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A Motivational Example
Locations of larynx cancer in Chorley Ribble region of UK

  Larynx (cases)   Lung (controls)
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Spatial Relative Risk

How to assess geographical variation in risk from case-control
data?
Observations lie in compact spatial region W .
f is density function for spatial coordinates of cases; g for controls
For x = (x1, x2)

T ∈ W , the relative risk function (Bithell, 1990) is

r(x) =
f (x)
g(x)

.

Describes only relative spatial differences, not overall intensity.
Typical to work with: ρ(x) = log(r(x)) = log(f (x))− log(g(x)).
r(x) = 1 ⇔ ρ(x) = 0 is null; ρ(x) > 0 for elevated risk at x .

Bithell, J.F. (1990). Statistics in Medicine 9, 691–701.
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Kernel Smoothing

Data: marked point pattern {(x1, y1), . . . , (xn, yn)} on W .
▶ y = 1 if case; y = 0 if control.

Number cases n1 =
∑n

i=1 yi , number controls n2 =
∑n

i=1(1 − yi).
Case and control densities estimated by kernel density estimation:

f̂ (x | h) =
1
n1

n∑
i=1

yiKh(x − x i)

ĝ(x | h) =
1
n2

n∑
i=1

(1 − yi)Kh(x − x i).

Kernel K is isotropic density; scaled kernel Kh(x) = h−2K (x/h).
Bandwidth h controls degree of smoothing.

Relative risk estimate r̂(x) = f̂ (x | h)
/

ĝ(z | h) .
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Application to Chorley Ribble
Estimates of log-relative risk function ρ̂(x)

  Fixed bandwidth
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Shrinkage Estimation
Bithell’s Method

Null value is r(x) = 1 ⇔ ρ(x) = 0.
Idea: shrink estimate towards null value in areas of sparse data.

▶ Insufficient evidence there to warrant non-null estimate.

Bithell’s estimator:

r̂B(x | h, λ) =
λk0/n1 + f̂ (x | h)
λk0/n1 + ĝ(x | h)

k0 = Kh(0) = K (0)/h2.
λ an interpretable tuning parameter, controlling degree of
shrinkage.
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Lasso Shrinkage Estimation
Local likelihood

Consider estimation at x ∈ W .
Local constant estimator is ρ(z) = b for z in neighbourhood of x .
P(Y = 1 | z ,n1,n2) = n1eb/(n2 + n1eb).
Local log-likelihood [Tibshirani & Hastie (1987)]

L(b) =
n∑

i=1

log (P(Yi = yi | x))Kh(x − x i)

= bn1 f̂ (x)− [n1 f̂ (x) + n2ĝ(x)] log
(

1 +
n1

n2
eb

)
+ c

L(b) maximized by standard kernel estimator ρ̂(x) = b̂.

Tibshirani R & Hastie T. (1987) JASA 82, 559–567.
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Lasso Shrinkage Estimation
Penalized Local likelihood

Penalize negative local likelihood by L1 (lasso) penalty:

Q(b) = −L(b) + λk0|b|

Minimize Q(b) for lasso estimator ρ̂(x) = b̂.
Rationale: lasso estimators will shrink ρ̂(x) to exactly zero for
sufficiently large λ.
Bonus: ρ̂(x) available in closed form:

eb̂ =


f̂ (x)−λk0/n1
ĝ(x)+λk0/n2

1 < f̂ (x)−λk0/n1
ĝ(x)+λk0/n2

f̂ (x)+λk0/n1
ĝ(x)−λk0/n2

0 < f̂ (x)+λk0/n1
ĝ(x)−λk0/n2

< 1

1 otherwise.
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Choice of Shrinkage Parameter
Penalized Local likelihood

Rule of Thumb
For lasso method, method effectively changes λ cases at x into
controls.
Suggests λ = 4.
ρ̂ shrunk to zero except in locations x where we would tend to
reject H0 : ρ(x) = 0.

Cross-Validation
Employ leave-one-out cross-validation based on Bernoulli
log-likelihood.
Choose left-hand local minimum in cases of multiple extrema.
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Application to Chorley-Ribble Dataset
  Bithell, λ = 4
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Some Numerical Results
Test Problems

  Chorley−Ribble
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Some Numerical Results
Results for Problem 1
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0
2

4
6

lo
g(

IS
E

)

Low sample size, low variation *

Fixed Adapt Lasso Bithell

1
2

3
4

5
6

7

lo
g(

IS
E

)

Low sample size, high variation

Fixed Adapt Lasso Bithell

−
1

0
1

2
3

4
5

6

lo
g(

IS
E

)

High sample size, low variation

Fixed Adapt Lasso Bithell

0
1

2
3

4
5

6

lo
g(

IS
E

)

High sample size, high variation

NZSA Conference, 4-6 Dec. 2023 12 / 16



Some Numerical Results
Results for Problem 2
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Some Numerical Results
Results for Problem 3
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To Learn More ...

Journal Article
Hazelton, M.L. (2023). Shrinkage estimates of the spatial relative risk
function. Statistics in Medicine, 42, 4556-4569. 10.1002/sim.9875.

Software
Implemented in function risk (argument shrink=T) in sparr
package for R.
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In Memoriam
Dr John Francis Bithell (1939–2020)
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