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Abstract.—In phylogenetic analyses with combined multigene or multiprotein data sets, accounting for differing evolu-
tionary dynamics at different loci is essential for accurate tree prediction. Existing maximum likelihood (ML) and Bayesian
approaches are computationally intensive. We present an alternative approach that is orders of magnitude faster. The method,
Distance Rates (DistR), estimates rates based upon distances derived from gene/protein sequence data. Simulation studies
indicate that this technique is accurate compared with other methods and robust to missing sequence data. The DistR method
was applied to a fungal mitochondrial data set, and the rate estimates compared well to those obtained using existing ML
and Bayesian approaches. Inclusion of the protein rates estimated from the DistR method into the ML calculation of trees as
a branch length multiplier resulted in a significantly improved fit as measured by the Akaike Information Criterion (AIC).
Furthermore, bootstrap support for the ML topology was significantly greater when protein rates were used, and some
evident errors in the concatenated ML tree topology (i.e., without protein rates) were corrected. [Bayesian credible intervals;
DistR method; multigene phylogeny; PHYML; rate heterogeneity.]

It is widely recognized that the analysis of multiple
unlinked genes is superior to single gene analyses for
phylogenetic reconstruction. These unlinked genes may,
however, be evolving according to very different rules.
Heterogeneity of the evolutionary process must be ac-
counted for in phylogenetic analyses (Bapteste et al.,
2002; Bull et al., 1993; Huelsenbeck et al., 1996; Nylander
et al., 2004; Pupko et al., 2002b; Yang, 1996). The con-
cept of accounting for differing evolutionary pressures
within phylogenetic analysis is not new (Yang, 1993).
Site-specific rates of evolution can be computed for
amino acids (e.g., Rate4Site, Mayrose et al., 2004; Pupko
et al., 2002a) and DNA (e.g., DNArates, Olsen et al.,
1993) using both Bayesian and maximum likelihood ap-
proaches.

Site rates within a gene are likely to be more correlated
than rates for sites in different genes. To account for this,
it can be assumed that each gene evolves at a different
average rate and that these gene rates are drawn from
some common distribution (Cranston and Ranala, 2005;
Felsenstein, 2001, 2004a). Both Bayesian (Huelsenbeck
and Ronquist, 2001) and maximum likelihood (Pupko
et al., 2002b; Yang, 1996) methods exist to estimate gene
rates (or more generally, locus rates) but these are com-
putationally expensive.

We present a fast, accurate method to estimate the rel-
ative evolutionary rates of genes/proteins. For example,
when run on a data set with 63 proteins over 123 taxa
the algorithm takes less than a second. The method can
be applied to protein or nucleotide data, though here we
focus on protein sequences. The basic idea is to use pair-
wise estimates of evolutionary divergence (distances) to
deduce the relative rates of different proteins, even when
the proteins are not all present in all of the taxa. Although
this approach does not give the ML estimates for the
rates (Pupko et al., 2002b, Yang, 1996), it does provide an
excellent approximation.

After computing rates they are incorporated as extra
parameters into the ML tree search, resulting in im-
proved fit as measured by the AIC. The rates estimated
using the DistR procedure have been coded into PHYML
version 2.2, available at http://atgc.lirmm.fr/phyml/
(Guindon and Gascuel, 2003). PHYML was used be-
cause incorporation of the rates was straightforward and
because PHYML is an especially fast implementation of
ML.

METHODS

The DistR Method
To begin with, the method will be explained through

an example. Figure 1 represents three different protein
alignments. Not all taxa are present in all three align-
ments. Suppose that the three proteins have rates r1, r2,
and r3. These rates will affect distances inferred from the
alignments. Reversing the problem involves using the
pairwise distances between species to estimate the dif-
ferent rates r1, r2, and r3.

Figure 1 outlines two ways of obtaining distances from
each protein. In the first method ML trees are constructed
and the length of the path between two taxa in these
trees is measured (referred to hereafter as patristic ML
distances). In the second method distances are estimated
directly from the alignments, as is customary in distance-
based methods (referred to hereafter as pairwise ML dis-
tances). The end result from both methods is a distance
matrix for each protein.

If the rate in one protein is twice the rate in a second
protein, then the expected distance estimates from the
first protein should be twice the expected distance esti-
mates from the second protein. This should hold, approx-
imately, for both pairwise ML distances and patristic ML
distances. Equivalently, the distance estimate from the
first protein, divided by two, should be approximately
the distance estimate of the second protein.
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FIGURE 1. The general idea of the DistR estimation procedure. Beginning with individual protein alignments over a set of taxa (with missing
data), distances between the species are estimated for each protein alignment. There are two choices of how to estimate the distances: directly
from the alignment data (method 2); as the sum of the pairwise distances between taxa on a tree built from the alignment data (method 1).
The result is a matrix of pairwise distances between taxa. The ratio of the pairwise distances to the rate of evolution of the protein should be
approximately the same for all proteins.

In the example (Fig. 1), and later on, the distance be-
tween taxa x and y estimated from protein k is denoted
d (k)

xy , irrespective of whether it is a pairwise or patristic
ML distance. Suppose that, for each k, the rate in protein

k equals rk . It follows that d (1)
xy

r1
will be approximately equal

to d (2)
xy

r2
which in turn will be approximately equal to d (3)

xy

r3
.

This is denoted as

d (1)
xy

r1
≈ d (2)

xy

r2
≈ d (3)

xy

r3
, (1)

where “≈” means “approximately equal.” In Figure 1,
this gives 3.0

0.55 ≈ 4.5
0.82 ≈ 9.0

1.63 .
In a sense, the distance estimates obtained from each

gene are normalized so that the scale is the same. Define
this normalized distance or consensus distance between
any two taxa as pxy, with the assumption that

pxy ≈ d (1)
xy

r1
≈ d (2)

xy

r2
≈ d (3)

xy

r3
.

Assume that rates r1, r2, and r3 in Figure 1 are un-
known, whereas the distances remain known. The above
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approximate equality leads to

pxy ≈ 3.0
r1

≈ 4.5
r2

≈ 9.0
r3

. (2)

The unknowns pxy, r1, r2, and r3 can be solved for using
a least squares approach.

The relation in Equation (2) provides a framework to
solve for the relative rates r1, r2, and r3, given estimates
for the distances d (k)

xy . This is the basic idea behind the
method. The main issues are how to (a) handle the fact
that the relations are only approximate; (b) deal with
missing distances; (c) compute the rate estimates quickly.
These issues are addressed in the following text and in
Appendix 2.

To formalize the problem, suppose that there are n pro-
teins (or genes, etc.) over m species. The distance between
species x and y derived from protein k is denoted d (k)

xy .
The basic assumption made is that the ratio of the esti-
mated distance between a pair of taxa for a given protein
(d (k)

xy for protein k and taxa x,y), to the rate of the pro-
tein (rk for protein k), is approximately equal across all
proteins.

The rates r1, r2, . . ., rn are unknown quantities to
be estimated based upon the distance data from a
given protein alignment. To do this, assume that
there exists an unknown consensus distance pxy
such that

pxy ≈ d (1)
xy

r1
≈ d (2)

xy

r2
≈ · · · ≈ d (n)

xy

rn
,

where n = 3 for the example in Figure 1. All the consen-
sus distances and rates can now be estimated using a
least-squares approach.

In the least squares method it is possible to incorpo-
rate measures of uncertainty about the estimated dis-
tances d (k)

xy . Distance estimates with low variance should
contribute more to the analysis, whereas distance esti-
mates with high variance (or infinite variance in the case
of missing entries) should contribute little. Let w(k)

xy ≥ 0
be a measure of the uncertainty in the distance esti-
mate between taxa x and y derived from protein k.
If d (k)

xy is accurate, then w(k)
xy should be high. If there

is less certainty about the accuracy of d (k)
xy , then w(k)

xy
should be low. This is achieved using the inverse of
the variance of d (k)

xy , that is, w(k)
xy = 1

Var(d (k)
xy )

. If protein k is

not present in both x and y, then w(k)
xy = 0. To measure

the variance of the distance estimates the approximate
formula of Bulmer (1991) is used in the implementa-
tion of DistR. Other variance estimators could also be
used.

Under a weighted least-squares (WLS) framework the

total discrepancy between the ratios d (n)
xy

rn
and the consen-

sus distances pxy is measured by

q (p, r) =
n∑

k=1

∑
x, y

w(k)
xy

(
pxy − d (k)

xy

rk

)2

(3)

where p denotes the vector [p12, p13, . . . , p (m−1)m
2

]T and r

denotes the vector [r1, . . . , rn]T . This is similar to the min-
imization function used by Lapointe and Cucumel (1997)
in the average consensus method. The main difference is
that they assume one rate over all proteins, whereas this
method includes different rates for each protein. Note
that if taxa x and y are missing from a protein k then
an estimate for d (k)

xy cannot be obtained. However, this is
not a problem since the weight w(k)

xy will be zero in this
case.

Estimating both rates and consensus distances using
q (p, r) leads to the problem of nonidentifiability. In the ab-
sence of any error each estimated protein distance d (k)

xy
is the product of the rate of the protein rk and the con-
sensus distance pxy. Thus, a perfect fit to the equation is
still achieved if all the rates are multiplied by some con-
stant and all the consensus distances divided by the same
constant. There is a problem of determining scale. Hence,
Equation (3) does not have a well-defined minimum. To
solve this problem a constraint

n∑
k=1

∑
x, y

w(k)
xy pxy = κ (4)

must be added to system, where κ is an arbitrary pos-
itive constant. The particular value of κ is irrelevant
since changing κ merely causes all estimated rates to
be multiplied by the same constant value. For this rea-
son, it is possible to infer relative rates only. In DistR
κ = ∑n

k=1
∑

x, y w(k)
xy d (k)

xy , thus constraining the weighted
estimated distances to be equal to the weighted consen-
sus distances. This was empirically determined to mini-
mize the variance of the DistR estimates.

Appendix 3 describes an extremely fast algorithm for
minimizing the function q (p, r) subject to the constraint
in Equation (4). The algorithm takes O(nm2 + n3) time
and O(n2 + m2) memory. For example, when run on a
data set with 63 proteins over 123 taxa, the algorithm
takes less than a second. An implementation with source
code is available at http://www.mcb.mcgill.ca/˜rachel.

Experimental Studies

An extremely rapid method for estimating the rel-
ative rates of different genes has been proposed. The
method is orders of magnitude faster than existing ML
and Bayesian approaches. The most important question
remaining is to what extent this increase in speed affects
the accuracy of the estimates. In order to address this
question, the accuracy of the new method was assessed
using both simulated and empirical data.
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In all the analyses PHYML (version 2.2) was used
(Guindon and Gascuel, 2003) to compute ML distances
and trees, with a JTT protein model, eight gamma cate-
gories plus invariant sites and the default (BIONJ) start-
ing tree. The gamma shape parameter and proportion of
invariant sites were estimated using default optimization
routines in the program. When constructing ML trees
from real data several bootstrap values were computed.
As detailed below these values depend upon: whether
patristic or pairwise ML distances were used in the DistR
procedure; whether the rates were reestimated for each
bootstrap replicate.

For both the simulated and empirical data, DistR esti-
mates based upon patristic and ML distances were com-
pared. This comparison was made in order to determine
whether or not the additional computational effort re-
quired for estimating patristic ML distances is justified.

Experimental Studies—Simulated Data

The two key questions addressed through the simula-
tion studies are:

• Patristic versus pairwise ML distances.—How accurate
are the rate estimates using pairwise versus patristic
ML distances?

• Missing distances between taxa.—How are DistR rate
estimates affected when proteins are not present in
all taxa?

To answer these questions protein alignments were
simulated using Pseq-Gen (Grassly et al., 1997) with
the JTT model of evolution. The initial tree and branch

FIGURE 2. The general flow of the simulation studies. Two studies were performed, one with n = 20 and the other with n = 21 (where n is
the number or proteins). The first study compared different methods of estimating distances using different alignment lengths. In the first study,
20 random subtrees from an original tree of 58 species were created, four each of size m = 33, m = 38, m = 43, m = 48, and m = 53 (where m is the
size of the taxon set for a given protein). For each tree, a rate was sampled from a precomputed distribution of rates based on real data (data not
shown). Protein alignments of length 100, 300, 500, and 1000 were simulated using Pseq-Gen (Grassly et al., 1997). A second analysis compared
rate estimates with increasing amounts of data. Twenty-one random subtrees from the original tree of 58 species were created, 7 each of size
m = 16, m = 30, and m = 44 (corresponding to approximately 25%, 50%, and 75% of the species [as in Eulenstein et al., 2004]). For each tree, a
rate was sampled from a precomputed distribution of rates based on real data (data not shown). Alignments of length 1000 were generated. For
both studies, 10 replicates were performed for each set of parameters.

lengths were taken from an independent analysis of mi-
tochondrial Atp8 proteins in 58 eukaryotes. Two types of
simulations were carried out. The first, intended to ad-
dress the first question, involved construction of 20 pro-
tein trees by randomly deleting taxa from the starting
tree. In total there were four protein trees with 53 taxa,
four with 48 taxa, four with 43 taxa, four with 38 taxa, and
four with 33 taxa. For each tree a rate was sampled from
a precomputed distribution of rates based on real data
(data not shown), and protein alignments of length 100,
300, 500, and 1000 generated using Pseq-Gen (Grassly et
al., 1997) (note that the average length of naturally oc-
curring proteins is approximately 300 amino acids). The
second analysis, intended to address the second ques-
tion, increased the number of taxa deleted from the start-
ing tree. In total there were seven trees with 25% of the
taxa, seven with 50% of the taxa, and seven with 75%
of the taxa. This resulted in 21 trees, 7 each with 16, 30,
and 44 taxa, respectively. For each tree a rate was sam-
pled from a precomputed distribution of rates based on
real data (data not shown), and protein alignments of
length 1000 generated using Pseq-Gen (Grassly et al.,
1997). This experiment follows a protocol proposed by
(Eulenstein et al., 2004). For both experiments, and for
every set of parameters, 10 replicates of the experiment
were performed. See Figure 2 for an overview of the
simulations.

Statistics measured on the simulated data, including
goodness-of-fit and mean squared error, are explained in
detail in Appendix 1. These statistics were used to relate
the accuracy of the DistR rate estimates to the known
rates at which the proteins were simulated.
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Experimental Studies—Empirical Data

The data analyzed in this study consist of a set of 15
aligned mitochondrial protein sequences from 29 taxa.
The taxon names and accession numbers are given in
Table 1. Protein names and alignment accession num-
bers appear in Table 2. This multiprotein data set is of
moderate size, and variants thereof have been used in
numerous publications (e.g., Bullerwell et al., 2003; Lang
et al., 2002; Sumida et al., 2001; Tomita et al., 2002). Fur-
thermore, some of the species have high evolutionary
rates and substitutional saturation of sites (i.e., Smittium),
whereas others have very short branches in the resulting
phylogenetic tree. Combined, these two properties can
cause inaccurate grouping of the taxa due to long-branch
attraction artifacts (Felsenstein, 1978).

TABLE 1. Empirical data analyzed. Names and accession numbers
for protein sequences studied from Fungal species and outgroup. Fif-
teen proteins were downloaded for each species (if present in the
species), the names of which are in Table 2.

Species GenBank accession number

Ascomycota
Aspergillus nidulans CAA33481, AAA99207,

AAA31737, CAA25707,
AAA31736, CAA23994, X15442,
P15956, CAA23995, CAA33116,
X00790, X15441, X06960,
J01387, X01507

Candida albicans AF285261
Candida glabrata CGL511533
Hypocrea jecorina AF447590
Penicillium marneffei NC 005256
Pichia canadensis NC 001762
Podospora anserina X55026
Saccharomyces cerevisiae AJ 011856
Schizosaccharomyces

japonicus
NC 004332

Schizosaccharomyces
octosporus

AF275271

Schizosaccharomyces pombe X54421
Torrubiella confragosa AF487277
Yarrowia lipolytica AJ307410

Basidiomycota
Cryptococcus neoformans NC 004336
Schizophyllum commune AF402141
Cantharellus cibarius a

Choanoflagellida
Monosiga brevicollis AF538053

Chytridiomycota
Allomyces macrogynus U41288
Harpochytrium94 NC 004760
Harpochytrium105 NC 004623
Hyaloraphidium curvatum AF402142
Monoblepharella AY182007
Rhizophydium136 NC 003053
Spizellomyces punctatus AF402142

Metazoa
Homo sapiens NC 001807
Metridium senile AF000023

Zygomycota
Smittium culisetae AY8632133
Mortierella verticillata AY863211
Rhizopus oryzae AY863212

a Downloaded from http://megasun.bch.umontreal.ca/People/lang/
FMGP/proteins.html.

Alignments were performed using the default settings
of ClustalW (Thompson et al., 1994). Highly variable sites
or those with many gaps were eliminated using Gblocks
(Castresana, 2000) with the following settings: number of
sequences for a flank position equal to half the number
of species plus one; number of contiguous nonconserved
positions equal to 10; minimum length of a block four;
half the species allowed gaps. All other parameters were
set to default.

The key questions addressed using real protein data
are:

• Comparison of DistR estimates to ML estimates.—How
do DistR rate estimates compare to those obtained
using the ML based method COMBINE (Pupko et
al., 2002b)?

• Comparison of DistR estimates to Bayesian estimates.—
How do DistR rate estimates compare to those
obtained by MrBayes (Huelsenbeck and Ronquist,
2001) under a Bayesian approach?

• Patristic versus pairwise ML distances.—How do rate
estimates from pairwise ML distances and rate es-
timates from patristic ML distances compare when
applied to real data?

• Inclusion of DistR estimates into the phylogenetic tree
search of PHYML.—What is the affect of including
DistR estimates in an ML tree search? Is there a sig-
nificantly improved fit? Are improved phylogenetic
estimates obtained?

Comparison of DistR estimates to ML estimates.—Note
that when comparing DistR rates to those computed us-
ing COMBINE (Pupko et al., 2002b), the number of taxa
and proteins had to be restricted, because COMBINE can
currently only handle data sets for which all taxa are
present in all proteins. Two different starting trees were
included in the analysis: the ML tree from PHYML based
upon the concatenated data set and the ML tree from
PHYML when protein rates were incorporated. Rates
were estimated under three different models: global
amino acid frequencies with one gamma distribution;
local amino acid frequencies (for each protein partition)
with one gamma distribution; local amino acid frequen-
cies with one gamma distribution for each partition.

Comparison of DistR estimates to Bayesian estimates.—
Bayesian estimation of the posterior distribution of the
protein rates was performed using MrBayes version 3.0
(Huelsenbeck and Ronquist, 2001). Default priors were
used with the JTT model of evolution plus one gamma
distribution (eight categories), one parameter for the pro-
portion of invariant sites, and one set of branch lengths
for the entire data set. This is the same model that is
used for the PHYML + protein rates analysis of the data.
Two runs of four chains with 300,000 iterations were per-
formed; the burn-in used was 30,000. A further analysis
of the data was performed without protein rates (using
the same model) in order to compare to the concatenated
PHYML analysis. Four chains were run for 150,000 itera-
tions, with a burn-in of 15,000. Convergence of the chains
was determined empirically.
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TABLE 2. DistR estimates for empirical data based on pairwise and patristic ML distance estimates. Mean rate estimates and variances for rate
estimates are based upon bootstrap replicates over the fungal data set. Rates are normalized so that the average rate is one. Acc. no. = accession
number for the alignment in EMBL. AL = alignment length. Patristic refers to rates estimated based on distances from maximum likelihood
trees. Pairwise refers to rates estimated based on maximum likelihood distances.

Patristic Pairwise

Protein Acc. no. No. of species AL Mean Variance × 10−3 Mean Variance × 10−3

Atp8 ALIGN 000885 28 32 1.08 8.68 1.15 11.8
Atp9 ALIGN 000886 26 73 0.55 5.12 0.55 4.35
Rps3 ALIGN 000900 11 77 2.02 41.1 2.33 31.5
Nad3 ALIGN 000893 24 79 1.13 8.82 1.15 10.1
Nad4 ALIGN 000894 24 424 1.14 3.52 1.10 2.76
Nad4L ALIGN 000895 23 85 0.87 5.91 0.91 6.45
Nad6 ALIGN 000897 24 96 1.05 7.21 1.10 7.80
Atp6 ALIGN 000884 29 203 1.07 3.76 1.03 4.07
Cox2 ALIGN 000889 29 220 0.75 3.81 0.71 2.98
Cox3 ALIGN 000890 29 245 1.05 4.75 0.86 3.24
Nad1 ALIGN 000891 24 294 0.89 2.61 0.84 2.30
Nad2 ALIGN 000892 23 313 1.21 2.16 1.29 2.69
Cob ALIGN 000887 29 375 0.67 1.17 0.61 1.04
Cox1 ALIGN 000888 29 487 0.53 1.76 0.46 .749
Nad5 ALIGN 000896 24 520 1.01 2.79 0.89 1.94

Inclusion of DistR estimates into the phylogenetic tree
search of PHYML.—DistR rates were incorporated into
the ML framework of PHYML following the propor-
tional approach (Pupko et al., 2002b; Yang, 1996); how-
ever, optimization over the rates was not performed. ML
trees over the entire data set were calculated in four dif-
ferent ways using this modified version of PHYML. In
the first analysis, the proteins were simply concatenated
(equivalent to a rate of one for each protein). In the sec-
ond analysis, the estimated protein rates from the real
data set (based on patristic ML distances) were used for
each bootstrap replicate when computing the likelihood.
In the third and fourth analyses, protein rates were esti-
mated for each bootstrap replicate using patristic and
pairwise ML distances respectively. These rates were
incorporated into the likelihood computation for each
bootstrap replicate. Consensus trees were computed us-
ing the CONSENSE program available in the PHYLIP
package (Felsenstein, 2004b).

RESULTS AND DISCUSSION

Simulated Data

Patristic versus pairwise ML distances.—The first simula-
tion study demonstrates two important results: pairwise
ML distances provide equally good distance estimates
as patristic ML distances to the DistR method (Fig. 3);
if the fit of the initial pairwise/patristic ML distances to
the data is accurate then the DistR estimates will be ac-
curate (Figs. 3 and 4). The first result is important since
pairwise ML distances are very fast to compute. The sec-
ond result indicates that error in the rate estimates stems
principally from error in the distance estimates, rather
than the DistR method itself.

The numerical results from the first experiment are
summarized in Figure 3. The proteins are sorted in order
of increasing rate, and the histogram indicates the mean
squared error (MSE) over the 10 different replicates (see
Appendix 1 for the exact formula used to compute MSE).

Mean rate estimates are labelled to the right of each MSE
bar, with the rate at which the data was simulated on the
left. Results are presented only for alignments of length
100 and 1000. The results for alignments of length 300
and 500 fall in-between these two extremes. Note that
the MSE increases in proportion to the rate, so results are
presented on two scales.

The mean estimates for the different methods were
quite close to the real rates at which the data were simu-
lated, regardless of the alignment length, procedure used
to estimate the distances, or rate at which the data was
simulated (Fig. 3). However, it is clear from the mean
squared error that the DistR estimates based on shorter
alignments have larger error (or greater variation), de-
spite the fact that the mean rate estimate is often almost as
accurate as that for longer alignments. Furthermore, the
mean squared error tends to increase with higher rates.
This is likely because the error is often in the third signifi-
cant digit; for slower rates this will lead to a smaller MSE.
Overall there is negligible difference between the mean
and MSE statistics for a given alignment length (compar-
ing DistR estimates based on patristic versus pairwise
ML distances).

Results also indicate that errors in the rate estimates are
due to errors in the original distances rather than approx-
imations introduced in the DistR method. For each pro-
tein and alignment length the absolute error between the
mean rate estimates and the real rate at which the align-
ments were simulated was compared to the goodness-
of-fit between the estimated and true distances (Fig. 4).
This fit can be measured since the data are simulated
under a known model at a particular rate. Alignments
of length 100 and 300 only were examined, since the er-
rors become negligible for longer alignments. The fit was
measured using the goodness-of-fit statistic of Tanaka
et al. (Tanaka and Huba, 1985), which is determined
from the sum of squares error between true and esti-
mated distances, normalized by the sum of the true dis-
tances squared. The exact formula for goodness-of-fit is
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FIGURE 3. Mean squared error for different methods of distance estimation and different alignment lengths. The rates at which the data were
simulated are labeled on the left-hand side of the graph. The mean rate estimate for a given distance estimation method, alignment length, and
rate is given on the right of the MSE bar. AL = alignment length. The 10 fastest proteins are in the left-hand column. The number of species
in each protein (from fastest to slowest) are Protein 1: 53 species; Protein 2: 38 species; Protein 3: 33 species; Protein 4: 53 species; Protein 5: 38
species; Protein 6: 48 species; Protein 7: 53 species; Protein 8: 48 species; Protein 9: 43 species; Protein 10: 33 species. The 10 slowest proteins are
in the right-hand column. The number of species in each protein (from fastest to slowest) are Protein 1: 33 species; Protein 2: 48 species; Protein
3: 43 species; Protein 4: 43 species; Protein 5: 48 species; Protein 6: 33 species; Protein 7: 43 species; Protein 8: 53 species; Protein 9: 38 species;
Protein 10: 38 species. All rates are normalized so that the average rate is one over all 20 proteins. The total number of taxa in the data set is 58.
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FIGURE 4. Average error of DistR rate estimates compared to goodness-of-fit of distances based upon patristic and pairwise ML distance
estimates. (a) DistR rate estimates were based upon simulated proteins of length 100. (b) DistR rate estimates were based upon simulated proteins
of length 300. A higher value for goodness-of-fit means that the fit of the estimated distances to the original distances is better.

presented in Appendix 1. The statistic has a maximum
of one, which indicates a perfect fit.

It is expected that with longer alignments the
goodness-of-fit will increase, indicating that the fit of
the model to the data is better. This is clearly the case
as seen when comparing goodness-of-fit for alignments

of length 100 (Fig. 4a) to that for alignments of length
300 (Fig. 4b). The fit is further improved, and relative
error reduced, with alignments of length 500 and longer
(data not shown). The decrease in the goodness-of-fit (in-
dicating a worse fit) seen with short alignment lengths
indicates that the error of the method is dependent upon
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the error of the distance estimates and is not a property
of the estimation procedure itself.

Interestingly, the error in rate estimation is in some
cases less when based upon pairwise ML distances,
rather than patristic ML distances. Given that the mul-
tiple sequence alignments are short (100 and 300 amino
acid residues) and include many species (at least 33 in
each protein alignment), there are many trees that will
fit the data equally well. Thus, there is high variation in
building a ML tree to fit the original tree on which the
data were simulated. Hence, estimating a ML tree with
few data will likely lead to an incorrect topology. This
will result in a worse fit between the original tree and
the tree estimated from the alignment data. This is not
true for pairwise ML distances, which do not account for
topology.

Missing distances between taxa.—In the previous exper-
iment, less than half of the taxa were missing in each
protein, and 20 proteins were used to estimate rates. The
effects of more extreme missing taxa were also tested,
where no distance estimates were present between some
pairs of taxa. To achieve this, up to 75% of the taxa
were removed from the starting tree. Additionally, many
fewer proteins were used for DistR estimation. Results
indicate that the DistR method is robust to missing taxa,
though having many missing taxa led to the expected
increase in variance of the rate estimates.

Figure 5 summarizes the error in rate estimates for
two simulated data sets. In the first example (Fig. 5a)
there are four protein trees, each with 16 taxa (≈ 28%
of the total taxon set). In the second example (Fig. 5b)
there are eight protein trees. Seven of these have 16 taxa
and the other has 30 taxa. The proteins are ordered from
fastest to slowest rate in both Figure 5a and Figure 5b.
Mean rate estimates are shown on the right of the MSE,
and the rate at which the protein simulated (averaged
to equal one) is given on the left. Simulated proteins in
Figure 5a are labeled from I to IV. The same simulated
proteins in Figure 5b are likewise labeled.

Once again it is evident that pairwise ML distances
and patristic ML distances give almost identical average
relative rate estimates (to within two or three decimal
places). Furthermore, the missing data has little effect on
mean rate estimates, but does have a large effect on the
variance. For instance, comparing the MSE for the first
protein in Figure 5a to that of the second protein in Fig-
ure 5b (it is the same simulated protein), it is clear that
although the mean rate estimate is approximately as ac-
curate with more taxa (Fig. 5b), the MSE is clearly smaller
when more distances between a pair of taxa are included
in the analysis. Thus it is evident that more data in terms
of pairwise distances between taxa (over multiple pro-
teins) will reduce the error of the DistR estimate.

Calculation of the relative rates within groups of the
same number of species was also performed (i.e., pro-
teins with 16 species, proteins with 30 species, and pro-
teins with 44 species). For each subset of proteins mean
rate estimates based on pairwise ML distances were
slightly worse or identical to those based on patristic
ML distances (data not shown). In addition, the vari-

ances were greater in general for rates estimated based
on pairwise ML distances. The major difference between
the three analysis was that the variance of the rate esti-
mates was lower when more species were included in
the analysis. Furthermore, the mean rate estimates were
slightly more accurate for the data sets over larger taxon
groups (data not shown).

Accuracy in spite of missing taxa demonstrates that the
rate estimation procedure is consistent (assuming that
the initial distance estimates are accurate), regardless of
the number of proteins under analysis. This is because
rates are not computed relative to the distance estimates
of one protein. Rather, they are constrained by all the
distance estimates. Thus, if one set of distance estimates
is extremely biased with respect to the remainder of the
distances they will not have a strong effect on the final
rate estimates.

Empirical Data

Comparison of DistR estimates to ML estimates.—Rates
were calculated in a ML framework using only those pro-
teins that are present over the entire species set (Atp6,
Cob, Cox1, Cox2, and Cox3) due to a constraint of the
program COMBINE (Pupko et al., 2002b). Table 3 shows
the time for rate estimation and rate estimates based on
different models under the ML framework in compar-
ison to DistR estimates based on pairwise and patris-
tic ML distances. Two sets of ML estimates are given
for each model. The first based upon the concatenated
tree, and the second on the DistR incorporated ML tree.
DistR estimates are computed far more rapidly and are
still accurate in comparison to ML estimates. In compar-
ison to the six ML estimates, the DistR rates based on
patristic ML distances are slight overestimates for Cob
and Cox1, and slight underestimates for Cox2 and Cox3.
The estimate for Atp6 is an average of the 6 ML esti-
mates (Table 3). Notably, the patristic DistR estimates for
Cob and Cox1 are closest to the ML estimates based on

TABLE 3. Comparison of ML rate estimates to DistR estimates.
Comparison of relative rate estimates and estimation time from COM-
BINE and DistR for five proteins (Atp6, Cob, Cox1, Cox2, and Cox3)
from the fungal data set. For each model, rates based upon the maxi-
mum likelihood concatenated tree from PHYML are given on the first
line, and rates based upon the maximum likelihood tree incorporating
DistR rates (computed in PHYML) are given on the second. All esti-
mates were normalized so that the average rate is one. GF = global
amino acid frequencies; LF = local amino acid frequencies (calculated
for each protein); 1-GAM = one gamma distribution estimated for the
entire data set; 5-GAM = one gamma distribution for each protein;
DistR Pat = DistR estimation using patristic ML distances; DistR Pair =
DistR estimation using pairwise ML distances.

Method Time Atp6 Cob Cox1 Cox2 Cox3

GF + 1-GAM 776s 1.24 0.81 0.62 0.99 1.34
1.25 0.81 0.63 0.99 1.33

LF + 1-GAM 842s 1.35 0.80 0.61 0.94 1.31
1.36 0.80 0.62 0.93 1.30

LF + 5-GAM 648s 1.36 0.79 0.59 0.94 1.31
1.39 0.78 0.61 0.92 1.30

DistR Pat 0.116s 1.32 0.83 0.66 0.91 1.29
DistR Pair 0.122s 1.40 0.83 0.64 0.96 1.18
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FIGURE 5. Mean squared error for different methods and different amounts of distance data. The rates at which the data were simulated are
labelled on the left-hand side of the graph in both (a) and (b). Mean rate estimates for both distance estimation methods are labelled on the right
of the MSE bars for each protein. All rates are normalized so that the average rate is one in both (a) and (b) and are sorted from fastest to slowest.
Proteins that are the same in both (a) and (b) are labelled. (a) Rate estimates based upon a data set consisting of four proteins with 16 taxa each.
(b) Rate estimates based upon a data set consisting of eight proteins; seven with 16 taxa and one with 30 taxa.

the rate-incorporated tree using global amino acid fre-
quencies plus the one-gamma-distribution model. Con-
versely, the DistR estimates for Cox2 and Cox3 are closest
to the ML estimates based on the same tree, using local
amino acid frequencies and the five-gamma-distribution
model. The DistR estimates based on pairwise ML dis-
tances are quite close to those based on patristic ML

distances, except for Atp6 and Cox3. Atp6 has a much
higher rate—quite close to the ML estimate for the LF
+ 5-GAM model where the estimates were based on the
rate-incorporated ML tree. However, the Cox3 estimate
is quite low compared to all ML estimates; Cox3 had
a higher variation in rate estimation over all proteins
(Table 3), a case where perhaps the lack of topological
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FIGURE 6. Distribution of rates from the MrBayes proportional model analysis compared to DistR estimates. Bars at either end represent
the 95% credible interval. The DistR estimate based upon patristic ML distances is marked by a solid triangle. The DistR estimate based upon
pairwise ML distances is marked by a square. The posterior rate estimates of MrBayes are given by a solid square. DistR estimates are normalized
so that the average rate is one (as in MrBayes). Proteins are ordered from shortest to longest as follows: Atp8, Atp9, Rps3, Nad3, Nad4, Nad4L,
Nad6, Atp6, Cox2, Cox3, Nad1, Nad2, Cob, Nad4, Cox1, and Nad5.

information decreases the accuracy of the DistR estimate.
Clearly this is not an issue for most proteins, but can be an
issue for some. Overall it appears that the DistR estimates
are model independent regardless of distance estimation
procedure and provide excellent first approximations to
the ML estimates.

Comparison of DistR estimates to Bayesian estimates.—
The posterior distribution of rates from MrBayes is
shown in Figure 6. For all but three of the proteins the
DistR estimates fall within the 95% posterior credible in-
terval for the protein rate. Each of Nad6, Cox1, and Cox3
have DistR estimates that do not fall between the 95%
posterior credible interval. Both Cox1 and Cox3 have av-
erage sequence lengths, and 29 taxa each. Nad6 is shorter
at less than 100 amino acids, with only 24 species. In the
case of Nad6 perhaps the short sequences length con-
tributes to uncertainty in the DistR estimates. However,
it is unlikely that the Bayesian posterior distributions
of the rates are accurate. This conclusion is based upon
the fact that the four chains were mixing quite poorly in
both runs even after 300,000 iterations (data not shown).
Sampling from the posterior distribution is unlikely to
be correct since the chain might be oversampling from

areas of low likelihood. Comparison of the tree of the
highest likelihood from this analysis to the tree of highest
likelihood based on the concatenated data indicates that
MrBayes was in a suboptimal topological space when
sampling rate estimates (using the Bayesian information
criterion, data not shown). Furthermore, the DistR ML
tree is a significantly better fit of the model to the data
based on the AIC (Felsenstein, 2004a) when compared to
the likelihood of the MrBayes rate incorporated tree as
computed in PHYML. Thus, although the posterior dis-
tribution of the rates appears reasonable, the chain seems
to be having difficulty sampling through topology space.

Thus, it appears that the proportional model under
MrBayes, when used without different parameters for
each partition (as in Nylander et al., 2004), does not
search tree space as well as PHYML with the rate multi-
pliers included. Perhaps this is due to an incorrect prior
on the rate parameters used. If this is the problem the
DistR method can certainly be used to find a distribution
of the rates of proteins, which could be used as the prior
on these parameters. The discrepancy could also be due
to the different search heuristics used in MrBayes. Given
the computational complexity of the search, it might be
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FIGURE 7. (a) Phylogenetic analysis based upon the mitochondrial data set. The topology shown was inferred using PHYML without DistR
protein rates, using the JTT model of protein evolution, with eight gamma categories, and ML estimation of the alpha parameter of the gamma
distribution and the proportion of invariant sites. It was constructed using the concatenated “unambiguously” aligned proteins. Bootstrap support
for this topology was computed based upon 100 replicates. The percentage of support for each clade is given at the root of the clade. In cases
where the consensus tree differed from the maximum likelihood topology a “–” is written. (b) Phylogenetic analysis based upon mitochondrial
data set. The topology shown was inferred using PHYML with DistR protein rates, using the JTT model of protein evolution, with eight gamma
categories, and ML estimation of the alpha parameter of the gamma distribution and the proportion of invariant sites. It was constructed using the
concatenated unambiguously aligned proteins and protein rate estimates. The percentage of support for each clade is given. Bootstrap support
for this topology was computed based upon 100 replicates, using three different methods. The top numbers give the percentage of support based
upon using the patristic ML distance DistR estimates from the real data as rate values in computing the ML tree for each bootstrap replicate.
The middle numbers give the percentage of support based upon reestimating DistR estimates for each bootstrap replicate using patristic ML
distances. The bottom numbers give the percentage of support based upon reestimating DistR estimates for each bootstrap replicate using
pairwise ML distances. When bootstrap support was the same for each method of incorporating rates it is given only once.
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difficult for the program to search for the best rate pa-
rameters while also searching for the best topology.

Patristic versus pairwise ML distances.—The relative
protein rates of the real data are unknown. However
the variance of the rate estimates using both patristic
and pairwise ML distances can be compared, a smaller
estimate being preferable. Contrary to expectations, but
confirming the simulation studies, rate estimates from
pairwise ML distances had smaller variance than rate
estimates from patristic ML distances.

Variances of the rate values computed were estimated
by nonparametric bootstrap of the protein alignments,
and reestimation of the distances and DistR rates for each
bootstrap data set. The mean and variance of the DistR
estimates for pairwise and patristic ML distances show
some interesting trends (Table 2). In general, the average
rate estimates were similar, with the notable exception
of Atp8, Cox3, and Rps3 (and to a lesser extent Nad2,
Nad5, and Nad6). Ten of the 15 protein rates derived
from patristic ML distances had greater variance than
their counterparts derived from pairwise ML distances.
(Table 2). These results support the conclusion that in-
troducing topology into the distance estimation proce-
dure is not likely to lead to better distances estimates
for the DistR procedure when so many taxa are involved
and the alignments are short. This is a consequence of the
large number of distinct trees that can fit a short align-
ment equally well.

Inclusion of DistR estimates into phylogenetic tree
search of PHYML.—The experimental results when
DistR estimates are incorporated into the ML tree
search demonstrate the importance of accounting
for different evolutionary pressures in phylogenetic
inference.

Bootstrap support values for the ML tree using con-
catenated data are presented in Figure 7a. The bootstrap
support for some of the clades was quite weak. Incor-
porating DistR estimates based upon both patristic and
pairwise ML distances into the tree search led to the same
ML tree, presented in 7b. Overall, bootstrap support was
improved in most clades when DistR estimates were in-
corporated into the tree search.

The topology of the ML concatenation-based tree does
not separate Zygomycota and Ascomycota as distinct
clades, which is not surprising because the Zygomy-
cota are traditionally difficult to place. Furthermore,
the outgroup is incorrect since it should also contain
Homo sapiens (which groups incorrectly with the zy-
gomycete Smittium and the Ascomycota). This long-
branch-attraction problem is due to the highly derived
Smittium and Homo sequences. Using DistR estimates im-
proves the bootstrap support in certain clades, and cor-
rects the most evident topological problems, notably that
Zygomycota more accurately group together (although
as an unresolved paraphyletic group). Indeed, almost
every branch that does not show 100% bootstrap sup-
port with the concatenated data have improved support
when using protein rates. The only branching where sup-
port somewhat lessened from the concatenated to the
protein-rate-based trees (and with using individual boot-

strap rates) was the branching of Allomyces (a species that
is difficult to place whatever the method or data set) with
the remainder of the Chytridiomycota (Figs. 7a and b).
Bootstrap support is strongest when using protein rates
based upon pairwise ML distances, where the rate es-
timates were recomputed for each bootstrap replicate.
This is perhaps because the variation in the pairwise ML
distance rate estimates was smaller than, or on the same
order of magnitude as, the rate estimates based on pa-
tristic ML distances.

Both the Kishino-Hasegawa (KH) test and Akaike In-
formation Criterion (AIC) support the ML topology with
protein rates as a better fit for the model to the data than
the concatenated topology. Under the KH test (Kishino
and Hasegawa, 1989, Shimodaira and Hasegawa, 2001);
the concatenated topology was significantly worse than
the DistR topology (P < 0.0001) when the topology was
computed with rate estimates calculated based on both
patristic and pairwise ML distances. The AIC provides a
statistical measurement of the significance of the change
in log-likelihood when using two different models to
fit the data. The measure compensates for the increase
in the number of parameters in the rates model. When
DistR estimates based on pairwise ML distances are used,
the AIC is 1043.65182 greater than the AIC for a single
rate, concatenated analysis. When patristic ML distances
are used for rate estimation, the increase in AIC over
the concatenated analysis is 1068.7542. Both increases in
AIC are very substantial, indicating that important in-
formation in the data that is disregarded by traditional
concatenated analysis is captured by modeling protein
rates.

CONCLUSION

A fast and accurate method to calculate the rates
of partitioned data sets is presented. Although the
analyses performed here are based upon protein se-
quence data, using nucleotide sequences should prove
as effective. The error in the method is largely due
to incorrect initial distance estimates for the proteins,
which tend to be worse with smaller or poorly con-
served sequences. Using pairwise ML distances for DistR
estimation is just as accurate as using patristic ML
distances. The estimates are accurate when compared
to ML estimates and Bayesian posterior credible in-
tervals for the rates. Incorporating the DistR estimates
into PHYML leads to statistically better likelihood and
topology.
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APPENDIX 1
FORMULA FOR MEAN SQUARED ERROR

AND GOODNESS-OF-FIT

Mean squared error is used to describe the accuracy
of rate estimates. Because only relative rates can be com-
puted rates are normalized so that the average rate over
all proteins is one. Let r̃ denote the true rate (that is, the
rate used in simulations), and let r̂1, ..., ˆr10 be the rates es-
timated in the 10 replicates of the experiment. The mean
squared error (MSE) is defined as

1
10

10∑
i=1

(r̃ − r̂i )2.

Goodness-of-fit is used to measure the fit of the dis-
tance estimates to the distances in the tree used for
simulation. There is a slight problem with scales since
Pseq-Gen treats branch lengths as the expected number
of substitutions per 100 sites while PHYML treats branch
lengths as the expected number of substitutions per site.
Let d̃ (k)

xy be the distance between x and y in the tree used to
simulate protein k, let rk denote the rate used when sim-
ulating protein k, and let d̂ (k)

xy be the distance estimated
by PHYML.

Given the differences in scale the goodness-of-fit mea-
sure used was

1.0 −
∑

xy

(
rk d̃ (k)

xy − 100d̂ (k)
xy

)2

∑
xy

(
rk d̃ (k)

xy
)2 .

Note that the goodness-of-fit is at most one, and equals
one if and only if there is a perfect fit.
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APPENDIX 2
FAST ALGORITHM FOR LEAST-SQUARES ESTIMATION

This appendix shows how to quickly determine the
vectors p and r that minimize the function q (p, r) in Equa-
tion (3)

q (p, r) =
n∑

k=1

∑
x, y

w(k)
xy

(
pxy − d (k)

xy

rk

)2

subject to the constraint that h(p) = κ , where

h(p) =
n∑

k=1

∑
x, y

w(k)
xy pxy

and κ is an arbitrary, positive constant. In the implemen-
tation of DistR

κ =
n∑

k=1

∑
x, y

w(k)
xy d (k)

xy

which corresponds to the assumption that the unknown
consensus distances are roughly centered on the average
of the observed distances. This value can be computed in
O(nm2) time for n proteins and m taxa. Any other positive
constant will work, as the only effect is to change the scale
of the rate estimates.

To simplify the mathematics substitute sk = 1
rk

for each
k = 1, . . . , n. Let s denote the vector [s1, . . . , sn]T . Mini-
mizing q (p, r) is then equivalent to minimizing

f (p, s) =
n∑

k=1

∑
x, y

w(k)
xy

(
pxy − skd (k)

xy

)2
. (5)

Recall from calculus that the minimum of a one dimen-
sional function can be found by determining where the
first derivative is equal to zero. This condition extends
to multidimensional functions with constraints. Refer to
Gill et al. (1982) for an excellent introduction to the opti-
mization tools used here.

If (p, s) together minimize the function f , subject to the
condition that h(p) = κ , then there exists a real number
λ such that

∂ f (p, s)
∂pxy

− λ
∂h(p)
∂pxy

= 0 for all taxa x, y

∂ f (p, s)
∂sk

= 0 for all proteins k

h(p) = κ. (6)

In general, (6) is only a necessary condition for reach-
ing the minimum, and not a sufficient condition. How-
ever, in this case the matrix formed from the second

derivatives of f (p, s) is positive definite, so that the func-
tion f is convex (Gill et al., 1982). It follows that if (p, s)
and λ satisfy (6) then (p, s) gives the global minimum.

It is possible to derive the partial derivatives of the
functions f and h explicitly. To help with notation define
the quantities:

αk =
∑

xy

2w(k)
xy

(
d (k)

xy

)2 for all proteins k;

βxy = 2
n∑

k=1

w(k)
xy for all taxa x, y;

βxy,k = −2w(k)
xy d (k)

xy for all proteins k and taxa x, y.

The partial derivative of f with respect to sk , for some
protein k, is

∂ f (p, s)
∂sk

=
∑

xy

−2w(k)
xy

(
pxy − d (k)

xy sk
)
d (k)

xy

= αksk +
∑

xy

βxy,k pxy.

The partial derivatives of f and h with respect to pxy, for
some taxa x, y, are

∂ f (p, s)
∂pxy

=
n∑

k=1

2w(k)
xy

(
pxy − d (k)

xy sk
)

=
n∑

k=1

βxy,ksk + βxy pxy

∂h(p)
∂pxy

=
n∑

k=1

w(k)
xy

= βxy/2.

Note from the partial derivatives that the conditions
in Equation (6) are linear equations involving the entries
of p, s, and λ. As such, the next step is to rewrite 6 in
terms of matrix algebra. Given that there are n proteins
and m taxa define the following: let D be the n × n ma-
trix with α1, α2, . . . , αn down the diagonal and zeros off
the diagonal; let C be the m(m−1)

2 × m(m−1)
2 matrix with

β12, β13, . . . , β(m−1)m down the diagonal and zeros off the
diagonal; let B be the m(m−1)

2 × n matrix with rows in-
dexed by unique pairs of taxa, columns indexed by pro-
teins, and the entry corresponding to row xy and column
k equal to βxy,k ; let v be the m(m−1)

2 dimensional vector
v = 1

2 [β12, β13, . . . , β(m−1)m]T .
The conditions in Equation (6) can now be rewritten as

Ds + BT p = 0 (7)

Bs + Cp + vλ = 0 (8)

vT p = κ. (9)
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Define

u = BT C−1v

ω = vT C−1v.

Solving for p in (8) gives:

p = C−1(−Bs − vλ) (10)

Substituting this into (9) and solving for λ gives:

λ = κ + vT C−1 Bs
−vT C−1v

.

= κ + uT s
−ω

.

Replacing λ with the above equation in (10) provides
a solution for p in terms of the above defined matrices,
vectors and s (i.e., there are no longer any unknowns
except for p and s):

p = C−1
(

− Bs + v
κ + uT s

ω

)
(11)

= C−1
(

vuT

ω
− B

)
s + κ

ω
C−1v. (12)

Finally, substitute (12) into (7) to get

0 = Ds + BT p

=
(

D + uuT

ω
− BT C−1 B

)
s + κ

ω
u.

Let

M =
(

D + uuT

ω
− BT C−1 B

)
.

Then, s is found by solving the equation:

Ms = − κ

ω
u. (13)

Consensus distances p are obtained by substituting s
into Equation (12).

The entire computation is summarized in Appendix 3.
The running time of the algorithm is O(nm2 + n3) which
is time optimal. The algorithm uses O(n2 + m2) memory
in addition to the O(nm2) required to store the distance
estimates d (k)

xy .
There are two complications that can arise in the above

calculations. Firstly, it could be the case that for a particu-
lar pair of taxa x, y there is no single protein that contains

both x and y. This means that βxy is undefined, so that C
is no longer invertible. This problem is easily solved. If
there is no protein with both x and y then the line in (6)
involving the partial derivative with respect to pxy is sat-
isfied trivially. Therefore, the row and column of C , the
row of B, and entry of v indexed by the pair x, y can be
removed. The reduced problem can be solved as before,
although no estimate for pxy is obtained. Row removal
is handled in the pseudocode for the algorithm given in
Appendix 3 by using constraints in the summations.

The second complication is that the optimization prob-
lem might have more than one solution, in which case
the matrix M in (13) will not be invertible. This indi-
cates that more information is required to estimate the
relative rates, as would arise, for example, in a concate-
nation of two protein alignments over entirely different
sets of taxa.

APPENDIX 3
THE DISTR ALGORITHM

Algorithm DISTR(d, w)
Input: Distance estimates d (k)

xy for each pair of taxa
and each protein k.

Weights w(k)
xy for each distance estimate.

Missing distances have weight zero.
Output: Rate estimates r. Consensus distances p.

κ = ∑n
k=1

∑
xy w(k)

xy d (k)
xy

for k from 1 to n do
αk ← ∑

xy 2w(k)
xy (d (k)

xy )2

for all taxa x, y do
αk,xy ← −2w(k)

xy d (k)
xy

βxy,k ← −2w(k)
xy d (k)

xy
for all taxa x, y do

βxy ← 2
∑n

k=1 w(k)
xy

ω ← 1
4

∑
xy βxy

for k from 1 to n do
uk ← ∑

xy βxy,k

for k from 1 to n do
zk ← − κ

ω
uk .

for l from 1 to n do
Mkl ← − ∑

xy:βxy �=0
βxy,kβxy,l

βxy
+ 1

ω
ukul

if k = l then Mkl ← Mkl + αk
if M is nonsingular then output “Insufficient data to

estimate rates”
solve Ms = − κ

ω
u to obtain s

for all taxa x, y such that βxy �= 0 do

pxy ← ∑
k

(
uk

2ω
− βxy,k

βxy

)
sk + κ

2ω
for k from 1 to n do

rk ← 1
sk

output r and p.


