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1 Introduction

The comparison of evolutionary trees is a fundamen-
tal problem in evolutionary biology. Different evolu-
tionary hypotheses (or conflicting phylogenies) arise
when different phylogenetic reconstruction methods
are applied to the same data set, or when a single
method is applied to different data sets (e.g. differ-
ent genes). Several similarity metrics between evolu-
tionary trees are currently in use [2]. In this paper,
we study the quartet metric, which is based on com-
mon subtrees induced by four leaves. This metric
has several attractive properties, though its use has
been limited by the time required to compute the
distance [7]. In this paper, we address this problem
by describing an O(n?) algorithm that computes the
quartet distance between two evolutionary trees.

Two general approaches are currently in use to
resolve conflicting phylogenies. Omne method is to
select a consensus tree (or trees) that best represents
the information provided by each tree. The maximum
agreement subtree (MAST) is an instance of this
approach. A substantial amount of effort has been
devoted to efficient algorithms for finding the MAST
of two or many evolutionary trees, see [8] for a
summary of results. A more quantitative approach is
to define a similarity metric between trees to assess
the stability of a solution by measuring the degree
of similarity among the trees. The distributions of
various tree similarity metrics are well-studied [7] and
are very useful in testing statistical hypotheses.

An evolutionary tree represents the direction of
evolution by the location of its root, the rate of evolu-
tionary by its edge lengths and the history of specia-
tion events by its branching pattern or topology. Bi-
ologists are often interested in the distance between
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two evolutionary trees independent of the direction
and rate of evolution, which gives an indication of
how similar two trees are in terms of the relationships
among leaves. Various metrics have been proposed to
measure the similarity based on the undirected tree
topology. The symmetric difference metric (SM) [5],
the nearest-neighbour interchange (NNI) metric [9],
the subtree transfer distance (ST) [1], and the Robin-
son and Foulds metric (RF) [6] are examples of such
meagures. We study the quartet metric [4] in this
paper.

For the duration of this paper let evolutionary
trees be synonymous with degree-3 trees with leaves
uniquely labeled by elements from a label set S where
S| = n. An unrooted (undirected) evolutionary
tree induces a topology on any four labels from
S, which we called a quartet topology (see Figure
1). Given two trees, the quartet distance between
them is the number of quartet topology differences.
It is well-known that the complete set of quartet
topologies is unique for a given tree and the tree
can be uniquely recovered from its set of quartet
topologies in polynomial time [3]. More importantly,
the quartet metric does not suffer from drawbacks
of other distance metrics. For instance, metrics
that are based on transformation operations, such
as NNI, ST and RF, do not distinguish between
rearrangements that affect the relationships between
many leaves and rearrangements that affect only a
few. In addition, metrics that are based on the
number of split differences (e.g. SM) are unstable
with respect to the placement of a few leaves. That is,
they can make two highly similar trees very distant.
But the quartet metric is more stable especially when
n is large. Furthermore, the quartet metric has a far
greater range than SM, and hence greater sensitivity
[7).

The quartet distance between two trees can be
easily obtained by comparing the quartets one by one.
This takes O(n*) time as there are (Z) quartets. To
our knowledge, the best existing result is an algo-
rithm that runs in O(n?) time [7]. Our contribution
is a simple algorithm that runs in O(n?) time. The
algorithm can also return implicitly the set of quartet
topologies shared by two trees.

For simplicity, let the input to the algorithm
be two fully-resolved unrooted evolutionary trees T3
and T3 labeled by S. The algorithm can be easily
extended to handle partially-resolved trees. Below
is a brief overview of the algorithm. Further details



with proofs will be included in the full paper.
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Figure 1: The possible quartet topologies labeled by

{a7 b7 c7 d}

2 The Algorithm

The algorithm was motivated by the following obser-
vation. An internal edge e of the tree partitions the
leaf labels into two disjoint sets A, B C S such that
S = AU B. For any two labels a;,a; from A and b;,b;
from B, we have the quartet topology a;a;|b;b; and
we say the quartet topology is induced by e. This
assoclation of quartet topologies to internal edges
gives us a simple framework to count common quar-
tets. We only need to consider the O(n?) internal
edge pairings between 77 and T5. However, a quar-
tet topology can be induced by more than one edge.
To avoid double counting, we perform pre-processing
on the input trees. In the pre-processing stage, each
internal edge claims as many induced quartet topolo-
gies as possible as long as the quartets it claimed
have not been claimed by any neighbouring edges.
The quartet topologies claimed by each edge can be
encoded by a constant number of sets. Hence, we can
determine the common quartet topologies claimed by
two edges by computing the sizes of certain set inter-
sections. The set intersection operation can be done
in constant time if we pre-compute all possible set
intersections. This can be done in O(n?) time as fol-
lows. Given an evolutionary tree T', a rooted subtree
of T given the directed edge (u,v) is the subtree of
T — {(u,v)} rooted at vertex v (see Figure 2). There
are O(n) such rooted subtrees for each input tree.
The set intersection problem reduces to computing
the common leaves for each of the O(n?) rooted sub-
tree pairings (one from each input tree). We can pro-
cess each pairing in constant time since we can first
compute the pairings that involve their children. It
follows that the sizes of all set intersections (also the
intersections themselves) can be found in O(n?) time.
Summing up the number of common quartet topolo-
gies between each pair of internal edges, one from
each tree, gives the total number of agreed quartet
topologies. This runs in O(n?) time since there are
O(n?) internal edge pairings.

THEOREM 2.1. Given two wunrooted -evolutionary
trees Ty and T3, the number of quartet topologies
shared by Ty and Ts can be determined in O(n?) time.

REMARK 2.1. The set of quartet topologies shared by
T1 and Ty can also be determined in O(n?) time by
the same algorithm.

Figure 2: An example of a rooted subtree of T'. T}, is
obtained by removing the edge (u,v) and root it at
vertex v
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