## When bias hurts - a tale of nonparametric testing

#### Martin Hazelton<sup>1</sup> Tilman Davies

Department of Mathematics & Statistics University of Otago

22 November 2023



Email: martin.hazelton@otago.ac.nz

# **Comparing Parametric Things**

Two (multivariate) random samples:  $\{x_{ij}: j = 1, ..., n_i\}, i = 1, 2$ 

Want to compare underlying quantities  $\theta_1$  and  $\theta_2$ 

By STAT200 or some such:

- $H_0$ :  $\theta_1 = \theta_2$
- Define test statistic

$$Z = \frac{\hat{\theta}_1 - \hat{\theta}_2}{\mathsf{SE}(\hat{\theta}_1 - \hat{\theta}_2)}$$

• Find p-value using approximately N(0,1) null distribution for Z

Works fine in most standard parametric settings



# Comparing Parametric Things

Why bias doesn't hurt

#### Standard parameter estimators have:

- Bias( $\hat{\theta}$ ) =  $O(n^{-1})$
- $SE(\hat{\theta}) = O(n^{-1/2})$

Any bias in  $\hat{\theta}_1 - \hat{\theta}_2$  will lead to

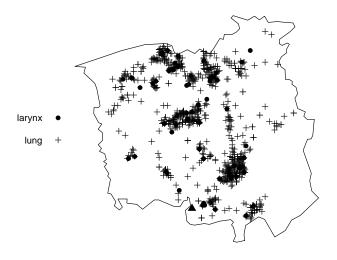
$$\mathsf{E}[Z] = \mathsf{E}\left[\frac{\hat{\theta}_1 - \hat{\theta}_2}{\mathsf{SE}(\hat{\theta}_1 - \hat{\theta}_2)}\right] = O(n^{-1/2})$$

- $n_1 = \gamma n, n_2 = (1 \gamma)n$
- Often under  $H_0$  get perfect bias cancellation, so E[Z] = 0.



# Comparing Nonparametric Things

Do larynx and lung cancer densities differ at incinerator location ▲?





# Comparing Multivariate Densities at a Point

$$H_0: f_1(\mathbf{x}) = f_2(\mathbf{x})$$

Also include equality of all derivatives at x under H<sub>0</sub>?

Test statistic

$$z(\mathbf{x}) = \frac{\hat{f}_1(\mathbf{x}|H_1) - \hat{f}_2(\mathbf{x}|H_2)}{\hat{\sigma}(\mathbf{x})}$$

using kernel density estimates

$$\hat{f}_i(\mathbf{x}|H_i) = \frac{1}{n_i|H_i|^{1/2}} \sum_{j=1}^{n_i} K(H_i^{-1/2}(\mathbf{x} - \mathbf{x}_{ij}))$$

- $H_1$ ,  $H_2$  are bandwidth matrices;
- $\hat{\sigma}(\mathbf{x})$  is asymptotic estimate of  $SE(\hat{f}_1(\mathbf{x}|H_1) \hat{f}_2(\mathbf{x}|H_2))$ .



Individual density estimates

Bandwidth matrices vary with n:  $H_i = C_i n_i^{-2\alpha}$ 

$$\mathsf{E}[\hat{f}_i(\boldsymbol{x}|H_i)] = f_i(\boldsymbol{x}) + \frac{1}{2}\mathsf{tr}\{C_i\mathcal{H}_{f_i}(\boldsymbol{x})\}n_i^{-2\alpha} + O(n_i^{-4\alpha})$$

•  $\mathcal{H}_{f_i}(\mathbf{x})$  is Hessian matrix for  $f_i$ 

$$\operatorname{Var}[\hat{f}_i(\mathbf{x}|H_i)] = R(K)f_i(\mathbf{x})|C_i|^{-1/2}n_i^{\alpha d-1} + o(n_i^{\alpha d-1}).$$

To minimize  $MSE(\hat{f}_i)$ , set  $\alpha = 1/(4 + d)$  for d-dimensional data

Then 
$$\text{Bias}(\hat{f}_i) = O(n^{-2/(4+d)})$$
 and  $\sqrt{\text{Var}(\hat{f}_i)} = O(n^{-2/(4+d)})$ 





Test statistic null distribution

#### **Theorem**

Under standard regularity conditions, under H<sub>0</sub>

$$z(\boldsymbol{x}) - \mathsf{E}[z(\boldsymbol{x})] \stackrel{D}{\to} \mathsf{N}(0,1).$$

So null distribution is asymptotically standard normal iff E[z(x)] = 0.



Test statistic null mean

Using the traditionally optimal bandwidth order:

$$E[\hat{f}_1(\mathbf{x}|H_1) - \hat{f}_2(\mathbf{x}|H_2)] = O(n^{-2/(4+d)})$$

$$\hat{\sigma}(\mathbf{x}) = O(n^{-2/(4+d)})$$

Therefore

$$\mathsf{E}[z(\boldsymbol{x})] = \mathsf{E}\left[\frac{\hat{f}_1(\boldsymbol{x}|H_1) - \hat{f}_2(\boldsymbol{x}|H_2)}{\hat{\sigma}(\boldsymbol{x})}\right] = O(1)$$



But surely the biases cancel under  $H_0$ ? If only ...

Recall:

$$\mathsf{E}[\hat{\mathit{f}}_{\mathit{i}}(\boldsymbol{x}|H_{\mathit{i}})] = \mathit{f}_{\mathit{i}}(\boldsymbol{x}) + \tfrac{1}{2}\mathsf{tr}\{\mathit{C}_{\mathit{i}}\mathcal{H}_{\mathit{f}_{\mathit{i}}}(\boldsymbol{x})\}\mathit{n}_{\mathit{i}}^{-2\alpha} + \mathit{O}(\mathit{n}_{\mathit{i}}^{-4\alpha})$$

and

$$n_1 = \gamma n, n_2 = (1 - \gamma)n$$

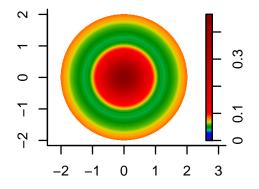
With 'optimal'  $\alpha = 1/(4 + d)$ :

| Hessians                                                                | Sample size split | $E[z(\mathbf{x})]$ |
|-------------------------------------------------------------------------|-------------------|--------------------|
| $\mathcal{H}_{f_1}(\mathbf{x})  eq \mathcal{H}_{f_2}(\mathbf{x})$       | 0 < γ < 1         | <i>O</i> (1)       |
| $\mathcal{H}_{f_1}(\boldsymbol{x}) = \mathcal{H}_{f_2}(\boldsymbol{x})$ | $\gamma  eq 1/2$  | <i>O</i> (1)       |
| $\mathcal{H}_{f_1}(\boldsymbol{x}) = \mathcal{H}_{f_2}(\boldsymbol{x})$ | $\gamma=$ 1/2     | $O(n^{-2/(d+4)})$  |



#### But Does it Matter in Practice?

Pointwise test-sizes for comparison of bivariate t-distributions with  $n_1 = 100$ ,  $n_2 = 5000$ 





#### Solutions

Choose your bandwidth matrices carefully

#### **Optimal**

Use different 'optimal' bandwidth matrices for each sample

#### Common

Use the same bandwidth matrix for each sample, but with asymptotically optimal order

Bias cancellation when Hessians equal

#### Undersmooth

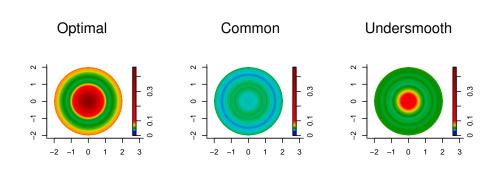
Use different bandwidth matrices for each sample, but with undersmoothed asymptotic order

• E[z(x)] = o(1) under  $H_0$  regardless of Hessian (in)equality



### Does it Work in Practice?

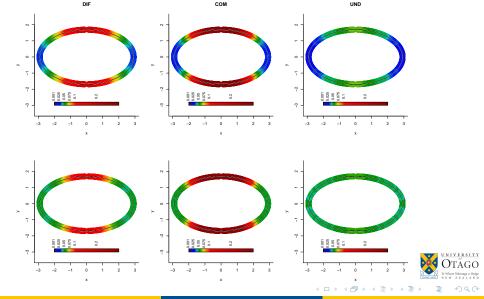
Pointwise test-sizes for common distributions,  $n_1 \neq n_2$ 





### Does it Work in Practice?

Pointwise test-sizes for different distributions,  $\mathcal{H}_{f_1}(\mathbf{x}) \neq \mathcal{H}_{f_2}(\mathbf{x})$ 



### Which Method to Choose?

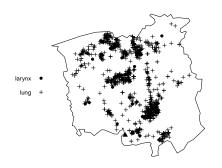
Its context dependent

| Hessians                                                                | Sample size split | Bandwidth matrices |
|-------------------------------------------------------------------------|-------------------|--------------------|
| $\mathcal{H}_{f_1}(\mathbf{x})  eq \mathcal{H}_{f_2}(\mathbf{x})$       | $0 < \gamma < 1$  | Undersmooth        |
| $\mathcal{H}_{f_1}(\boldsymbol{x}) = \mathcal{H}_{f_2}(\boldsymbol{x})$ | $\gamma  eq 1/2$  | Common             |
| $\mathcal{H}_{f_1}(\boldsymbol{x}) = \mathcal{H}_{f_2}(\boldsymbol{x})$ | $\gamma=$ 1/2     | Optimal            |



# Lessons from Chorley-Ribble

Test size and power from simulated data



|            | Test method |       |       |
|------------|-------------|-------|-------|
|            | OPT         | COM   | UND   |
| Test size  | 0.112       | 0.030 | 0.031 |
| Test power | 0.460       | 0.582 | 0.311 |



#### To Learn More ...

Hazelton, M. L., & Davies, T. M. (2022). Pointwise comparison of two multivariate density functions. *Scandinavian Journal of Statistics*, in press. https://doi.org/10.1111/sjos.12565

