Mathematics
Department of Mathematics & Statistics
Te Tari Pāngarau me te Tatauranga
Back to Our people

Dr Lisa Orloff Clark

Office: Science III, room 220
Phone: 479-7769
Email: lclark@maths.otago.ac.nz


Research Interests

My main area of research is functional analysis, with a specialisation in operator algebras. I am an expert in C*-algebras associated to groupoids. Groupoids are mathematical objects used to enhance the mathematical theory of symmetry (group theory) by allowing for additional internal symmetries. In associating a C*-algebra to a groupoid, the structure of the C*-algebra can be seen in the structure of the groupoid.

I also work in ring theory. In particular, I am interested in the connections between ring theory and operator algebras.

Selected recent publications

  • Clark, L. O., an Huef, A., & Sims, A. (2016). AF-embeddability of 2-graph algebras and quasidiagonality of κ-graph algebras. Journal of Functional Analysis, 271, 958-991. doi: 10.1016/j.jfa.2016.04.024
  • Brown, J. H., Clark, L. O., Sierakowski, A., & Sims, A. (2016). Purely infinite simple C*-algebras that are principal groupoid C*-algebras. Journal of Mathematical Analysis & Applications, 439(1), 213-234. doi: 10.1016/j.jmaa.2016.02.055
  • Clark, L. O., & Edie-Michell, C. (2015). Uniqueness theorems for Steinberg algebras. Algebras & Representation Theory, 18(4), 907-916. doi: 10.1007/s10468-015-9522-2
  • Clark, L. O., & Sims, A. (2015). Equivalent groupoids have Morita equivalent Steinberg algebras. Journal of Pure & Applied Algebra, 219(6), 2062-2075. doi: 10.1016/j.jpaa.2014.07.023
  • Brown, J., & Clark, L. O. (2014). A groupoid formulation of the Baire Category Theorem. Fundamenta Mathematicae, 226(2), 123-130. doi: 10.4064/fm226-2-2