When bias hurts - a tale of nonparametric testing

Martin Hazelton¹ Tilman Davies

Department of Mathematics & Statistics University of Otago

22 November 2023

Email: martin.hazelton@otago.ac.nz

Comparing Parametric Things

Two (multivariate) random samples: $\{x_{ij}: j = 1, ..., n_i\}, i = 1, 2$

Want to compare underlying quantities θ_1 and θ_2

By STAT200 or some such:

- H_0 : $\theta_1 = \theta_2$
- Define test statistic

$$Z = \frac{\hat{\theta}_1 - \hat{\theta}_2}{\mathsf{SE}(\hat{\theta}_1 - \hat{\theta}_2)}$$

• Find p-value using approximately N(0,1) null distribution for Z

Works fine in most standard parametric settings

Comparing Parametric Things

Why bias doesn't hurt

Standard parameter estimators have:

- Bias($\hat{\theta}$) = $O(n^{-1})$
- $SE(\hat{\theta}) = O(n^{-1/2})$

Any bias in $\hat{\theta}_1 - \hat{\theta}_2$ will lead to

$$\mathsf{E}[Z] = \mathsf{E}\left[\frac{\hat{\theta}_1 - \hat{\theta}_2}{\mathsf{SE}(\hat{\theta}_1 - \hat{\theta}_2)}\right] = O(n^{-1/2})$$

- $n_1 = \gamma n, n_2 = (1 \gamma)n$
- Often under H_0 get perfect bias cancellation, so E[Z] = 0.

Comparing Nonparametric Things

Do larynx and lung cancer densities differ at incinerator location ▲?

Comparing Multivariate Densities at a Point

$$H_0: f_1(\mathbf{x}) = f_2(\mathbf{x})$$

Also include equality of all derivatives at x under H₀?

Test statistic

$$z(\mathbf{x}) = \frac{\hat{f}_1(\mathbf{x}|H_1) - \hat{f}_2(\mathbf{x}|H_2)}{\hat{\sigma}(\mathbf{x})}$$

using kernel density estimates

$$\hat{f}_i(\mathbf{x}|H_i) = \frac{1}{n_i|H_i|^{1/2}} \sum_{j=1}^{n_i} K(H_i^{-1/2}(\mathbf{x} - \mathbf{x}_{ij}))$$

- H_1 , H_2 are bandwidth matrices;
- $\hat{\sigma}(\mathbf{x})$ is asymptotic estimate of $SE(\hat{f}_1(\mathbf{x}|H_1) \hat{f}_2(\mathbf{x}|H_2))$.

Individual density estimates

Bandwidth matrices vary with n: $H_i = C_i n_i^{-2\alpha}$

$$\mathsf{E}[\hat{f}_i(\boldsymbol{x}|H_i)] = f_i(\boldsymbol{x}) + \frac{1}{2}\mathsf{tr}\{C_i\mathcal{H}_{f_i}(\boldsymbol{x})\}n_i^{-2\alpha} + O(n_i^{-4\alpha})$$

• $\mathcal{H}_{f_i}(\mathbf{x})$ is Hessian matrix for f_i

$$\operatorname{Var}[\hat{f}_i(\mathbf{x}|H_i)] = R(K)f_i(\mathbf{x})|C_i|^{-1/2}n_i^{\alpha d-1} + o(n_i^{\alpha d-1}).$$

To minimize $MSE(\hat{f}_i)$, set $\alpha = 1/(4 + d)$ for d-dimensional data

Then
$$\text{Bias}(\hat{f}_i) = O(n^{-2/(4+d)})$$
 and $\sqrt{\text{Var}(\hat{f}_i)} = O(n^{-2/(4+d)})$

Test statistic null distribution

Theorem

Under standard regularity conditions, under H₀

$$z(\boldsymbol{x}) - \mathsf{E}[z(\boldsymbol{x})] \stackrel{D}{\to} \mathsf{N}(0,1).$$

So null distribution is asymptotically standard normal iff E[z(x)] = 0.

Test statistic null mean

Using the traditionally optimal bandwidth order:

$$E[\hat{f}_1(\mathbf{x}|H_1) - \hat{f}_2(\mathbf{x}|H_2)] = O(n^{-2/(4+d)})$$

$$\hat{\sigma}(\mathbf{x}) = O(n^{-2/(4+d)})$$

Therefore

$$\mathsf{E}[z(\boldsymbol{x})] = \mathsf{E}\left[\frac{\hat{f}_1(\boldsymbol{x}|H_1) - \hat{f}_2(\boldsymbol{x}|H_2)}{\hat{\sigma}(\boldsymbol{x})}\right] = O(1)$$

But surely the biases cancel under H_0 ? If only ...

Recall:

$$\mathsf{E}[\hat{\mathit{f}}_{\mathit{i}}(\boldsymbol{x}|H_{\mathit{i}})] = \mathit{f}_{\mathit{i}}(\boldsymbol{x}) + \tfrac{1}{2}\mathsf{tr}\{\mathit{C}_{\mathit{i}}\mathcal{H}_{\mathit{f}_{\mathit{i}}}(\boldsymbol{x})\}\mathit{n}_{\mathit{i}}^{-2\alpha} + \mathit{O}(\mathit{n}_{\mathit{i}}^{-4\alpha})$$

and

$$n_1 = \gamma n, n_2 = (1 - \gamma)n$$

With 'optimal' $\alpha = 1/(4 + d)$:

Hessians	Sample size split	$E[z(\mathbf{x})]$
$\mathcal{H}_{f_1}(\mathbf{x}) eq \mathcal{H}_{f_2}(\mathbf{x})$	0 < γ < 1	<i>O</i> (1)
$\mathcal{H}_{f_1}(\boldsymbol{x}) = \mathcal{H}_{f_2}(\boldsymbol{x})$	$\gamma eq 1/2$	<i>O</i> (1)
$\mathcal{H}_{f_1}(\boldsymbol{x}) = \mathcal{H}_{f_2}(\boldsymbol{x})$	$\gamma=$ 1/2	$O(n^{-2/(d+4)})$

But Does it Matter in Practice?

Pointwise test-sizes for comparison of bivariate t-distributions with $n_1 = 100$, $n_2 = 5000$

Solutions

Choose your bandwidth matrices carefully

Optimal

Use different 'optimal' bandwidth matrices for each sample

Common

Use the same bandwidth matrix for each sample, but with asymptotically optimal order

Bias cancellation when Hessians equal

Undersmooth

Use different bandwidth matrices for each sample, but with undersmoothed asymptotic order

• E[z(x)] = o(1) under H_0 regardless of Hessian (in)equality

Does it Work in Practice?

Pointwise test-sizes for common distributions, $n_1 \neq n_2$

Does it Work in Practice?

Pointwise test-sizes for different distributions, $\mathcal{H}_{f_1}(\mathbf{x}) \neq \mathcal{H}_{f_2}(\mathbf{x})$

Which Method to Choose?

Its context dependent

Hessians	Sample size split	Bandwidth matrices
$\mathcal{H}_{f_1}(\mathbf{x}) eq \mathcal{H}_{f_2}(\mathbf{x})$	$0 < \gamma < 1$	Undersmooth
$\mathcal{H}_{f_1}(\boldsymbol{x}) = \mathcal{H}_{f_2}(\boldsymbol{x})$	$\gamma eq 1/2$	Common
$\mathcal{H}_{f_1}(\boldsymbol{x}) = \mathcal{H}_{f_2}(\boldsymbol{x})$	$\gamma=$ 1/2	Optimal

Lessons from Chorley-Ribble

Test size and power from simulated data

	Test method		
	OPT	COM	UND
Test size	0.112	0.030	0.031
Test power	0.460	0.582	0.311

To Learn More ...

Hazelton, M. L., & Davies, T. M. (2022). Pointwise comparison of two multivariate density functions. *Scandinavian Journal of Statistics*, in press. https://doi.org/10.1111/sjos.12565

