ap-

proximation scheme for the problem of finding the largest compatible subset

of a set F of quartet trees has recently been described by Jiang et al [14]

(under the strong assumpution that for each subset L of L(F) of size four

there is a quartet tree T in F with L(T ) = L).

This paper is organized as follows: We first list some further definitions

that are required for the remainder of the paper. In the next section, we con-

sider the tree reconstruction problem when F consists of just two trees. In

Section 3, we provide a simple algorithm that solves the tree reconstruction

problem on sets of trees that are excess-free. And in Section 4, we describe

an algorithm that works in a slightly more natural as well as more general

setting, and finally show the NP-completeness of the problem whether or not

F contains some definitive and excess-free subset F ′ with L(F ′) = L(F).

We end this section with some further definitions that will be required

below.

Definitions 2.
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• We write xy|wz to denote the quartet tree that has leaves labelled

x, y separated from leaves labelled w, z by its unique interior edge.

More generally, we let x1 . . . xr|y1 . . . ys denote the tree with exactly

one interior edge e = {u, v}, with leaves labelled x1, . . . , xr adjacent

to u, and leaves labelled y1, . . . , ys adjacent to v.

• For a tree T, let

Q[T ] := {T |L : L ⊆ L(T ), |L| = 4, T |L is a binary tree}

denote the collection of quartet trees induced by all 4-subsets L of

L(T ), and for a collection F of trees, put

Q[F ] :=
⋃

T∈F
Q[T ].

• Given a quartet tree xy|wz that is displayed by a tree T, we say that

xy|wz distinguishes an edge e of T if e is the only edge of T that

separates the leaves labelled x, y from the leaves labelled w, z.

2. Amalgamating pairs of trees

Our discussion on tree amalgamation begins with the simplest case: Amal-

gamating pairs of trees.

Theorem 1. Suppose F = {T1, T2} consists of two trees and consider I :=

L(T1) ∩ L(T2).

1. F is compatible if and only if {T1|I , T2|I} is compatible.

2. Suppose that T displays F . Then the following three assertions are

equivalent:

(a) F defines T ;

(b) T is binary and no “contraction” of T (that is, some tree T ′ with

T ′ < T ) displays F ;

(c) T is binary and, for every interior edge e of T, there is an induced

quartet tree of T1 or T2 that distinguishes e.
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Proof. The proof of (1) is straightforward.

2a ⇒ 2b follows from the fact that if a non-binary tree T ′ displays F ,

then any refinement of T ′ also displays F .

2b ⇒ 2c follows from the observation that if e is not distinguished by a

quartet tree induced by T1 or T2, then contracting e in T gives a non-binary

tree that displays F .

2c ⇒ 2a: Counting the interior edges of T, T1, and T2 and noting that

Condition 2c implies i(T ) ≤ i(T1) + i(T2), we get

∣∣L(T1) ∪ L(T2)
∣∣ = |L(T )| = i(T ) + 3

≤ i(T1) + i(T2) + 3

≤ |L(T1)|+ |L(T2)| − 3

=
∣∣L(T1) ∪ L(T2)

∣∣ + |I| − 3

and, therefore, |I| ≥ 3. Choose x ∈ I and consider the set Qx of induced

quartet subtrees of T1 or T2 that contain x. For every edge e there is an

induced quartet subtree of T1 or T2 that distinguishes e, so there must also

be an induced quartet subtree in Qx that distinguishes e. The result then

follows from Theorem 3 of [16].

Remark 1. If T1 and T2 are binary, then F is compatible if and only if

T1|I ∼= T2|I , since two binary trees on the same leaf set are compatible if

and only if they are isomorphic.

Given two trees T1 and T2, we can use the linear time compatibility al-

gorithm of [18] to see whether the collection {T1, T2} is definitive: First,

we choose a leaf in L(T1) ∩ L(T2) to root these two trees. We can then

determine whether T1|I and T2|I are compatible using the compatibility al-

gorithm of [18]. If they are compatible but the output tree (denoted TI

here) is not binary then {T1, T2} is clearly not definitive. Suppose in the

following that TI is binary.
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Using a depth first traversal on T1 and then T2, we can append the leaves

appearing in only one tree to the tree TI to obtain a binary tree T that

displays both T1 and T2. A third depth first search, this time on T , can

then be used to determine which subtrees of T contain leaves in L(T1) and

which contain leaves in L(T2). We can then test for which edges Condition 2c

of Theorem 1 holds. In this way, we can determine in O(|L(T1)| + |L(T2)|)
time whether two trees T1 and T2 form a definitive collection.

3. Amalgamating excess-free collections of trees

Lemma 1. Suppose F defines T0. Then, the following holds:

1. exc(F) ≤ 0

2. If F ′ ⊆ F defines a tree T ′, then F∗ := {T ′} ∪ (F − F ′) defines T0

and exc(F) = exc(F ′) + exc(F∗); in particular, exc(F) = 0 implies

exc(F ′) = exc(F∗) = 0.

3. If F ′ ⊆ F and exc(F ′) = exc(F) = 0 then F ′ is definitive.

4. There is a collection F∗ of binary trees that defines T0, with each tree

T ′ ∈ F∗ being an induced subtree of some tree in F .

Proof. Part 1: This follows immediately from

|L(F)| = |L(T0)| = i(T0) + 3

≤
∑

T∈F
i(T ) + 3

(see also [9], Proposition 3).
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Part 2: Clearly, F∗ defines T0. Furthermore,

exc(F ′) + exc(F∗) =
∣∣L(F ′)

∣∣− 3−
∑

T∈F ′
i(T ) + |L(F∗)| − 3

− i(T ′)−
∑

T∈F−F ′
i(T )

= |L(F)|+ (∣∣L(F ′)
∣∣− 3− i(T ′)

)− 3−
∑

T∈F
i(T )

= exc(F).

Part 3: This follows from Lemma 6.10 of [6].

Part 4: Given any two trees T and T ′, we have T ≤ T ′ precisely if T ′

displays Q[T ] (the set of induced binary quartet subtrees of T ). Thus, we

may set F∗ =
⋃k

i=1Q[Ti] to satisfy part (4).

Remark 2. Lemma 1(4) cannot be strengthened by insisting that |F∗| = |F|
or exc(F∗) = exc(F) should hold even if F is excess-free and definitive. An

example is provided by the set

F := {123|47, 45|16, 67|25, 345|12}

which defines the binary tree on the leaf set {1, 2, . . . , 7} shown in Fig. 1,

yet no four induced quartet trees define this tree: This follows immediately

from the fact that none of the three collections

F1 := F − {345|12} ∪ {34|12},
F2 := F − {345|12} ∪ {35|12}, and

F3 := F − {345|12} ∪ {45|12}

is definitive, see Fig. 2 and note that the tree depicted in Fig. 1 still displays

F3 when contracting the interior edge separating leaves labeled 1, 2 from

3, . . . , 7.

[Figure 1 should appear approximately here.]

[Figure 2 should appear approximately here.]
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The following theorem is a simple consequence of (and essentially equiv-

alent to) the main theorem in [7].

Theorem 2. Any excess-free, definitive collection F of binary trees con-

tains two trees that together form an excess-free definitive set.

Proof. Write F = {T1, . . . , Tk}. For each tree Ti in F , we can choose an

excess-free collection Qi of induced binary quartet trees that define Ti. For

instance (cf. [16], Proposition 6) we may choose some leaf xi in L(Ti), and

for every interior edge e of Ti, we may choose leaves ae, be, ce in L(Ti) such

that xiae|bece distinguishes e. Then, we put

Qi := {xiae|bece : e is an interior edge of Ti}.

It is easily seen that the union of these sets is also excess free and definitive,

so by [7], Theorem 3.11 and [8], Theorem 3 the union two of them — say

Qi, Qj — is excess-free and definitive, too. But this implies that {Ti, Tj} is

excess-free and definitive.

Remark 3. Theorem 2 fails if we drop the restriction that the trees in the

collection be binary, see F given in Remark 2. Theorem 2 also requires the

condition that F is excess-free: The set

F := {12|35, 24|57, 13|47, 34|56, 15|67}(1)

defines the tree depicted in Fig. 3 (because starting with the hypothetical

quartet tree 13|45 and then consecutively adding the quartet trees 12|35,
24|57, and 15|67 leaves us no other choice; while starting with 14|35 or

15|34 leads to a contradiction in both cases). Yet, for any subset F ′ ⊂ F of

size two there are at least two trees that display F ′.

[Figure 3 should appear approximately here.]

Theorem 2 leads directly to a polynomial time algorithm for determining

whether an excess-free set F of binary trees defines a tree. A straightforward
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approach would be to search for two trees T1, T2 in F such that {T1, T2}
is excess-free and definitive, and to replace these two trees by the tree T

they define. Repeating these replacements, we end up with an algorithm

that obviously has polynomial runtime. Yet, using an approach established

in [8], we can construct an even faster algorithm:

To this end, we recall why the above algorithm actually works: Let F
denote an excess-free and definitive set of binary trees. In [7], we established

that a non-empty subset F ′ of F is definitive if and only if it is excess-free,

and that, given excess-free subsets F1, F2 of F with non-empty intersection,

the sets F1∩F2 and F1 ∪F2 are excess-free, too. So, the excess-free subsets

of F form a patchwork as defined in [8], and this is the reason why the

simple algorithm described above cannot run into a “dead end”. We can

use a (slightly modified) algorithm with square runtime as described in Fig. 4

of [8] to check whether F defines a tree:

[Algorithm AEFT should appear approximately here.]

The algorithm (which we abbreviate as AEFT) can be implemented to

run in O(n2) time for n := |L(F)|. In this algorithm, Ins is an array of sets

that contain at most three elements (and that is indexed by two-element

sets {T1, T2}), so the union of two such sets can be constructed in constant

time. Recalling that we can compute a tree T that displays both T1 and

T2 in linear time (see again [18]), the total runtime is in fact O(n2). The

following lemma can be deduced from the above observations (see also [6]):

Lemma 2. Given an excess-free collection of binary trees F , the algorithm

AEFT either returns some binary tree T (in case F defines T ) or the state-

ment non-definitive (otherwise).

Note that, in case AEFT returns the statement non-definitive, there might

be either no or several trees displaying F , and deciding which of these two

alternatives holds is an NP-hard problem in general.
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4. An algorithm for arbitrary collections of binary trees

We now have a polynomial time algorithm for the case where an excess-

free collection F of binary trees defines some binary tree T. However, it

would be considerably more useful in “real world” applications to provide

a polynomial time algorithm that applies to arbitrary collections of binary

trees. We would like the algorithm to have the property that when F con-

tains an (unknown) excess-free definitive subset F ′ with L(F ′) = L(F) —

in which case F must either be incompatible, or define a tree (namely, the

tree T defined by F ′) — then the algorithm will determine which of these

two alternatives holds, and in the latter case it should actually reconstruct

the tree T.

In this section we describe such a polynomial time algorithm that applies

to any collection of binary trees. The algorithm returns one of the following:

• the statement that F is incompatible;

• a binary phylogenetic tree T that is defined by F ;

• a non-binary tree that comprises some of the information given by F
(as described in detail below) in case F does not contain an excess-free,

definitive set F ′ with L(F ′) = L(F).

In this general setting it is no longer always possible to “blindly search”

for two trees that define a third and then amalgamate these (as was possible

in the previous algorithm). For example, consider the collections

F ′ = {12|34, 23|47, 17|45, 25|67} and F = F ′ ∪ {13|46}.

Then F is compatible, F ′ is an excess-free subset of F that defines the tree

shown in Fig. 1, and L(F) = L(F ′). Suppose that we initially decided to

consider the pair of quartet trees 12|34, 13|46 which forms an excess-free

definitive subset of F . If we now replace these two quartet trees in F by the

tree they define, then we find that no two trees in the resulting set of trees

form a definitive set. Consequently, this set does not reduce further by the
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rules of that algorithm. Of course, had we chosen our two trees differently,

we could have avoided this problem. But without knowing F ′, there seems

to be no obvious way to determine in advance which pair to consider while,

if we try all possible pairs, the required time might grow at an exponential

rate.

Instead, we base the algorithm on the the notion of “dyadic closure”

introduced by Dekker [10] and further developed in [11,12].

Definition 3. The dyadic closure of a collection Q of quartet trees, denoted

cl2(Q), is the minimal set of quartet trees that contains Q and satisfies the

following two rules:

ab|cd, ab|ce ∈ cl2(Q) =⇒ ab|de ∈ cl2(Q)(dc1)

ab|cd, ac|de ∈ cl2(Q) =⇒ ab|ce, ab|de, bc|de ∈ cl2(Q)(dc2)

We define the semidyadic closure of Q, denoted scl2(Q), in the same way

as cl2(Q), except that we only require (dc2) to hold.

Dekker [10] observed that Q is compatible if and only if cl2(Q) is com-

patible. We can also use the dyadic closure to extend Theorem 1:

Lemma 3. Suppose that F = {T1, T2} and T is a binary tree that displays

both T1 and T2. Then F defines T if and only if

scl2(Q[F ]) = Q[T ].

Proof. If scl2(Q[F ]) = Q[T ] and T ′ displays F , then T ′ must also display

T, which implies T ′ = T since T is binary. Hence F defines T.

Conversely, suppose that F defines T. We prove the result by induction,

noting that it is trivially true for |L(T )| = 4. Suppose that the hypothesis

holds in case |L(T )| ≤ n and that |L(T )| = n + 1 ≥ 5. Let y, y′ denote two

leaves of T which form twins of T, that is, which are adjacent to the same

vertex of T ; and let z, z′ denote a second such pair of twins — it is easy to



TREE AMALGAMATION 17

see that at least two (leaf-disjoint) pairs of twins exist in every tree with at

least four distinct leaves.

Let T ′ be T with the leaf y′ removed, and let F ′ be F with the leaf

y′ removed from trees containing it. If there were some tree T ′′ 6∼= T ′ also

displaying F ′, then we could construct a tree different from T that would dis-

play F by appending y′ to the edge adjacent to y in T ′′. Hence F ′ defines T ′.

By the induction hypothesis, scl2(Q[F ′]) = Q[T ′] and Q[T ′] ⊆ scl2(Q[F ]).

The same holds true replacing y by y′, z, z′, respectively. This shows that

scl2(Q[F ]) contains all of Q[T ] except the quartet tree yy′|zz′ which can be

derived by choosing any other leaf x in L(T ) and applying the rule

yy′|xz, yx|zz′ ∈ scl2(Q) =⇒ yy′|zz′ ∈ scl2(Q).

The following theorem implies that the algorithm DCT below does in fact

behave as promised above.

Theorem 3. If F is a compatible collection of binary trees containing an

excess-free collection F ′ with L(F ′) = L(F) which defines a binary tree T,

then

scl2(Q[F ]) = Q[T ].

Proof. Clearly, scl2(Q[F ]) ⊆ Q(T ) must hold. To establish the converse

recall that, by Theorem 2, we can combine pairs of trees from (or derived

from) F ′ consecutively to obtain T. Each time we combine two trees T1 and

T2 to form a third tree T3, we have scl2(Q({T1, T2})) = Q[T3] by Lemma 3

and, hence, Q[T3] ⊆ scl2(Q[F ]). This, however, implies Q[T ] ⊆ scl2(Q[F ]),

as claimed.

Remark 4. The converse of Theorem 3 does not hold for arbitrary collections

of trees (see, for example, the collection F described in Remark 2). We do

not know whether it holds for collections F containing only quartet trees.
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Theorem 3 leads directly to the tree amalgamation algorithm (DCT).

In this algorithm, the Berry-Gascuel tree (see [4]) is a tree that can be

constructed from any (compatible or incompatible) set Q of quartet trees

provided that Q contains at most one tree on the same leaf set. We will

denote the resulting Berry-Gascuel tree for Q by TQ (rather than byQ∗ as in

[4]). Then, the Berry-Gascuel construction satisfies the following properties:

• L(TQ) = L(Q);

• T = TQ satisfies Q[T ] ⊆ Q and, moreover, TQ displays all trees T that

satisfy this condition;

• in particular, if Q = Q[T ] for some tree T, then TQ ∼= T.

Informally, TQ is a conservatively resolved tree whose edges induce exactly

those “splits” (i.e. bipartitions) of L(Q) (= L(T )) that are unanimously

supported by the quartet trees in Q.

[Algorithm DCT should appear approximately here.]

The algorithm DCT can be implemented to run in O(n5) time, using an

approach similar to the one described in [12] for computing cl2(Q[F ]), and

the O(n4) time algorithm for the Berry-Gascuel construction of [4]. The

following result justifies the correctness of the algorithm and follows from

Theorem 3 (together with the third listed property of the Berry-Gascuel

construction).

Lemma 4. If a collection of trees F contains a definitive excess-free subset

of binary trees F ′ ⊆ F with L(F ′) = L(F), then DCT either returns the

binary tree defined by F (in which case F is compatible) or, otherwise, the

statement incompatible.

In fact, the algorithm is stronger than Lemma 4 implies. Consider the

collection

Q∗ := {12|34, 12|45, 26|15, 45|36}.
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The algorithm DCT will return the tree T defined by Q∗ even though

scl2(Q∗) 6= Q[T ] holds, so (by Theorem 3) Q∗ does not contain an excess-

free definitive subset. There are also cases when a collection Q defines a tree

T even though cl2(Q) 6= Q[T ], one example being the collection described in

Remark 3. Indeed, the computational complexity of determining whether a

given set of quartet trees Q defines a (known!) binary tree T is unknown.

Even when we cannot determine a tree defined by F , we can use the

partially resolved tree T returned by DCT to infer some properties of the

trees that display F .

It would be useful to determine in advance whether an arbitrary collection

F of trees contains an excess-free, definitive subset F ′ with L(F ′) = L(F).

Unfortunately, we may assume that this is difficult, due to the following

theorem.

Theorem 4. Let Q denote a set of quartet trees. Then, the problem of

determining whether or not there exists an excess-free, definitive subset Q′

of Q with L(Q′) = L(Q) is NP-complete.

Proof. The excess of a given subset Q′ can be computed in polynomial time.

Furthermore, given an excess-free subset Q′, we have shown how to verify in

polynomial time whether or not Q′ defines some binary tree. Consequently,

the problem is in NP.

We use a simple reduction from the NP-complete problem, DIRECTED

HAMILTONIAN PATH [13].

By a caterpillar tree we mean a binary tree in which each non-leaf vertex

is adjacent to at least one leaf, that is, a binary tree with exactly two pairs

of twins. Given a digraph G = (V,A), choose two “new” vertices x, y /∈ V

and construct the set of quartet trees

Q = {xa|by : (a, b) ∈ A}.
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If Q contains a subset of size |L(Q)|−3 = |V |−1 that defines a binary tree,

then this tree T is necessarily a caterpillar tree with x and y at opposite

“ends” of the tree (see [16]) and this holds if and only if the remaining leaves

of the caterpillar tree trace a Hamiltonian path for G.
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Footnotes

1That is, there exists a bijective mapping from the set of labels onto the

leaves of T. In the following, we will usually suppose (without loss of gener-

ality) that this mapping is the identity.
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Figure 1. The binary tree that is defined by the four trees

123|47, 45|16, 67|25, 345|12.
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Figure 2. Two further binary trees that display the

collections F1 = {123|47, 45|16, 67|25, 34|12} and F2 =

{123|47, 45|16, 67|25, 35|12}, respectively.
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Figure 3. The binary tree that is defined by the collection

{12|35, 24|57, 13|47, 34|56, 15|67}.
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Amalgamating an excess-free collection of trees (AEFT)

Input: An excess-free set F of binary phylogenetic trees

Output:

--Either a binary phylogenetic tree that is defined by F
--or a statement that F is not definitive.

For each {T1, T2} ∈
(F

2

)
do

Ins [T1, T2]← L(T1) ∩ L(T2)

If
∣∣Ins [T1, T2]

∣∣ ≥ 4 then output non-definitive

end for

A ← F; B ← ∅
While A 6= ∅ and (|A| > 1 or B 6= ∅) do

Choose T1 ∈ A
If there exists T2 ∈ B with

∣∣Ins [T1, T2]
∣∣ = 3 then

Choose such T2 ∈ B
Compute some tree T that displays both T1 and T2

If {T1, T2} does not define T then output non-definitive

For each T3 ∈ A ∪ B − {T1, T2} do

Ins [T, T3]← Ins[T1, T3] ∪ Ins [T2, T3]

If
∣∣Ins [T, T3]

∣∣ ≥ 4 then output non-definitive

end for

A ← A∪ {T} − {T1}; B ← B − {T2}
else \\ no such T2

A ← A− {T1}; B ← B ∪ {T1}
end while

If |A| = 1 and B = ∅ then

Choose T with A = {T} and output T

else \\ A = ∅
output non-definitive

end.
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Dyadic tree construction algorithm (DCT)

Input: A set F of binary trees

Output:

--Either a statement that F is incompatible

--or a binary tree that is defined by F
--or a statement that F does not contain an excess-

free, definitive subset F ′ with L(F ′) = L(F)

(and an additional output of a non-binary tree).

Construct cl2(Q[F ])

If cl2(Q[F ]) contains two distinct trees with the same

leaf set then output incompatible

else

output the Berry-Gascuel tree for cl2(Q[F ]).

If this tree is not binary then also output the statement

no excess-free definitive subset.

end.


