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Abstract

An important procedure in the mathematics of phylogenetic analysis is to associate, to any collection
of weighted splits, the metric given by the corresponding linear combination of split metrics. In this note,
we study necessary and sufficient conditions for a collection of splits of a given finite set X to give rise
to a linearly independent collection of split metrics. In addition, we study collections of splits called affine
split systems induced by a configurations of lines and points in the plane. These systems not only satisfy
the linear-independence condition, but also provide a Z-basis of the Z-lattice Deven(X |Z) consisting of all
integer-valued symmetric maps D : X × X → Z defined on X that vanish on the diagonal and for which, in
addition, D(x, y)+ D(y, z)+ D(z, x) ≡ 0 mod 2 holds for all x, y, z ∈ X . This Z-lattice is generated by all
split metrics considered as vectors in the real vectorspace D(X |R) consisting of all real-valued symmetric
maps defined on X that vanish on the diagonal — and, hence, is also an R-basis of that vectorspace.
c© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Let X denote a finite set of cardinality n. A split S = {A, B} of X is a partition of X into two
disjoint parts A, B ∈ P(X); the split is proper if both parts are non-empty, and trivial if one part
contains exactly one element. The set of all splits is denoted by S(X), and the set of all proper
splits is denoted by S∗(X). Any subset S of S(X) (or S∗(X)) is called a split system (or a proper
split system, respectively).
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Given a split S = {A, B} in S(X) and an element x in X , let S(x) denote the subset, A or B ,
in S that contains x , and let S(x) denote its complement X − S(x), i.e. the subset, A or B , of X
in S that does not contain x . The split S in S(X) is said to separate two elements x, y in X if
S(x) (= S(y) holds. For any split S ∈ S(X), let dS denote the associated split metric, i.e. the map

dS : X × X → R : (x, y) )→ δS(x),S(y) =
{

1 if S separates x, y
0 otherwise,

where, for any two subsets U and V of X , we follow standard conventions and put δU,V := 1 if
U = V , and δU,V := 0 otherwise.

Since δS(x),S(y) = 1−δS(x),S(y) = δS(x),S(y) always holds, dS can be considered as an element
in the R-vectorspace D(X | R) consisting of all real-valued symmetric maps D : X × X → R
defined on X that vanish on the diagonal. Furthermore, as δS(x),S(y) ∈ Z and

dS(x, y) + dS(y, z) + dS(z, x) ∈ {0, 2}
always holds, the map dS can also be viewed as an element in the Z-lattice Deven(X |Z) consisting
of all integer-valued maps D ∈ D(X |R) for which, in addition,

D(x, y) + D(y, z) + D(z, x) ≡ 0 mod 2

holds for all x, y, z ∈ X . This lattice is also called the cut lattice associated with X (cf. [4]).
A split system S ⊆ S(X) is said to be D-independent if the corresponding collection

d(S) := {dS : S ∈ S}
of split metrics forms a linearly independent subset of the vector space D(X | R) in which
case it must, of course, be a proper split system, that is, it must be contained in S∗(X). The
mathematics of split metrics (also called cut metrics) is surprisingly rich and multi-faceted, with
applications to many quite diverse fields — see Deza and Laurent [4] for a comprehensive survey.
Our motivation here is in the application of split metrics to evolutionary biology. Some of the
very first methods for constructing evolutionary trees used models based on split metrics [3],
and the analysis of split metrics was also crucial in the development of phylogenetic network
methods [1].

We will derive two distinct characterizations of split-system independence:

Theorem 1. For any two splits S = {A, B} and S′ = {A′, B ′} in S(X), define

µ(S, S′) := |A ∩ A′||B ∩ B ′| + |A ∩ B ′||B ∩ A′|,
and, for any split system S ⊆ S(X), put

M(S) := (µ(S, S′))S,S ′∈S .

Then, M(S) is a positive semi-definite symmetric matrix for every split system S ⊆ S(X) whose
rank coincides with the dimension of the subspace

〈S〉R := 〈dS : S ∈ S〉R
of R-vectorspace D(X | R) generated by the collection {dS : S ∈ S} of split metrics associated
with S. Hence, the following four assertions are equivalent:

(1) S is D-independent;
(2) M(S) is positive definite;
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(3) the determinant det(S) := det M(S) of M(S) does not vanish;
(4) this determinant is positive.

Theorem 2. For any element z ∈ X and any two splits S, S′ =∈ S(X), put

µz(S, S′) :=
(

|S(z) ∩ S′(z)| + 1
2

)

and put

Mz(S) := (µz(S, S′))S,S ′∈S

for any split system S ⊆ S(X). Then, this matrix is also always a positive semi-definite symmetric
matrix whose rank coincides, for every z ∈ Z, with the dimension of the R-vectorspace 〈S〉R. In
particular, the following four assertions are equivalent:

(1) S is D-independent;
(2) the determinant detz(S) := det Mz(S) does not vanish (or, equivalently, is positive) for all

z ∈ X;
(3) the determinant detz(S) does not vanish (or, equivalently, is positive) for at least one z ∈ X;
(4) Mz(S) is positive definite for at least one or, equivalently, for all, z ∈ X.

The determinants det(S) and detz(S) do not appear to be strongly related to each other in
general, beyond the fact that one vanishes if and only if the other vanishes. Consider the case
|S| = 1. If S contains the single split S = {A, B} and z ∈ B holds, then only one of the two
numbers

det(S) = µ(S, S) = |A|(n − |A|)
and

detz(S) = µz(S, S) =
( |A| + 1

2

)

depends on n. However, there is a direct connection in the case when S has cardinality
( n

2

)
; that

is, when S has the largest cardinality a D-independent split system can attain:

Theorem 3. Let S ⊆ S(X) be a split system with #S =
( n

2

)
. Then

det(S) = 2(n−1)(n−2) detz(S)

holds for every z ∈ X. One has det(S) = 2(n−1)(n−2) — or, equivalently, detz(S) = 1— if and
only if the Z-sublattice

〈S〉Z := 〈dS : S ∈ S〉Z
of Z-lattice Deven(X | Z) generated by the collection d(S) of split metrics associated with S
coincides with Deven(X |Z), in which case the set d(S) is a Z-basis of Deven(X |Z). In general,
detz(S) coincides with the square of the index (Deven(X | Z) : 〈S〉Z) of 〈S〉Z in Deven(X | Z)
whenever this index is finite, and vanishes otherwise.

A split system S ⊆ S(X) is weakly compatible [1] if it is proper and one of the three
intersections S1(x) ∩ S2(x) ∩ S3(x), S1(x) ∩ S2(x) ∩ S3(x), and S1(x) ∩ S2(x) ∩ S3(x) is
empty for any three splits S1, S2, S3 in S and any x ∈ X . It was observed in [1] that every
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Fig. 1. Two configurations generating affine split systems on the set X = {x1, x2, . . . , x5}. Both configurations give rise
to ten distinct splits, one for each line. In the left-hand configuration, Lines 1 to 5 give the splits separating out the single
elements x1, x2, . . . , x5, respectively, while Lines 6 to 10 induce the splits separating out the pairs {x1, x2}, {x2, x3},
{x3, x4}, {x4, x5}, and {x5, x1}, respectively. In the right-hand configuration, Lines 1 to 4 induce the splits separating out
the single elements x1, . . . , x4, while Lines 5 to 10 separate out the pairs {x1, x2}, {x3, x4}, {x2, x3}, {x4, x1}, {x4, x5},
and {x5, x1}, respectively.

weakly compatible split system is D-independent; so, det(S) ≥ 2(n−1)(n−2) must hold for the
determinant associated with any weakly compatible split system S of cardinality

( n
2

)
. We will

show here that, more specifically,

det(S) = 2(n−1)(n−2)

holds whenever S is weakly compatible and has cardinality
( n

2

)
. In fact, we will prove a more

general result that refers to the following definition:

Definition 1. A split system S ⊆ S(X) is affine if it is proper and there exists a map ϕ : X → E2

from X to the Euclidian plane E2 and an S-indexed family (#S)S∈S of straight lines in E2 so
that none of these lines intersects the ϕ-image ϕ(X) of X while #S intersects the line segment
[ϕ(x),ϕ(y)] for any S ∈ S and any two points x, y ∈ X that are separated by S.

(i) A straight line # ⊂ E2 induces a given split S of X relative to the map ϕ if and only if #

intersects the straight line segment [ϕ(x),ϕ(y)] for any two points x, y ∈ X if and only if
these two points are separated by S (in which case ϕ(X) ∩ # = ∅ must, of course, hold).

(ii) We write S = S(ϕ, #) in this case.
(iii) The collection of all proper splits of X arising in this way from a given map ϕ : X → E2

will be denoted by Sϕ , i.e. we put

Sϕ := S∗(X) ∩ {S(ϕ, #) : # a straight line in E2,ϕ(X) ∩ # = ∅}.
(iv) Given any split system S ⊆ S(X), a map ϕ : X → E2 will be called an S-map if S = Sϕ

holds.

Point and line systems of this sort (or, more frequently, their geometric duals) arise in
combinatorial and computational geometry (see Fig. 1 for two examples and, e.g., [6,9] for
further discussion). Here are three of their well-known properties that are relevant in our context:

(S1) #S ≤ ( n
2

)
holds for every affine split system S. This follows from the bound on the number

of cells generated by a configuration of n lines, first discussed by Steiner [10].
(S2) Every affine split system is contained in an affine split system of cardinality

( n
2

)
.
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(S3) The affine split systems S ⊆ S(X) of cardinality
( n

2

)
are exactly the split systems of the

form S = Sϕ for some map ϕ : X → E2 that maps X injectively onto a set “in general
position” in E2, i.e. onto a subset of E2 such that no straight line # ⊂ E2 contains more than
two points from that set.

Regarding such split systems, we prove

Theorem 4. The collection {dS : S ∈ S} of split metrics associated with an affine split system S
of maximal cardinality

( n
2

)
is a Z-basis of Deven(X |Z). Equivalently,

det(S) = 2(n−1)(n−2) (1)

holds for every affine split system S of maximal cardinality.
In particular, any affine split system is D-independent.

In [1], it was shown that any weakly compatible split system S ⊆ S∗(X) of cardinality
( n

2

)

is a circular split system, meaning (in the above terminology) that it is a maximal affine split
system arising from an embedding ϕ : X → E2 mapping X bijectively onto the vertices of
a convex n-gon or, equivalently, that it is a maximal affine split system that contains all trivial
splits of X . Thus, the identity (1) holds in particular (as already mentioned above) for weakly
compatible splits of maximal cardinality.

2. D-independence of split systems

Given any two finite sets U and V , we define a (real-valued) U × V -matrix to be any real-
valued matrix whose rows are indexed by the elements in U and whose columns are indexed by
the elements in V (or, equivalently, any map from the set U × V into R).

Let S ⊆ S(X) be a split system of cardinality m and let A = A(S) be the binary
(

X
2

)
× S-

matrix defined by

A{x,y},S := δS(x),S(y) = dS(x, y) (2)

for all {x, y} ∈
(

X
2

)
and S ∈ S. Then, the associated matrix AT A is a positive semi-definite

matrix that is positive definite if and only if AT A is non-singular, if and only if A has rank m
and, hence, if and only if S is D-independent. So, all we need to observe is that the two matrices
M(S) and A(S)T A(S) coincide for every split system S ⊆ S(X) which follows, of course,
immediately from our definitions: For any two splits S = {A, B} and S′ = {A′, B ′} in S, we
have

(
A(S)T A(S)

)

S,S ′ =
∑

{x,y}⊆X

dS(x, y)dS ′(x, y)

= #
{
{x, y} ⊆ X : both S and S′ separate x, y

}

= #(A ∩ A′)#(B ∩ B ′) + #(A ∩ B ′)#(B ∩ A′)
= µ(S, S′)
= M(S)S,S ′.

For the second characterization of independence (Theorem 2), we apply a version of the
curiously ubiquitous Farris Transform [7,5]. This transform appears in many different guises
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and formulations across several fields (see, for example, the covariance mapping of [4]). Choose
any element z ∈ X and let M(X : z | R) denote the space consisting of all symmetric maps from
X × X into R that vanish on all pairs (x, y) ∈ X × X with z ∈ {x, y} (but not necessarily in the
case x = y (= z). Consider the map

ξz : D(X |R) → M(X : z | R)

from the space D(X |R) into M(X : z | R), which is defined by putting

ξz(D)(x, y) := 1
2

(D(x, z) + D(y, z) − D(x, y))

for every map D ∈ D(X |R) and all x, y ∈ X . Clearly, ξz is a linear isomorphism from D(X |R)
onto M(X : z | R) whose inverse ξ−1

z maps any M in M(X : z | R) onto the symmetric map
ξ−1

z (M) ∈ D(X |R) defined by putting

ξ−1
z (M)(x, y) := M(x, x) + M(y, y) − 2M(x, y)

for any map M ∈ M(X : z | R) and all x, y ∈ X .
Now, fix z ∈ X , put X ′ := X − {z}, and let

(
X ′
≤2

)
denote the set of all non-empty subsets

{x ′, y ′} ⊆ X ′ of cardinality ≤ 2. Further, given any split system S ⊆ S(X) of cardinality, say, m

as above, let B = B(S, z) denote the binary
(

X ′
≤2

)
× S-matrix defined by

B{x ′,y′},S := ξz(dS)(x ′, y ′) (3)

for all x ′, y ′ ∈ X ′ and S ∈ S.
Just as above, it is a consequence of well-known facts in linear algebra that the associated

matrix BT B is always positive semi-definite, and that BT B is positive definite if and only if BT B
is non-singular if and only if B has rank m if and only if the family (ξz(dS)S∈S) is linearly
independent and, hence (as ξz is an isomorphism from D(X | R) onto M(X : z | R)), if and
only if S is D-independent. So, again, all we need to observe is that the two matrices Mz(S)

and B(S)T B(S) coincide for every split system S ⊆ S(X) which, we will see, follows from the
following identity:

Lemma 5. For any split S, we have

δS(z),S(x) δS(z),S(y) = 1
2
(δS(z),S(x) + δS(z),S(y) − δS(x),S(y))

or, equivalently,

dS(x, z)dS(z, y) = 1
2
(dS(z, x) + dS(z, y) − dS(x, y)).

It follows that

B{x ′,y′},S = 1
2

(
dS(x ′, z) + dS(y ′, z) − dS(x ′, y ′)

)

= dS(z, x ′) dS(z, y ′)

=
{

1 if x ′, y ′ ∈ S(z);
0 otherwise

holds for all x ′, y ′ ∈ X ′ and S ∈ S and, hence,
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(BT B)S,S ′ =
∑

x ′,y′∈X ′
B{x ′,y′},S B{x ′,y′},S ′

=
∑

x ′,y′∈S(z)∩S ′(z)

1

=
(

|S(z) ∩ S′(z)|
2

)
+ |S(z) ∩ S′(z)|

=
(

|S(z) ∩ S′(z)| + 1
2

)

= µz(S, S′) = Mz(S)S,S ′

for any two splits S, S′ in S, implying that also

B(S, z)T B(S, z) = Mz(S)

and

detz(S) = det Mz(S) = det
(

B(S, z)T B(S, z)
)

holds. This establishes Theorem 2.

3. Split systems of cardinality (n
2 )

Let us first note that, given any split system S ⊆ S(X) and any element z ∈ X , one has

A(S) = !(S, z) B(S, z) (4)

for the square
(

X
2

)
×
(

X−{z}
≤2

)
-matrix ! = !(S, z) describing the map ξz in terms of the

“canonical” bases of the vectorspaces D(X |R) and M(X : z | R) that is defined by

!{x,y},{x ′,y′} := δx,x ′δx,y′ + δy,x ′δy,y′ − 2δ{x,y},{x ′,y′}

=






1 in case x = x ′ = y ′,
1 in case y = x ′ = y ′,
−2 in case {x, y} = {x ′, y ′},
0 otherwise

for all {x, y} ∈
(

X
2

)
and all x ′, y ′ ∈ X ′ := X − {z}. Indeed, using Lemma 5 for the last step in

the following computation, it is easily seen that

(! B){x,y},S =
∑

x ′,y′∈X ′
!{x,y},{x ′,y′}B{x ′,y′},S

=
∑

x ′,y′∈X ′
δS(z),S(x ′) δS(z),S(y′)(δx,x ′δx,y′ + δy,x ′δy,y′)

− 2
∑

x ′,y′∈X ′
δS(z),S(x ′) δS(z),S(y′)δ{x,y},{x ′,y′}

= δS(z),S(x) + δS(z),S(y) − 2 δS(z),S(x) δS(z),S(y)

= δS(x),S(y)

holds for all {x, y} ∈
(

X
2

)
and every split S ∈ S.
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Let us now consider the case |S| =
( n

2

)
, in which case both matrices A and B are square

matrices, implying not only that

det(S) = det(AT A) = det(A)2

and

detz(S) = det(BT B) = det(B)2,

but also — in view of (4) — that

det(A) = det(!) det(B)

holds, provided that, for evaluating these three determinants, the indices are ordered consistently
for all three matrices; otherwise, the left-hand side and the right-hand side may differ in their
signs which, however, is irrelevant for the squares of these matrices considered in Theorem 3.

The rows and columns of ! can be ordered so that ! has the form

! =
[−2I 0

G I

]

consisting of

• one square
(

X ′
2

)
×
(

X ′
2

)
-block whose rows and columns are indexed by the 2-subsets of X ′,

which is just −2 times the identity matrix;

• one rectangular
(

X ′
2

)
× X ′-block whose rows are indexed by the 2-subsets of X ′ and whose

columns are indexed by the elements in X ′, which is simply the 0-matrix;
• one rectangular block G whose rows are indexed by the 2-subsets of X containing the element

z and whose columns are indexed by the 2-subsets of X ′ whose explicit form, however, is
fortunately of no concern; and

• one square block whose rows are indexed by the 2-subsets of X containing the element z and
whose columns are indexed by the elements in X ′ which, upon identifying these two sets in
the canonical way, is the identity matrix.

So, we see immediately that ! has determinant ±2
(

n−1
2

)

.
The fact that 2(n−1)(n−2) always divides det(S) when S has cardinality

( n
2

)
can also be derived

by employing a more conceptual point of view.
Let D(X |Z) denote the Z-lattice consisting of all integer-valued maps in D(X |R) and recall

that Deven(X | Z) denotes its sublattice consisting of all maps D ∈ D(X | Z) for which the sum
D(x, y) + D(y, z) + D(z, x) is an even integer for all x, y, z ∈ X . For each 2-subset {x, y} of
X , let D{x,y} denote the map from X × X into Z that maps the pairs (x, y) and (y, x) onto 1, and
all other pairs in X × X onto 0, and note that D(X |Z) is freely generated (as a Z-module) by the
collection

{
D{x,y} : {x, y} ∈

(
X
2

)}
of all such maps. Further, we denote by Dx , for every x ∈ X ,

the sum
∑

y∈X−{x} D{x,y} and note the following:

(E1) Dx = d{{x},X−{x}} ∈ Deven(X |Z) holds for every x ∈ X ;
(E2) Given any element z ∈ X and putting X ′ := X − {z} as above, the subset

Bz :=
{

2 D{x,y} : {x, y} ∈
(

X ′

2

)}
∪ {Dx : x ∈ X ′}
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of Deven(X |Z) is actually a Z-basis of Deven(X |Z) for every z ∈ X (indeed, with z and X ′

as above, one has

D =
∑

x∈X ′
D(x, z) Dx +

∑

{x,y}∈
(

X ′
2

)

1
2

(D(x, y) − D(x, z) − D(y, z)) (2D{x,y})

for every D ∈ Deven(X | Z), and this representation of D as a Z-linear combination of the
maps in Bz is, of course, unique; see also [4]);

(E3) The subset

Bz :=
{

D{x,y} : {x, y} ∈
(

X ′

2

)}
∪ {Dx : x ∈ X ′}

of D(X |Z) is a Z-basis of D(X |Z) for every z ∈ X (indeed, one has

D =
∑

x∈X ′
D(x, z) Dx +

∑

{x,y}∈
(

X ′
2

)
(D(x, y) − D(x, z) − D(y, z)) D{x,y}

for every D ∈ D(X |Z), and also this representation of D as a Z-linear combination of the
maps in Bz is, of course, unique).

Altogether, this implies that the factor module D(X | Z)/Deven(X | Z) of D(X | Z) is an
elementary abelian 2-group of rank

(
n−1

2

)
. Consequently, if D1, . . . , D( n

2 )
is any family of

( n
2

)

maps in Deven(X |Z), the power 2
(

n−1
2

)

must divide the index of the sublattice generated by this
family in D(X |Z) and, therefore, also the absolute value of the determinant

det(D1, . . . , D( n
2 )

)

of the
(

X
2

)
× {1, . . . ,

( n
2

)
}-matrix (D1, . . . , D( n

2 )
) whose entry at position ({x, y}, i) is Di (x, y)

while

|det(D1, . . . , D( n
2 )

)| = 2
(

n−1
2

)

holds if and only if the family D1, . . . , D( n
2 )

is a Z-basis of Deven(X |Z).

In particular, as dS ∈ Deven(X |Z) holds for every split S ∈ S(X),

2
(

n−1
2

)∣∣∣∣ det(A(S))

must hold for every split system S ⊆ S(X) of cardinality
( n

2

)
, and

2
(

n−1
2

)

= |det(A(S))|

holds for a split system S ⊆ S(X) of cardinality
( n

2

)
if and only if the split metrics {dS : S ∈ S}

form a Z-basis of Deven(X |Z).
This argument actually shows that the following considerably stronger and more explicit

assertion regarding the integer matrix A holds (see, for instance, [8] for the relevant definitions):
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Theorem 6. If S ⊆ S(X) is any split system of cardinality
( n

2

)
, then there are at most

2n−1
(

= 2( n
2 )−
(

n−1
2

))
elementary divisors among the 2( n

2 ) elementary divisors of the matrix

A that are not divisible by 2.

4. Affine split systems

Let us now consider an affine split system S ⊆ S(X) of maximal cardinality
( n

2

)
. The goal of

this section is to show that, in this case, det(S) = 2(n−1)(n−2) holds.
We begin by studying split systems with a particular separation property, a property that is

easily seen to hold for maximal affine split systems (see Lemma 9 below).

Definition 2. A split system S ⊆ S(X) has the pairwise separation property if, for any two
distinct points x, y ∈ X , there are two (possibly empty) subsets A, B of X − {x, y} such that the
four splits

S1 = {A ∪ {x, y}, B}
S2 = {A ∪ {x}, B ∪ {y}}
S3 = {A ∪ {y}, B ∪ {x}}
S4 = {A, B ∪ {x, y}}

(5)

are all in S ′ := S ∪ {{∅, X}}.

Lemma 7. Let S ⊆ S(X) be a split system that satisfies the pairwise separation property. Then,

〈S〉Z = 〈S ′〉Z = Deven(X |Z)

holds.

Proof. Note first that 〈S〉Z = 〈S ′〉Z holds for any split system S, in view of the fact that the split
metric d{∅,X} associated with the split {∅, X} is the 0-map.

Next, choose any two distinct points x, y ∈ X and, using the pairwise separation property, a
partition {A, B} of X − {x, y} such that the splits S1, . . . , S4 defined in (5) are all in S ′, and note
that

dS2 + dS3 − dS1 − dS4 = 2 D{x,y}

always holds. So,

2 D{x,y} ∈ 〈S〉Z
holds for any two distinct points x, y ∈ X . Also, we have

dS3 − dS1 =
∑

z∈A∪{y}
D{x,z} −

∑

z∈B

D{x,z} = Dx − 2
∑

z∈B

D{x,z},

implying that, in view of the fact that has just been established that 2 D{x,z} ∈ 〈S〉Z holds for all

{x, z} ∈
(

X
2

)
, also

Dx ∈ 〈S〉Z
must hold for all x ∈ X . So, our claim 〈S〉Z = Deven(X | Z) follows from Assertion (E2) in
Section 3. !
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Fig. 2. Illustration of the pairwise separation property for affine splits: the four solid lines induce the splits S1, . . . , S4
of (5).

Corollary 8. If S ⊆ S(X) is a split system of cardinality
( n

2

)
that satisfies the pairwise

separation property, then

det(S) = 2(n−1)(n−2)

must hold.

Note that the pairwise separation property is not a necessary condition for a split system S of
cardinality

( n
2

)
to have determinant det(S) = 2(n−1)(n−2). A counter-example will be provided

in the last section.
As we will see now, we can apply these results to affine split systems:

Lemma 9. Every affine split system S ⊆ S∗(X) of cardinality
( n

2

)
satisfies the pairwise

separation property.

Proof. Choose an S-map ϕ, i.e. a map ϕ : X → E2 with S = Sϕ , and recall that, according to
(S3), any such map must be injective and that — denoting, for any two distinct points x, y ∈ X ,
the straight line connecting the two points ϕ(x) and ϕ(y) by

←→
x : y — we must have

←→
x : y ∩ϕ(X) = {ϕ(x),ϕ(y)}

for any two distinct points x, y ∈ X . Next, let

S(ϕ : x, y) := S
(
ϕ |X−{x,y},

←→
x : y
)

denote the associated split of X − {x, y} induced by the straight line
←→
x : y , choose A, B ⊆

X − {x, y} with S(ϕ : x, y) = {A, B}, and put

S+(ϕ : x, y) := {{A ∪ {x}, B ∪ {y}}, {A ∪ {y}, B ∪ {x}}}
and

S−(ϕ : x, y) := {{A ∪ {x, y}, B}, {A, B ∪ {x, y}}} .

We claim that the four splits in S+(ϕ : x, y) ∪ S−(ϕ : x, y) are all in S = Sϕ . To show

this, choose a small non-zero vector ε orthogonal to the line
←→
x : y and note that we can choose ε

sufficiently small so that the four lines connecting each of the two points ϕ(x)±ε with each of the
two points ϕ(y) ± ε all have an empty intersection with X and induce the same split S(ϕ : x, y)

on X − {x, y}. Therefore, these four lines induce the four required splits (Fig. 2). !
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Taken together, these facts establish Theorem 4. More specifically, the above arguments imply
that, given any affine split system S of maximal cardinality

( n
2

)
and any S-map ϕ : X → E2,

one has

D{x,y} =
∑

S∈S

1
2

η(S : x, y) dS

for all {x, y} ∈
(

X
2

)
, where the coefficients η(S : x, y) are defined, for all S ∈ S and all

{x, y} ∈
(

X
2

)
, by

η(S : x, y) = η(S : x, y)ϕ :=






1 in case S ∈ S+(ϕ : x, y),
−1 in case S ∈ S−(ϕ : x, y),

0 otherwise.

Therefore, also

D =
∑

{x,y}∈
(

X
2

)
D(x, y)D{x,y} =

∑

S∈S




∑

{x,y}∈
(

X
2

)

1
2

η(S : x, y) D(x, y)



 dS (6)

holds for every map D ∈ D(X |R), implying in particular that
∑

{x,y}∈
(

X
2

)
η(S : x, y) D(x, y)

must be an even integer for every split S ∈ S and every map D ∈ Deven(X |Z) — a fact that can,
of course, also be derived easily by direct computation.

Note that η(S : x, y) = 1 (or η(S : x, y) = −1) holds for some S ∈ S and some {x, y} ∈
(

X
2

)

if and only if (i) the split S separates any two points u, v ∈ X − {x, y} if and only if the straight
line segment [ϕ(u),ϕ(v)] intersects

←→
x : y and (ii) S separates the two points x and y (or does not

separate these two points, respectively).

5. Discussion

In this section, we discuss some specific cases as well as some questions that arise naturally
in this context, providing examples (or counter-examples) when available.

5.1. Existence of maximal split systems with det(S) (= 2(n−1)(n−2)

To begin with, it is easy to check that every split system S ⊆ S(X) is affine in the
case n ≤ 3 and that a split system S ⊆ S(X) is affine in the case n = 4 if and only if
#S ≤ 6 =

(
4
2

)
holds. For every n ≥ 5, there exist split systems S ⊆ S(X) of cardinality

( n
2

)
with det(S) > 2(n−1)(n−2). Consider, for example, the system S2 ⊆ S(X) consisting of all

“2-splits” of X , i.e. put

Suv := {{u, v}, X − {u, v}}
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for all u, v ∈ X and consider the split system

S2 = S2(X) :=
{

Sxy : {x, y} ∈
(

X
2

)}
.

It is easy to see that S2 is a D-independent split system of cardinality
( n

2

)
for every n that is

distinct from 2 and 4. More specifically, we have

Theorem 10. One has

det(µSxy,Sx ′y′ ){x,y},{x ′,y′}∈
(

X
2

) = (n − 2)2 (4 − n)2n−2 2(n−1)(n−2) (7)

for all n ≥ 2 and, therefore,

det(S2) = (n − 2)2 (4 − n)2n−2 2(n−1)(n−2) (8)

for all n ≥ 2 except n = 4 (in which case, every 2-split is counted twice in the family
(Sxy){x,y}∈

(
X
2

)).

In particular, there are split systems of cardinality
( n

2

)
with a non-vanishing determinant

distinct from 2(n−1)(n−2) for all n ≥ 5.

Proof. Given a fixed element z ∈ X , put X ′ := X −{z} as above, and consider the
(

X ′
≤2

)
×
(

X ′
≤2

)
-

matrix B = B(2, z) defined in analogy to (3) by

B{x,y},{u,v} :=
{

B{x,y},Suv if u (= v,

B{x,y},Suz otherwise.

For convenience, we identify the subset {{x} : x ∈ X ′} of
(

X ′
≤2

)
consisting of all one-element

subsets of X ′ with X ′ in the obvious way.
Clearly, B can be viewed as a 2 × 2 block matrix

B =
[

I H
K V

]

consisting of

• the
(

X ′
2

)
×
(

X ′
2

)
identity matrix I;

• the
(

X ′
2

)
× X ′ matrix H defined by

H{x,y},u =
{

1 if u (∈ {x, y},
0 otherwise

for all {x, y} ∈
(

X ′
2

)
and u ∈ X ′;

• the X ′ ×
(

X ′
2

)
matrix K defined by

Ku,{x,y} = 1 − H{x,y},u =
{

1 if u ∈ {x, y},
0 otherwise

for all u ∈ X ′ and {x, y} ∈
(

X ′
2

)
; and

• the X ′ × X ′ matrix V which has zeros on the diagonal and ones everywhere else.
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Using elementary row manipulations, we can use the
(

X ′
2

)
×
(

X ′
2

)
identity submatrix to zero

the entries of K, replacing V by the matrix (4−n)V. Using further row and column manipulations
(or noting that the constant vectors form a one-dimensional eigenspace of V with eigenvalue n−2
while the vectors with vanishing total entry sum form an (n − 2)-dimensional eigenspace of V
with eigenvalue −1), we see immediately that

det(V) = (−1)n−2(n − 2)

holds. Thus, arguing as above in the proof of Theorem 3, we see that also

det(µSxy,Sx ′y′ ){x,y},{x ′,y′}∈
(

X
2

) = (n − 2)2 (4 − n)2n−2 2(n−1)(n−2)

holds for all n ≥ 2, and

det(S2) = 2(n−1)(n−2) det(B(2, z))2

= 2(n−1)(n−2)
(
(4 − n)n−1 (−1)n−2 (n − 2)

)2

= (n − 2)2 (n − 4)2n−2 2(n−1)(n−2)

for all n distinct from 4, as claimed. !
Theorem 10 implies in particular that, for every natural number m, there exists a smallest

number n = n(m) ≤ m + 2 such that a maximal independent split system S with m2 | det(S)
exists on a set of cardinality n. The fact that, for every set X of cardinality n, there exist only
finitely many split systems S ⊆ S(X) of cardinality

( n
2

)
implies, of course, that

lim
m→∞ n(m) = ∞

must hold. It might be interesting to determine the number n = n(m), at least in the case that
m is a prime number p and to check, for example, in particular whether n(p) = p + 2 holds
for every prime number p. We will see below that, for p := 3, n(p) = p + 2 indeed holds
as well as n(q) > p + 2 = 5 for any prime q larger than p = 3, and that, in addition,
|B(S, z)| ≤ |B(2, z)| and, therefore, det(S) ≤ det(S2) also holds in the case n := 5 for every
split system S ⊂ S({1, 2, 3, 4, 5}) of cardinality 10, suggesting that these inequalities might hold
for every n ≥ 5.

There are, of course, further arithmetic invariants of the matrices M(S) considered as a matrix
representing an integral positive semi-definite quadratic form, or — equivalently — of the Z-
lattices 〈S〉Z that might be worth to be studied.

5.2. Pseudo-affine split systems

It also seems to be of some interest to note that there is a natural generalization of the class of
affine split systems, viz the class of pseudo-affine split systems. These can be defined simply as
the class of split systems that arises as the set of (splits encoded by the) topes of an affine regular
oriented matroid of rank 3 (i.e. a regular oriented matroid of rank 3 for which the “all-to-one”
map is a tope) and which, therefore, clearly encompasses the class of affine split systems.

5.3. Determinant preserving operations on split systems

Next note that, while it can be shown that any split system of cardinality of at most 6 is D-
independent, there are split systems of cardinality 7 that are not D-independent (provided that
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n ≥ 4 holds). Indeed, given any partition of X into four disjoint non-empty subsets A, B, C, D,
we may consider the set S(A | B |C | D) consisting of altogether the seven splits

S1 := {A, X − A}, S2 := {B, X − B}, S3 := {C, X − C}, S4 := {D, X − D},
S5 := {A ∪ B, C ∪ D}, S6 := {A ∪ C, B ∪ D}, S7 := {A ∪ D, B ∪ C}.

Note that the identity

dS1 + dS2 + dS3 + dS4 = dS5 + dS6 + dS7 (9)

always holds. So, S(A | B |C | D) is never D-independent. However, these sets provide a way of
constructing new maximal split systems from old.

Theorem 11. Suppose that S and S ′ are proper split systems of cardinality
( n

2

)
, that

S − S(A | B |C | D) = S ′ − S(A | B |C | D)

and that

#(S ∩ S(A | B |C | D)) = #(S ′ ∩ S(A | B |C | D)) = 6.

Then det(S) = det(S ′).

Proof. Applying (9), we see immediately that

〈S〉Z = 〈S ′〉Z
from which the result follows. !

Hence, one can construct split systems S ′ of cardinality
( n

2

)
with det(S ′) = 2(n−1)(n−2) from

other such split systems S by repeatedly exchanging any one split in S contained in a collection
of splits of the form S(A | B |C | D) with #(S(A | B |C | D) − S) = 1 by the (then unique!) split
contained in S(A | B |C | D) − S.

It seems worth investigating whether every split system S of cardinality
( n

2

)
with det(S) =

2(n−1)(n−2) can be reached by a sequence of these and further similar operations from a split
system S0 of that cardinality that is derived from an affine regular oriented matroid of rank 3.

5.4. Non-affine split system with det(S) = 2(n−1)(n−2)

Here is, at least, one interesting example of a split system S of cardinality
( n

2

)
with det(S) =

2(n−1)(n−2) that does arise in this way, but it is neither affine nor pseudo-affine (as it contains all
1-splits and is not circular) and does not even satisfy the pairwise separation property. Consider
the set X := {1, 2, 3, 4, 5} and the embedding ϕ of X into E2 that maps the elements 1, 2, 3, 4
in clockwise fashion onto the vertices of a square in E2 while it maps the element 5 onto a point
that is somewhere in the interior of the triangle whose vertices are the elements ϕ(1),ϕ(4), and
the point where the two diagonals of the square ϕ(1),ϕ(2),ϕ(3),ϕ(4) meet. Then Sϕ consists of
the four “1-splits”

{{1}, {2, 3, 4, 5}}, {{2}, {3, 4, 5, 1}}, {{3}, {4, 5, 1, 2}}, {{4}, {5, 1, 2, 3, }},
the four 2-splits

{{1, 2}, {3, 4, 5}}, {{2, 3}, {4, 5, 1}}, {{3, 4}, {5, 1, 2}}, {{4, 1}, {2, 3, 5}},
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and the two 2-splits

{{1, 5}, {2, 3, 4}} and {{4, 5}, {1, 2, 3}}.
So, we can apply our procedure relative to the partition of X into the four disjoint subsets
{2, 3}, {1}, {4}, {5} and the split {{2, 3}, {4, 5, 1}} ∈ Sϕ , yielding a split system S with 〈S〉Z =
Deven(X |Z) that consists of all 1-splits and the five 2-splits

{{1, 2}, {3, 4, 5}}, {{3, 4}, {5, 1, 2}}, {{4, 1}, {2, 3, 5}},
{{1, 5}, {2, 3, 4}}, and {{4, 5}, {1, 2, 3}}

and is easily seen to be non-circular (as the graph with vertex set X and edge set the collection
{{1, 2}, {1, 4}, {1, 5}, {3, 4}, {4, 5}} of 2-subsets of X contained in the 2-splits of S ′ is non-
circular) and therefore, as it contains all 1-splits, neither affine nor pseudo-affine — a fact
that, of course, also follows from the observation that S does not even satisfy the pairwise
separation property, thus also providing the counter-example referred to above, which shows
that the pairwise separation property is not necessary for a split system S of cardinality

( n
2

)
to

have determinant det(S) = 2(n−1)(n−2). Indeed, consider the two points 1, 3 and note that there is
no partition of {2, 4, 5} into two disjoint subsets A, B such that all the four splits {{1, 3}∪ A, B},
{{1} ∪ A, {3} ∪ B}, {{3} ∪ A, {1} ∪ B}, and {A, {1, 3} ∪ B} are contained in S ′ ∪ {{X,∅}} as
{A, B} = {{2, 4, 5},∅} does not work in view of {{1, 3}, {2, 4, 5}} (∈ S ′, and no choice {A, B}
with, say, #A = 1 and #B = 2 can work, as this would imply that

B ∈
( {2, 4, 5}

2

)
∩ {{1, 2}, {1, 4}, {1, 5}, {3, 4}, {4, 5}}

and, therefore, B = {4, 5} must hold, which is impossible in view of

{{2, 3}, {1, 4, 5}} (∈ S.

5.5. Enumerating split systems on five points

More generally, there are — up to relabelling — 53 split systems with a cardinality of ten on
a set of five points. They are not difficult to enumerate, since they correspond to the isomorphism
classes of subgraphs with exactly ten edges of the “very complete graph” with five vertices, i.e.
the graph with five vertices that contains exactly one edge or loop connecting any given vertex v
with any given vertex w (whether distinct from v or not) or, equivalently, the isomorphism classes
for simple graphs with six vertices, one of which is distinguished. We can further subdivide these
53 split systems by their determinant and number of 1-splits (see Table 1).

We see that affine split systems provided only a few of the systems with determinant
2(n−1)(n−2) = 4096. There are three affine split systems on five points (up to relabelling), with
three, four, or five trivial splits (1-splits). However there are thirty non-equivalent split systems
with ten splits on five points and determinant 2(n−1)(n−2) = 4096.

5.6. Split systems and least squares

Finally, recall that, given any D-independent split system S of cardinality, say, m and any map
D ∈ D(X |R), there exists a unique map DS ∈ 〈S〉R such that the Euclidian distance
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Table 1
The numbers of distinct split systems (up to re-labelling) with ten splits on five points, distinguished first by the number
of trivial splits (1-splits), then by the absolute value of the determinants of the matrices Bz

# 1-splits | det(Bz)| Number of classes

0 3 1

1 1 1
2 1

2 0 3
1 6
2 1

3 0 6
1 10
2 1
3 1

4 0 6
1 9
2 1

5 0 1
1 4

‖D, DS‖2 :=
√√√√

∑

{x,y}∈
(

X
2

)
(D(x, y) − DS (x, y))2

between D and DS minimizes the euclidian distance
∥∥D, D′∥∥

2 of D to all the maps D′ in the
linear subspace 〈S〉R and that

DS =
∑

S∈S
λ(D,S)(S) dS

holds for the unique map λ(D,S) ∈ RS for which
∑

S ′∈S
µ(S, S′)λ(D,S)(S′) = D(S) :=

∑

{x,y}∈
(

X
2

)
D(x, y)dS(x, y) =

∑

x∈A,y∈B

D(x, y)

holds for every slit S = {A, B} ∈ S, implying that DS can be computed quite easily from D and
the inverse A(S)−1 of the (non-singular!) matrix A(S) according to the formula

λ(D,S)(S) =
∑

S ′∈S
A(S)−1

S,S ′ D(S′).

This simple — and very “classical” — fact has been used (though, perhaps, employing
slightly different façon de parler in least squares methods for trees [3] and networks [2,11]).
It was actually this specific application of the matrix A(S) that prompted the investigations
communicated in the present note.
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