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ABSTRACT

We describe a useful and efficient tree building technique that is closely related to the
maximum compatible subset method. Given a set of binary characters C and a degree
bound d, the algorithm we describe counts the number of trees T that satisfy (1) the
edges of T correspond to characters contained in C, and (2) the vertices of T have degree
bounded by d. If the characters are weighted then we can efficiently determine which of
these trees have maximum summed edge weight, where the weight of an edge equals the
weight of the corresponding binary character in C. The complexity of the algorithms equals
0(nk + ndK^d~^), where n is the number of taxa, k is the number of characters, and K is
the number of distinct characters. A number of new tree consensus methods based on the
algorithm are introduced, including one that uses edge weighted trees. As well, we illustrate
the applicability of the algorithm for large sequence data sets by analyzing sequences from
the "Out of Africa" mtDNA data set.

Key words: character compatibility, phylogenetic trees, phylogenetic inference, consensus
methods.

1. INTRODUCTION

Compatibility methods are employed throughout systematics. They appear under a number of guises,
in cladistics (Wiley et al, 1991), numerical taxonomy (LeQuesne, 1969), evolutionary systematics

(Eldredge and Cracraft, 1980), and molecular biology (Kannan and Warnow, 1994). One common method
is to infer phylogenies by finding those phylogenies compatible with the largest number of characters, or,
if the characters are weighted, finding the phylogenies compatible with the set of characters of largest
combined weight. Unfortunately this general problem is NP-hard,1 even for binary characters (Day and
Sankoff, 1986). Consequently researchers have used the method only on small data sets, or have settled for
heuristic algorithms that do not guarantee the best solution. A number of related algorithms and programs
are available (see Meacham and Estabrook, 1985). Our approach is to slightly modify the problem, giving
a compatibility method that is useful, nontrivial, and has a polynomial time algorithm.

Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand.
'A polynomial time solution to an NP-hard problem would give polynomial time solutions to all NP-complete

problems. This means, on a practical level, that it is highly unlikely to have an efficient solution (Gary and Johnson,
1979).
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276 BRYANT

We begin with a number of definitions. A binary character is a function from the set of taxa to
the set {0, 1}, usually representing some property that distinguishes one group of taxa from the others.
Binary characters can be obtained, for example, from genetic data as in Section 5, or from morphological
distinctions like vertebrate/invertebrate. Each binary character induces a unique split of the set of taxa,
that is, a partition into two groups comprising those assigned a 1 and those assigned a 0. We represent a

split by an unordered pair {A, A'}, where A and A' are disjoint sets whose union is the set of taxa. Sets
of binary characters or splits are one of the most common starting points for phylogenetic analysis.

An (unrooted) phylogenetic tree is a tree with no vertices of degree two, and with leaves labelled
bijectively from the set of taxa. None of the internal vertices is labelled. In a d-tree every vertex has degree
d or less. The split {A, A'} fits a phylogenetic tree T if we can remove an edge of T to give two subtrees,
one with leaf set A and the other with leaf set A'. The set of splits of a tree T is the set of splits that fit
T and is denoted cr(T). A set of splits C is compatible if there exists a tree T such that C ç o(T). A set
of binary characters is compatible if the induced set of splits is compatible. The character encoding C(T)
of a tree is the set of binary characters corresponding to o(T).

Let C be a set of binary characters on leaf set L. Put k = \C\ and n = \L\. Let K be the number of
distinct characters in C. The main results of this paper are

1. An 0(nk +ndK^d~X)) algorithm that determines whether there exist ¿-trees T such that C(T) ç T. If
so, then one of these trees can then be retrieved in 0(n\C(T)\) time.

2. An 0(Kd~x) algorithm that, when the binary characters in C are weighted, determines which d-trees
T with C(T) c C have maximum summed weight.

3. An 0(nk + ndKd~x) algorithm that determines the smallest d such that a ¿-tree T with C(T) ç T
exists.

4. Efficient algorithms for a variety of consensus methods based on otherwise NP-hard problems. We
include a consensus method for trees with weighted edges.

5. A tree construction algorithm that can be used on large sequence data sets.

In contrast to the general trend in the field, our algorithms and associated verifications are simple and
nontechnical. Despite their simplicity the algorithms are powerful, as demonstrated by the applications to
consensus trees and the analysis of 30 sequences derived from the mtDNA "Out of Africa" data set.

It is important to realize that the optimization method we introduce is an exact method and not a

heuristic. We can guarantee that there is no ¿-tree with greater summed weight and splits all supported by
the data set, despite the fact that there can be a very large number of these ¿-trees. Since the algorithm
has only polynomial time complexity it can be applied to large data sets. In such cases an exhaustive
search of possible trees or possible subsets of the binary character sets is simply not feasible owing to the
astronomically large numbers involved.

Phylogenetic analysis is an intrinsically difficult problem, so we expect every analysis technique to have
a weakness. The current technique is no exception, the main difficulty being the restriction to ¿-trees.
Therefore this technique is not suitable for data sets with large numbers of taxa and only short sequences.
Note that the problem of determining the smallest d for which a given set of binary characters contains a

¿-tree is itself NP-hard (Theorem 4). However, as the number of characters grows it is reasonable to expect
that every split in the "true" tree is represented in the data. Furthermore if we assume that the "true" tree
is binary then choosing a reasonably sized d allows us to cover the majority of cases where some splits
are missing from the data set.

2. A SPECIAL CASE: SETS OF CLUSTERS

We first present our algorithm not in terms of collections of binary characters but in terms of clusters
and rooted phylogenetic trees, which we now define. A cluster is just a subset of the set of taxa. A rooted
phylogenetic tree is defined in the same way as an (unrooted) phylogenetic tree, except that one internal
vertex is distinguished and called the root, and this vertex may have degree two. Given two vertices u and
v in a rooted phylogenetic tree we say that « is a descendent of v if the path from u to the root passes
through v. A cluster A fits a rooted tree T if there is some internal vertex v such that A equals the set of
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TREES IN BINARY CHARACTER SETS

FIG. 1. A rooted binary phylogenetic tree with leaf set {a, b, c, d, e, /).

leaves of T that are descendents of v. The set of clusters of a tree T equals the set of clusters that fit T.
A rooted d-tree has no vertices with more than d children.

We can now state the problem formally.
INSTANCE: Collection C of subsets of a leaf set X such that X e C. Number ¿ > 2.

PROBLEM: Determine if there is a subcollection C ç C such that C equals the set of clusters of some
rooted phylogenetic ¿-tree with leaf set X.

Our solution is based on the following:

Observation. A given collection C of clusters contains a subcollection corresponding to a d-tree with
leaf set X if and only if X G C and X equals the union of at most d disjoint clusters in C, which in turn

equal the union of at most d disjoint clusters in C and so on, right down to the level of singletons.

Consider the tree in Figure 1. The internal vertices are labelled with their respective clusters. The leaf
set {a, b, c, d, e, f] is the union of two disjoint clusters, {a, b, c, d] and {<?, /}, which, in turn, equal the
union of two disjoint clusters and so on, until we reach the leaves of the tree.

2.1. Principle algorithm
Let k be the number of clusters in C and n be the number of taxon in X. We assume that C contains

all the single element clusters. In practice these can simply be appended to the input data.
The following procedure creates a table D that is later used to count and optimize the ¿-trees with

clusters in C and leaf set X.

Procedure CreateTable (C, ¿)
1. Represent each cluster in C by an n-digit binary number, with a 1 for

the ¿th digit if the ¡th taxon is in the cluster, and a 0 otherwise
(as in a characteristic vector).

2. Sort the clusters into ascending order of their associated
binary numbers.

3. Remove duplicates and label remaining clusters {Ci,..., Cg).
4. Create a table D consisting of K empty lists, D{1],..., D[K].
5. Repeat for all subsets {p\, p2,..., p¡) of {\,...,K} with at most d elements:
6. If CPl,.. .,CPJ are pairwise disjoint, and CPt U • •  U CPJ

—

Cq for some

q e {1,..., K) then append {p\, p2,    , Pj] to the list D[q]
1. end (repeat)
8. end.
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278 BRYANT

Steps 1, 2, and 3 can be completed in 0(nk) time using radix sort (Gusfield, 1991; Aho et al, 1974),
where n is the number of taxa and k is the number of clusters. For arbitrary {p\, p2,..., p¡}, (j < d),
determining whether CPl,..., CPj are pairwise disjoint, and calculating CPI U • • • U CPJ takes at most
0(nd) time. Since C is well-ordered it takes just 0(log K) time to determine whether CPI U • • • U CPj is in
C, which is just 0(n) time since K < 2". Hence steps 4 and 5 can be completed in 0(ndKd) time, where
K is the number of distinct clusters in C, and the procedure CreateTable takes at most 0(nk + ndKd)
time. Note that K is often significantly smaller than k.

2.2. Counting the trees

For each i, 1 < i < K we calculate the number m[i] of ¿-trees with leaf set C, and clusters contained
in C.

Procedure CountTrees (D)
1. for í from 1 to K
2. If C¡ is a singleton then m{i]:=l.
3. else if D[i] is empty, then m[i]: = 0
4. else

m{i\. = 2_. rn{p\\ x m[p2] x • • • x m{pj].
ÍPI.P2.Pj)eD[i]

5. Remove from D[i] all tuples {p\,..., p¡) such that one of m{p\\,..., m[pj]
equals 0.

6. end (for)
7. end.

Now each tuple {p\, p2,..., p¡) in D[i] satisfies CPl U • • • U CPj = C¡, so there are only 0(Kd~'x) such
tuples in each D{i]. Hence calculating all the m{i] takes 0(Kd) time.

Theorem 1. After the completion of the above algorithm, m{i] equals the number of distinct rooted
d-trees with clusters in C and leaf set C¡.

Proof. We proceed by induction. The theorem is clearly true when i = 1. Suppose that it is true when
i = 1,..., j — 1. Let 2T, be the set of rooted ¿-trees with leaf set Cj and clusters contained in C. We will
show that m[j]

—

|2Tj|.
Let T e STj, and let q be the number of children of the root of T. There is a set of q pairwise disjoint

clusters {CPI,..., CPq] in T, and therefore also in C, such that CP[ U • • • U CPq = C¡, so the tuple
{pi,..., Pq] is contained in D{j]. It follows that we can partition 2T, so that each block in the partition
corresponds to a different tuple in D[j]. Hence

1ST; | = Vj (# trees in 2T, containing the clusters Cpx,..., CPq).
{p¡,-,pq)€D[j]

Fix any such tuple {pi,..., pq] € D{j]. The number of trees in ¡Ty that contain every cluster Cp¡,..., CPq
equals the product \2TPI | x  • • x \2TPq\. By the induction hypothesis this equals m{p\] x • • • x m[pq]. There-
fore,

19)1= Y^ m[pi] x m{p2] x    x m{pq]
{p\,-,Pq}eD[j]

= m{j]
as required. D

2.3. Extracting the trees

It is now a simple matter to list the subcollections C that correspond to ¿-trees. Given a collection of
clusters C, we say that a particular cluster C, e C is unresolved if there is no cluster C¡ e C such that
Cj C Ci, Cj ^ C,. The following recursive procedure, GetSubcollections, builds up a list of clusters.
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TREES IN BINARY CHARACTER SETS 279

At each level it chooses from the list an unresolved cluster C, and adds to the list pairwise disjoint clusters

CP1.CPj such that CP] U
-

• • U CPj = C,.
The first parameter is the list being built up, initially just {Ck}, and the second parameter is the table

D constructed by the procedure CreateTable and pruned by procedure CountTrees.

Procedure GetSubcollections (C, D)
1. if the only unresolved clusters in C are singletons then
2. output the subcollection C
3. else
4. choose any unresolved cluster C¡ e C that is not a singleton
5. for {pi,...,Pj} in D{i]
6. GetSubcollections (C U {CP1,..., CPj}, D)
7. end (for)
8. end (if)
9. end.

If C is the set of clusters of some tree T, then the graph of T can be easily retrieved directly from
C" in 0(n\C'\) time (Gusfteld, 1991). Since it takes only 0(\C'\) time to construct C, to extract a single
¿-tree takes only 0(n\C'\) time.

Note that it is not always practical to list all of the subcollections of C that correspond to binary trees,
as the following theorem illustrates.

Theorem 2. Given a set X with n taxa, there exists a collection C with (n2 + n)/2 clusters such that
the number of subcollections C" c C that correspond to rooted binary trees (d = 2) with leaf set X
exceeds 2"~2.

Proof. Given n, let X = {1, 2,..., n} and construct

Qf,
-

{x e X :a <x <b]
C = {Ca¿ ' a <b, where a, b e X]

Then |C| = (n2 + n)/2. Let 2T„ be the set of binary trees with leaf sets X and clusters in C. We claim
that |3~„| >2""2.

The result is easily verified for n = 1,2, 3. For the induction step suppose that \?Fk\ > 2k~2. We show
that \ÏÏk+\\ > 2{k+X)~2. Given any tree T in ?fk, we construct two new trees.

1. Create a new root with two descendents. Let one descendent be the root of T, and the other descendent
be the leaf (k + 1).

2. Replace leaf k of T with a new vertex. Let the leaves k and k + 1 be the two descendents of this new

vertex.

Both of these trees are binary and have clusters in C. Hence for every tree in 3~k there are at least two
trees in ?fk+i, all of which are distinct. By the induction hypothesis

|2r*+il > 2 x 12Tjt| > 2 x 2k~2 = 2(k+X)~2

as required. D

2.4. Optimization
We can use the technique for counting trees to solve the following, seemingly more difficult, problem.

INSTANCE: Collection C of subsets of a finite set X. Weighting function w : C -^ 9t. Number ¿ > 2.

PROBLEM: Find a subcollection C ç, C that maximizes J2c çC W(C¡) sucn that C equals the set of
clusters of some rooted ¿-tree.
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280 BRYANT

The following procedure, MaxWeightTree, takes three parameters: The first parameter is the collection C;
the second parameter is the table D constructed by the procedure CreateTable and pruned in CountTrees;
the third is the table m constructed by the procedure CountTrees.

The procedure returns three tables, M, D*, and m*. For each i, M[i] is the weight of the maximum
weight subcollection that corresponds to a binary tree with leaf set C,. The table D* is a reduced version
of D used to list the maximum weight subcollections, and the table m* is used to count the number of
maximum weight subcollections.

Procedure MaxWeightTree (C, D, m)
1. for i = l to K
2. if m{i] t¿0 then
3. if Ci is a singleton then
4. M{i]: = w(C¡)
5. D*[i]:=[]
6. m*{i]:=l
7. else
8. choose [p\,..., pj] in £>[/] that maximizes M{p\] +    + M[pj]
9. M[i]: = M[p\] +    + M{Pj] + mid)

10. D*{i]: = {{qu ...,qr): Affe,] +    + M{qr] + w(d) = M{i]}
U. »*I»l:=:E(fl.„.A.)eD»mm*[9i] x

'"

x m*[qr]
12. end (if)
13. end (if)
14. end (for)
15. end.

The procedure has complexity 0(Kd), where K is the number of distinct clusters in C. The number
of optimal subcollections equals m*{K]. To list all the optimal subcollections, execute GetSubcollections
({Ck}, D*). There are sometimes, however, an exponentially large number of optimal subcollections.
Correctness is given by the following theorem.

Theorem 3. After execution of the procedure MaxWeightTree, ifm[i] ^ 0 then M{i] equals the weight
of the maximum weight d-tree with leaf set C¡ and clusters in C.

Proof. Again we let 2T, denote the set of ¿-trees with leaf set C, and clusters in C. Let w(T) denote
the sum of the weights of the clusters of a phylogenetic tree T. We need to prove two things:
1. w(T) <M[i] for all T € 2T¡.
2. There is T e 9", such that w(T) = M[i].

We proceed by induction. If j' = 1 then C, is a leaf, so (1) and (2) hold. Suppose that (1) and (2) are true
for i = 1,..., j — 1.

Let T e ïïj. There is {p\,..., p9] e D[j] such that CPi,..., CPq are clusters of T. Now CPi U • • • U

CPq = Cj, so the q clusters correspond to the q subtrees branching off the root of T. Using the induction
hypothesis applied to the subtrees of T, we obtain

w(T) = M{Pl] +
   

+ M{Pq] + w(Cj) < M{j]

proving (1).
For (2), let {p\,..., pq] be a tuple in D{j] such that

M[pû +    + M{Pq] + w(Cj) = M{j]

By the induction hypothesis for each r : 1 < s < q there is a tree TPs with leaf set CPs and clusters in C
such that w(TPs) = M[ps]. Construct a new tree T by connecting a new root r to the roots of TPl,..., Tp .

Then T € 2T; and w(T) = M[j]. D
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TREES IN BINARY CHARACTER SETS 281

2.5. Selecting a degree bound
Given a set of clusters C we wish to determine the smallest value of d such that C(T) ç C for some
¿-tree T. Once this number is obtained we can guarantee that the above algorithms will return a tree.

Unfortunately the following theorem suggests that there is no efficient way to determine this minimal ¿
value.

Theorem 4. Let C be a set of clusters. The problem offinding the smallest d such that C contains the
clusters of a d-tree is NP-hard.

Proof. We transform EXACT COVER BY 3-SETS (X3C) (Gary and Johnson, 1979) to the minimum
d problem. Let X, \X\ = 3q, be a set and C be a collection of 3-element subsets of X making up an

arbitrary instance of X3C. Take X as a set of leaves and construct C = C U {{*} : x e X}U{X}. If X has
an exact cover by a subcollection of C then the same subsets, together with X and the singleton clusters,
determine a q-tree with clusters in C. Conversely if C" is a subcollection of C that determines a g-tree
then the nontrivial clusters in C" give an exact covering of X. Therefore there is an exact covering of X
by a subcollection of C if and only if the minimum ¿ such that C contains a ¿-tree equals q. It follows
that the minimum d problem is NP-hard. D

Because of Theorem 4 we should expect any solution to the problem to have exponentially increasing
complexity. We present one algorithm that has running time 0(nk + nSKs) where n is the number of
leaves, k is the number of clusters, K is the number of distinct clusters, and S is the minimum value of ¿
such that C contains the splits of a ¿-tree. It therefore takes polynomial time with respect to the number of
leaves and the number of characters, but takes exponentially increasing time with respect to the solution.

Procedure MiNiMUMd (C)
1. Sort C and remove duplicates. Let K be the number of distinct clusters.
2. for ¿ from 2 to n

3. Construct D using CreateTable (C, ¿)
4. Construct m using CountTrees (C)
5. if m{K] > 0 then
6. put 5 = d
1. exit the procedure.
8. end (if)
9. end (for)

3. SETS OF BINARY CHARACTERS

We now return to considering sets of binary characters. Formally stated, our two main problems are

INSTANCE: Collection C of binary characters on leaf set X. Number ¿ > 3.

PROBLEM: Determine if there is a subcollection C ç C such that C' = C(T) for some unrooted
phylogenetic ¿-tree T.

INSTANCE: Collection C of binary characters on leaf set X. Weighting function w : C -> 9Î. Number
¿> 3.

PROBLEM: Find a subcollection C Ci S that maximizes EqeC w(C¡) such that C" = C(T) for some

unrooted phylogenetic ¿-tree T.

Both of these problems can be transformed into cluster problems.
Consider the two trees T\ and T2 in Figure 2. Tree T\ has splits

{{a, bcde], {b, acde], {c, abde), {d, abce), {e, abed], {ab, ede), {de, abc})
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282 BRYANT

T,>T<
bed

a b d e

FIG. 2. An unrooted tree T\ with corresponding rooted tree T2.

The tree T2 is obtained from the tree T\ by rooting T\ at the internal vertex adjacent to c, and then removing
the leaf c together with its adjacent edge. Because of this relationship, it is possible to calculate the clusters
of T2 directly from the splits of T\. For each split {A, A'} of T\, if c e A, then A' is a cluster of T2,
otherwise A is a cluster of T2. Hence the clusters of T2 are {{a}, {b}, {a, b, d, e], {¿}, {e}, {a, b], {d, e}}.
We utilize this relationship to transform the above splits problems into cluster problems.

Theorem 5. Let X be a set of taxa and r e X. Let fi be the mapping from binary characters on X
to clusters of X

—

{r} given by

c~x(\) when c(r)
—

0
fr(c) = ,

c '(0) when c(r) = 1

Then fr is a one-to-one mapping with inverse

f~x(A) = character mapping A to 0 and X
—

A to 1

Given any collection C of binary characters on X, the set of clusters fr(C) equals the set of clusters of
some rooted d-tree if and only if C = C(T) for some unrooted (d + \)-tree T.

Proof. It is straightforward to verify that fi has the given inverse. We prove the second result.
Suppose that C = C(T) for an unrooted tree T with leaf set X. Construct the rooted tree Tr from T

by (1) making the vertex adjacent to the leaf r the root of Tr and (2) removing the leaf r and its adjacent
edge (see Fig. 3).

Let e be the edge adjacent to the leaf r in T. The tree Tr equals the subtree of T rooted at the opposite
end of e from r. Therefore a set A is a cluster of Tr if and only if (A, X

—

A) is a split in T. Hence fi(C)
is the set of clusters of some rooted tree. Moreover, if every vertex in T has valency of d or less, then
every vertex in Tr has at most ¿

—

1 children.
Conversely, if C equals the set of clusters of some rooted tree Tr, then construct T by attaching a leaf

r and an edge to the root of Tr. Then f~x(C) will equal C(T). D

It follows that the number of subcollections C" ç C that equal the set of binary characters of a unrooted
phylogentic ¿-tree is the same as the number of subcollections C ç fi (S) that equal the set of clusters
of a rooted phylogenetic (¿

-

l)-tree.

T
r

O
FIG. 3. The transformation from T, on the left, to Tr, on the right. The hollow circles represent subtrees.
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TREES IN BINARY CHARACTER SETS 283

Given a set C of k binary characters on a set X, choose arbitrary r e X and calculate fi(C). This
can be doen in 0(nk) time. Apply the above cluster algorithms to fi(C) to count the total number of
subcollections corresponding to (d

—

l)-trees. A particular subcollection C" c fr(C), such as one returned
by the algorithm GetSubcollections, can be transformed into the corresponding set of splits using f~x.

If the original set C of binary characters was weighted, then weight the elements of A e fi(C)
by w(A) = w[f~l(A)]. If C" is an optimal subcollection of fi(C) then f~x(C) will be an optimal
subcollection of C.

4. APPLICATION TO CONSENSUS TREES

Our algorithm can be used as the basis of several consensus methods on profiles of trees. The first is
derived from the median consensus tree method.

4.1. Restricted median d-tree

Given two trees T\ and T2 define

D(TU T2) = \C(TX)
-

C(T2)\ + \C(T2)
-

C(r,)|
The consensus problem we address is given a profile of trees 9* = {7i, Ti, • •., Tg ) and a degree bound
¿, determine if a tree T exists such that

1. T is a ¿-tree and
2. C(T) ç U,C(T,)

If so, then determine which such tree minimizes

D(T, 2T) = J]D(7\ TO
i

This tree is called the restricted median d-tree.

Theorem 6. The restricted median d-tree of a profile of trees can be constructed, or shown not to
exist, in 0(n2dkd~x) time, where k = \ U,- C(T¡)\ and n = \L\.

Proof. Let 2T = {T, T2,..., TK} be a profile of trees on leaf set L. If T is any tree with leaf set L
then

D(T, T) = \C(T)
-

C(T)\ + \C(T¡)
-

C(T)\
= \C(T)\ + \C(Ti)\-2\C(T)nC(T¡)\

It follows that
K K

D(T, ÏÏ) = K\C(T)\ + J2 \C(Ti)\ -2J2\C(T) n C(7})|
/=i ¿=i

Given a character c put w(c) = 2\{i : c e C(T¿)}\
—

K. Then

K

D(T,ïï) = J2\C(Ti)\- J2 w{c)
;=1 ceC(T)

Apply our algorithm to U,-C(7J). If the number of ¿-trees counted equals zero then there is no restricted
median ¿-tree for this profile. If the count is nonzero then the ¿-tree T with maximum summed weight
minimizes D(T, 2T) and is the restricted median ¿-tree. The process therefore takes 0(n2dkd~x) time. D

Note that if we allow the consensus tree to have splits not in any of the input trees then minimizing
D(T, 2T) is NP-hard (McMorris and Steel, 1994). On the other hand, if we just remove the requirement that
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the vertex degree of the consensus tree is bounded then the resulting problem, called the median consensus

tree problem, can be solved in polynomial time (Barthélémy and McMorris, 1986). The disadvantage of
the standard median tree is that it tends to be relatively uninformative, usually having only a small number
of edges (Phillips and Warnow, 1996).

4.2. Restricted assymetric median d-tree

Phillips and Warnow (1996) define an assymetric median tree, closely related to the Nelson consensus
tree (Page, 1990), where the function to be minimized is

f(T, ST) = J2 \C(T¡)
-

C(T)\
i

Given a degree bound d we can determine the ¿-tree T such that C(T) ç U,C(7}), which minimizes
f(T, 2T), provided that such ¿-trees exist. This is called a restricted assymetric median tree.

Theorem 7. Let C be a set of binary characters. For c e C put

w(c) = \{i : c 6 C(T,)}\
If T is the d-tree with C(T) ç C that has maximum summed weight, then T is a restricted assymetric
d-tree.

Proof.

f(T,?T) = J2\C(T¡)-C(T)\
i

= £|C(r,)|-£|C(r,)nc(7:)|
i i

i ceC(T)

The result follows. D

Therefore the restricted assymetric median ¿-tree can also be constructed in 0(n2dkd~x) time, where
k= | U/ C(7})| and« = \L\.

4.3. Maximum weight consensus d-tree
At present there are only a few consensus methods that work for trees with weighted edges. If a tree in

the input profile has a heavily weighted edge then we would expect this edge to appear in the consensus

tree. The following method satisfies this criterion and is efficiently implemented using our algorithm.
INSTANCE: Profile 9" of edge-weighted trees on leaf set L, and a degree bound ¿.

PROBLEM: Find a ¿-tree with maximum summed edge weights, where each edge is weighted by the sum
of the corresponding edge weights in trees in 2T and each edge appears in at least one tree in 2T, or show
that no such tree exists.

A tree that is a solution to this problem is called a maximum weight consensus d-tree.

Theorem 8. A maximum weight consensus d-tree for a profile of trees can be constructed, or shown
not to exist, in 0(n2dkd~x) time, where n = \L\ and k

—

| U;C(T¡)\.

Proof. We apply our algorithms to U/C(T,) where each character is weighted by
w(c)

—

2J (weight of edge corresponding to c)  
i:c€C(T,)
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4.4. Features common to consensus d-trees

In general we cannot guarantee the existence of a restricted median ¿-tree or a maximum weight
consensus ¿-tree. However, if the input profile contains at least one d-tree then their existence is guaranteed.
For example, if the input profile contains at least one binary tree, as is often the case, then, for all ¿ > 2
there exist restricted median ¿-trees, restricted asymmetric median ¿-trees, and, if the trees in the input
profile have weighted edges, maximum weight consensus ¿-trees.

Another feature of all these consensus methods is that they return trees containing all splits of the strict
consensus tree, which contains those splits common to all trees. They are therefore "Pareto," as described
in McMorris and Powers (1993).

Theorem 9. Given a profile 9" of trees on leaf set L, and a degree bound d, all restricted median d-
treesfor 9 and all restricted asymmetric median d-trees for 9~ contain all the splits of the strict consensus

tree of 9. Furthermore, if the edges of the trees in 9" all have positive weights, then all maximum weight
consensus d-trees for 2T contain the splits of the strict consensus tree for 9.

Proof. Let 9 = {T\,T2,... ,TK] be a collection of trees on leaf set L. Choose any T such that
C(T) e U,C(T/). Put 5 = n¡C(T¡). We claim that C(T) U 5 is compatible.

Consider any two splits {A, A'} and {B, B'} in C(T) U S. If {A, A'} e 5 and {B, B'} e S then {A, A'}
and {B, B'} are clearly compatible. Likewise if both splits are splits of T then they are compatible. If one

split is in 5 and the other split, say {B, B'}, is not in S then there is a tree 7} € 9" containing {B, B'} and
also, by definition, the splits of S. Therefore the splits in S' are pairwise compatible and so C(T) U S is
compatible (Buneman, 1971).

Now let T be a restricted median ¿-tree for 9. If S g C(T) then construct the tree T' containing the
splits C(T) U 5. Clearly T is a ¿-tree and D(7", <5) < D(T, 9), a contradiction. Likewise for a restricted
asymmetric consensus ¿-tree.

Suppose that the edges in the trees in 9" have positive weight, and let T be a maximum weight consensus
¿-tree for 9". If 5 g C(T) then construct the tree T' containing the splits C(T) U S. Clearly 7" is a ¿-tree
and w(V) > w(T). D

5. APPLICATION TO THE ANALYSIS OF LARGE DATA SETS

As an illustration, we apply the above algorithms to the 135 human mitochondrial sequences of Vigilant
et al (1991). It was originally argued that the data supported an African origin for Homo sapiens. The
methodology of Viglant et al (1991) was criticized by a number of people (Templeton, 1991; Hedges
et al, 1991; Maddison et al, 1992) although Penny et al. (1995) subsequently found further support for
the "Out of Africa" hypothesis. We are concerned here not with the position of the root, but with the
branching structure of the phylogeny.

The above analyses of the human mitochondrial data all used parsimony criterion to assess trees. In
contrast, we assess trees by the number of characters they use from the data set, where the search is
restricted to those trees with bounded vertex degree and edges all supported by characters from the input.
We make only a preliminary investigation; our main purpose is to demonstrate the potential of the algorithm.

It was observed in Penny et al (1995) (see also Hedges et al, 1991) that the most parsimonious trees
found all shared three properties:

1. The 16 !Kung sequences together with the Naron sequence are grouped together.
2. Sequences 1-48, together with the Naron sequence, are grouped together.
3. All major lineages occur in Africa, but only a subset occurs in the rest of the world.

These observations are used in Penny et al (1995) to reject the multiregional model of human development.
We wish to examine if these properties hold for trees returned by our algorithm.
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Kul7 Kul6

FIG. 4. The maximum weight tree for a set of mtDNA sequences containing all !Kung sequences, the Naron
sequence, and one sequence from each of the remaining racial groups. The taxa are numbered as in Vigilant et al
(1991). The codes for racial groups are AA (Afroamerican), Ai (Asian), EP (Eastern Pygmy), Eu (European), Ha
(Hadza), He (Herero), Ku (!Kung), Na (Naron), NG (New Guiñean), WP (Western Pygmy), Yo (Yoruban).

The original data set contains 135 mtDNA sequences, each sequence being 131 sites long. We discarded
those characters with missing entries. Appending the trivial splits, and discarding the nine characters with
three or four states, we obtained a set of 192 distinct splits. It would be interesting in the future to employ
more sophisticated methods of extracting binary characters from DNA sequences.

A binary tree with 135 leaves contains 267 splits, so the set could not possibly contain a set of characters
that defines a binary tree. Indeed we would not even expect the data to contain all the splits of any tree with
a small bound on the vertex degree. This was verified when the algorithm was run on the data set. There
were no trees found, even when trees with maximum vertex degree seven were searched for, indicating
that the data set does not readily support highly resolved trees. Longer sequences are required before our
method can be used to analyze all 135 sequences at once. We must, therefore, restrict our attention to
smaller subsets of taxa.

To examine whether trees returned by the algorithm satisfied property 1, we used a taxa set containing
the 16 !Kung sequences, the Naron sequence, and one sequence from each of the remaining 10 racial
groups, the sequences selected randomly within each group. If property 1 holds then we would expect the
!Kung sequences to be grouped together in the maximum weight tree.

All of the characters in the reduced data set had two or fewer states. We discarded those characters with
missing entries, giving a set of 108 characters, 56 of which were constant. Adding the 27 trivial characters,
and removing duplicates, we obtained a set of 52 binary characters. The algorithm quickly found 18
different trees with maximum vertex degree eight and splits contained in this data set. We increased the
degree bound to nine and the algorithm found a further 94 trees.

The 52 binary characters were then weighted with the number of times each character appeared in the
original set of 108 characters. There was a unique maximum weight tree. When the constant characters
were included, this tree contained 91 (out of 108) characters of the original set. We present this tree in
Figure 4. The tree is only partially resolved, with a central vertex of degree nine. The !Kung sequences
do not form a cluster in the tree but they do make up a central group.

We then chose a set of 32 sequences that were widely spread within each phylogeny to test whether the
maximum weight trees satisfy properties 2 and 3. Once again characters with missing sites, or more than
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WP44

EP70

FIG. 5. The maximum weight tree for another set of mtDNA sequences. The taxa are numbered as in Vigilant et al
(1991), and african sequences are marked by hollow vertices. The codes for racial groups are AA (Afroamerican), Ai
(Asian), EP (Eastern Pygmy), Eu (European), Ha (Hadza), He (Herero), Ku (!Kung), Na (Naron), NG (New Guiñean),
WP (Western Pygmy), Yo (Yoruban).

three states were discarded, the trivial characters added, and duplicates removed. This time the algorithm
found no trees with maximum degree eight and splits in the data set. Examining the decomposition table
and list of clusters revealed that trees would be found if the degree bound was increased by one. After
several hours of processor time, the algorithm found 516 trees with maximum vertex degree nine and splits
in the data set.

Again, there was a unique maximum weight tree. It was supported by 80 (out of 136) characters (Fig. 5).
This is a considerably smaller proportion of the data set than for the previous example, indicating a greater
level of uncertainty.

The sequences of this set with indices less than 49 formed a cluster in this tree, so the maximum weight
tree is consistent with property 2 except for the placement of the Naron sequence (Na76). There is a split
in the data set (44th site) separating Kull, Kul3, Kul7, and Na76 from the other sequences, but there is
no tree with maximum vertex degree nine and splits in the data set that contains this split. It is interesting
to note that the Naron sequence appears in a variety of different positions in published phylogenies (see
Hedges et al, 1991; Templeton, 1991; Vigilant et al, 1991).

We do not have information about where to position the root in the tree so we cannot tell what the
major lineages are. However, one consequence of property 3 is that the tree should have a group comprised
exclusively of African sequences, a group containing both African and non-African sequences, and no

group containing exclusively non-African sequences. This is clearly satisfied by the maximum weight tree
in Figure 5. Hence the maximum weight tree is consistent with property 3.

It is interesting to note the differences in structure between this tree and the phylogeny of Vigilant et al
(1991). The tree in Figure 5 bears closer resemblence to the more parsimonious phylogenies given in
Hedges et al (1991) and Penny et al. (1995).

There is considerable potential for further analysis of this data set using these methods. In partic-
ular, different character weightings and different techniques for extracting binary characters could be
used. Unfortunately all analyses will be limited by the lack of resolution in the human mtDNA data set.
It was this lack of resolution that forced us to use only some of sequences at a time. However, this
problem is not unique to our approach, but rather is faced by all studies tackling the human mtDNA
data set.
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