Te Tari Pāngarau me te Tatauranga
Department of Mathematics & Statistics

400 level (postgraduate) papers and modules

Please contact the Director of Studies for any questions or queries.

Papers and enrolment

Which paper(s) you need to enrol for depends on your program of study. Here are a few common cases. If your particular situation is not covered by these, please contact the Director of Studies.

  • BSc(Hons), BA(Hons), or PGDipSci in Mathematics: Enrol for the papers MATH401 and MATH403 (Semester 1), MATH402 and MATH406 (Semester 2) and MATH490 (Full Year). Then select eight modules from the list below, either five in Semester 1 and three in Semester 2, or, four in Semester 1 and four in Semester 2.
  • MSc in Mathematics (two years): For year 1, enrol for the papers MATH401 and MATH403 (Semester 1), MATH402 and MATH406 (Semester 2) and MATH495 (Full Year). Then select eight modules from below, either five in Semester 1 and three in Semester 2, or, four in Semester 1 and four in Semester 2. See here for information about year 2.
  • Some other program (e.g., Statistics or Physics) which allows you to do 20-points in 400-level Mathematics: Enrol for the paper MATH401 in Semester 1 or MATH402 in Semester 2. Then select two modules from the list below. The two modules can be either in the same semester or in two consecutive semesters.

Please send your choice of modules to the Director of Studies (you do not need to formally enrol for these modules).

We may be able to offer some of our 300-level papers as 10-point 400-level modules. All the degrees in Mathematics above allow you to take 20 points in 400-level Statistics. We particularly recommend the 20-point paper STAT444 Stochastic Processes.

First semester Modules

MATH4AL Advanced Algebra   First Semester   10 points


MATH4DG Differential Geometry   First Semester   10 points

Since the time of the ancient Greeks, mathematicians and philosophers have been interested in the geometry of curves and surfaces, for example the Euclidean plane and the surface of the earth. From the end of the 19th century onwards with the work of Riemann, however, a powerful mathematical theory of much more general classes of curved spaces arose; this is what is nowadays understood as differential geometry.

MATH4DM Discrete Mathematics   First Semester   10 points

The paper provides an introduction to discrete mathematics. emphasizing links to other areas of mathematics while also filling in a lot of the background missing from the Otago undergraduate program.

MATH4FA Functional Analysis   First Semester   10 points

The main focus of this course is the analysis of linear mappings between normed linear spaces. It turns out that many problems in analysis can be studied from this abstract point of view, which recognizes important underlying principles without getting lost in technical details. The applications of the approach ranges from differential and integral equations through problems in optimal control theory and numerical analysis to probability theory to name a few. This introductory course covers some of the basic constructions and principles of functional analysis: completions of metric/normed spaces, the Hahn-Banach Theorem and its consequences, dual spaces, bounded linear operators and their adjoints, closed operators, the Open Mapping and Closed Graph Theorems, the Principle of Uniform Boundedness and some elements of the spectral theory for closed linear operators. The applications of the abstract concepts are demonstrated through various examples from different branches of analysis.

MATH4HS Hilbert Spaces   First Semester   10 points

Corresponds to MATH301
This paper is an introduction to Hilbert spaces and linear operators on Hilbert spaces. It extends the techniques of linear algebra and real analysis to study problems of an intrinsically infinite-dimensional nature.

MATH4MA Modern Algebra   First Semester   10 points

Corresponds to MATH342
This paper introduces groups and rings. These are algebraic structures consisting of a set with one or more binary operations on that set satisfying certain conditions. These structures are ubiquitous throughout modern mathematics and this paper examines their properties and some applications.

MATH4MI Measure and Integration   First Semester   10 points

In school and in introductory courses in mathematics, integral usually means Riemann integral of a real-valued function on the real line. This fundamental concept reveals its beauty in the Fundamental Theorem of Calculus which relates integration and derivation. However, the Riemann integral has some shortfalls that make it inadequate for many purposes in modern analysis. One of them is a gap in the fundamental theorem of calculus: the class of Riemann integrable functions does not coincide with the class of all functions that have an antiderivative. Another drawback is that the interchange of point-wise limits of function sequences and their integrals is only possible under rather restrictive conditions.

In this paper we introduce a modern theory of integration via measure theory that overcomes these shortfalls. It goes back to the French mathematician Henri Léon Lebesgue (1875–1941) and is the gate to many exciting branches of mathematics, like, for instance, modern probability theory, functional analysis, or the theory of partial differential equations.

MATH4NM Numerical Methods   First Semester   10 points

Corresponds to COMO303
This paper develops the theory and techniques required to apply computational methods in modelling, applied mathematics and data analysis. Topics include matrix computation, data fitting, and the numerical solution of differential equations.

MATH4NT Analytic Number Theory   First Semester   10 points

Number theory, which is probably the oldest branch of mathematics, is concerned with properties of integers. Of particular interest are prime numbers. Analytic number theory studies these using methods from analysis. This module gives a basic introduction with a focus on arithmetic functions, asymptotic formulae and the distribution of prime numbers.

Second semester Modules

MATH4A1 Techniques in Applied Mathematics 1   Second Semester   10 points

This paper is an introduction to techniques for solving problems in applied mathematics. The focus of MATH4A1 will be on solving scalar equations. The topics will include techniques for ordinary differential equations, partial differential equations, difference equations, integral equations. We will discuss problems posed on continuum and discrete domains. We will also describe how mathematical models for real-world phenomena are derived.

MATH4A2 Techniques in Applied Mathematics 2   Second Semester   10 points

This paper is an introduction to techniques for solving problems in applied mathematics. The focus of MATH4A2 will be on understanding the behavior of systems of equations. In many realistic applications, there are more than one dependent variables, and in this paper we will focus on techniques for studying systems of ordinary or partial differential equations. For systems of ordinary differential equations this will involve a study of dynamical systems and nonlinear dynamics, while we will also touch on chaos theory. Networks are becoming of increasing importance in applied mathematics, and we will outline some of the basic topics in network science, and then study dynamical systems which evolve over networks. We will also touch on the topic of stochastic differential equations. Returning to partial differential equations, we will discuss how to solve systems of partial differential equations. We will also describe how such systems may result in pattern formation, or even turbulence.

MATH4CA Complex Analysis   Second Semester   10 points

Corresponds to MATH302
This paper develops the differential and integral calculus of functions of a complex variable, and its applications.

MATH4DE Partial Differential Equations   Second Semester   10 points

Corresponds to MATH304
This paper gives an introduction to the theory of partial differential equations by discussing the main examples (Laplace's equation, Poisson's equation, transport equation, wave equation) and their applications.

MATH4GC Geometry of Curves and Surfaces   Second Semester   10 points

Corresponds to MATH306
This paper is an introduction to differential geometry; its focus is the structure of two-dimensional surfaces.

MATH4LG Lie Groups   Second Semester   10 points


MATH4MF Mathematical Finance   Second Semester   10 points


MATH4MP Mathematical Physics   Second Semester   10 points

Corresponds to MATH374
This paper presents the foundation theory for two major topics in Physics. The Classical Mechanics section introduces the formal framework of Classical Mechanics and illustrates its application to two-body problems, rotating systems, collisions, and chaos. The Special Relativity and Cosmology section covers the special theory of relativity with applications to relativistic mechanics, electrodynamics in covariant form, and cosmology. This paper is the same as the PHSI336 paper offered by the Physics Department. It is taught jointly by staff from both Departments.