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Extending Tree Models to Split Networks
David Bryant

17.1 Introduction

In this chapter we take statistical models designed for trees and adapt them for
split networks, a more general class of mathematical structures. The models
we propose provide natural swing-bridges between trees, filling in gaps in the
probability simplex. There are many reasons why we might want to do this.
Firstly, the split networks provide a graphical representation of phylogenetic
uncertainty. Data that is close to tree-like produces a network that is close to a
tree, while noisy or badly modeled data produce complex networks. Secondly,
models that incorporate several trees open up possibilities for new tests to
assess the relative support for different trees, in both likelihood and Bayesian
frameworks. Thirdly, by searching through network space rather than tree
space we may well be able to avoid some of the combinatorial headaches that
make searching for trees so difficult.

17.2 Trees, splits and split networks

Splits are the foundation of phylogenetic combinatorics, and they will be the
building blocks of our general statistical model. Recall (from Chapter 2) that
a split S = {A,B} of a finite set X is an unordered partition of X into two
non-empty blocks. A phylogenetic tree for X is a pair T = (T, φ) such that
T is a tree with no vertices of degree two and φ is a bijection from X to the
leaves of T .

Removing an edge e from an X-tree divides the tree into two connected
components, thereby inducing a split of X that we say is the split associated
to e. We use splits(T ) to denote the sets associated to edges of T . The phylo-
genetic tree T can be reconstructed from the collection splits(T ). The Splits
Equivalence Theorem (Theorem 2.34) tells us that a collection S of splits is
contained in splits(T ) for some phylogenetic tree T if and only if the collection
is pairwise compatible, that is, for all pairs of splits {A,B}, {A′, B′} at least
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one of the intersections

A ∩ A′, A ∩ B′, B ∩ A′, B ∩ B′

is empty.
If we think of phylogenetic trees as collections of compatible splits then it

becomes easy to generalize trees: we simply consider collections of splits that
are not necessarily pairwise compatible. This is the approach taken by Split De-
composition [Bandelt and Dress, 1992], Median Networks [Bandelt et al., 1995],
SpectroNet [Huber et al., 2002], Neighbor-Net [Bryant and Moulton, 2004],
Consensus Networks [Holland et al., 2004] and Z-networks [Huson et al., 2004],
many of which are implemented in SplitsTree4 [Huson and Bryant, 2005]. The
usefulness of these methods is due to a particularly elegant graphical represen-
tation for general collections of splits: the splits network.

To define splits networks, we first need to discuss splits graphs. These graphs
have multiple characterizations. We will work with three of these here.

For a graph G let dG denote the (unweighted) shortest path metric. A
map ψ from a graph H to a graph G is an isometric embedding if dH(u, v) =
dG(ψ(u), ψ(v)) for all u, v ∈ V (H). A graph G is a partial cube if there exists an
isometric embedding from G to a hypercube. [Wetzel, 1995] called these graphs
splits graphs. This terminology has persisted in the phylogenetics community,
despite the potential for confusion with the graph-theoretic term ‘split graph’
(a special class of perfect graphs). Refer to [Imrich and Klavžar, 2000] for a
long list of characterizations for partial cubes.

[Wetzel, 1995] (see also [Dress and Huson, 2004]) characterized splits graphs
in terms of isometric colorings. Let κ be an edge coloring of the graph. For
each pair u, v ∈ V (G) let Cκ(u, v) denote the set of colors that appear on
every shortest path from u to v. We say that κ is an isometric coloring if
dG(u, v) = |Cκ(u, v)| for all pairs u, v ∈ V (G). In other words, κ is isometric
if the edges along any shortest path all have different colors, while any two
shortest paths between the same pair of vertices have the same set of edge
colors. A connected graph is a splits graph if and only if it has an isometric
coloring [Wetzel, 1995].

A third characterization of splits graphs is due to [Winkler, 1984]. We define
a relation Θ on pairs of edges e1 = {u1, v1} and e2 = {u2, v2} in a graph G by

e1Θe2 ⇔ dG(u1, u2) + dG(v1, v2) $= dG(u1, v2) + dG(v1, u2). (17.1)

This relation is an equivalence relation if and only if G is a splits graph.
Two edges e1 and e2 in a splits graph have the same color in an isometric

coloring if and only if the isometric embedding of the splits graph into the
hypercube maps e1 and e2 to parallel edges, if and only if e1Θe2. Thus, a
splits graph has, essentially, a unique isometric coloring and a unique isometric



Extending Tree Models to Split Networks 299

embedding into the hypercube. The partition of edges into color classes is
completely determined by the graph.

Suppose now that we have a splits graph G and a map φ : X → V (G).
Using the isometric embedding, one can quickly prove that removing all edges
in a particular color class partitions the graph into exactly two connected (and
convex) components. This in turn induces a split of X, via the map φ. A splits
network is a pair N = (G, φ) such that

(i) G is a splits graph.

(ii) Each color class induces a distinct split of X.

The set of splits induced by the different color classes is denoted splits(N ).
It is time for two examples. The split network on the left of Figure 17.1

corresponds to a collection of compatible splits - it is a tree. In this network,
every edge is in a distinct color class. If we add the split {{2, 6}, {1, 3, 4, 5}}
we obtain the split network on the right. There are four color classes in this
graph that contain more than a single edge. These are the three horizontal
pairs of parallel edges and the four edges marked in bold that induce the extra
split.

Fig. 17.1. Two splits networks. On the left, a split network for compatible splits (i.e.
a tree). On the right, the same network with the split {{2, 6}, {1, 3, 4, 5}} included.

It is important to realize that the split network for a collection of splits may
not be unique. Figure 17.2 reproduces an example in [Wetzel, 1995]. Both
graphs are split networks for the set

S =
{
{{1, 2, 3}, {4, 5, 6, 7}}, {{2, 3, 4}, {1, 5, 6, 7}},

{{1, 2, 7}, {3, 4, 5, 6}}, {{1, 2, 6, 7}, {3, 4, 5}}
}

.

Each is minimal, in the sense that no subgraph of either graph is also a splits
network for S. In both graphs, the edges in the color class inducing the split
{{1, 2, 3}, {4, 5, 6, 7}} are in bold. In this example the two minimal graphs are
isomorphic, but this is generally not the case.
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Fig. 17.2. Two different, and minimal, split networks for the same set of splits

17.3 Distance based models for trees and splits graphs

In molecular phylogenetics, the length of an edge in a tree is typically measured
in terms of the average (or expected) number of mutations that occurred, per
site, along that edge. The evolutionary distance between two sequences equals
the sum of the lengths of the edges along the unique path the connects them
in the unknown ‘true’ phylogeny. There is a host of methods for estimating
the evolutionary distance starting from the sequences alone. These form the
basis of distance based approaches to phylogenetics.

The oldest statistical methods for phylogenetics use models of how evo-
lutionary distances estimated from pairwise comparisons of sequences differ
from the true evolutionary distances (or phyletic distances) in the true, but
unknown, phylogenetic tree [Cavalli-Sforza and Edwards, 1967, Farris, 1972,
Bulmer, 1991]. It is assumed that the pairwise estimates are distributed,
at least approximately, according to a multi-variate normal density centered
on the true distances. The variance-covariance matrix for the density, here
denoted by V, can be estimated from the data [Bulmer, 1991, Susko, 2003],
though early papers used a diagonal matrix, or the identity, for V.

Once we have a variance-covariance matrix, and the observed distances, we
can begin maximum likelihood estimation of the true distances δT , from which
we can construct the maximum likelihood tree. Note that the term maximum
likelihood here refers only to our approximate distance based model, not to
the maximum likelihood estimation introduced by [Felsenstein, 1981]. Let n
be the number of leaves. The maximum likelihood estimator is the tree metric
δ̂T that maximizes the likelihood function

L(δ̂T ) = Φ(n
2)

(d − δT |V)

where Φm is the probability density function for the m dimensional multivariate
normal:

Φm(x|V) =
1

(2π)
m
2

√
det(V)

e−
1
2xT V−1x.
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Equivalently, we can minimize the least squares residue
∑

w<x

∑

y<z

(
δ̂T (w, x) − d(w, x)

)
V−1

(wx)(yz)

(
δ̂T (y, z) − d(y, z)

)
.

In either formulation, the optimization is carried out over all tree metrics in
TX , the space of X-trees (Chapter 2).

We can describe tree metrics in terms of linear combinations of split metrics.
The split metric for a split {A,B} is the pseudo-metric on X given by

δ{A,B}(x, y) =

{
0 if {x, y} ⊆ A or {x, y} ⊆ B;

1 otherwise.

Let w{A,B} denote the length of the edge associated to a split {A,B} ∈
splits(T ). Then

δT =
∑

{A,B}∈splits(T )

w{A,B}δ{A,B}. (17.2)

This formulation can be used to estimate edge lengths on a fixed topology.
Equation (17.2) generalizes immediately to split networks. Suppose that the

lengths of the edges in a split network N are given by the split weights w{A,B}.
Hence, all edges in the same color class have the same length. The distance
between two labeled vertices x, y is the length of the shortest path between
them, which in turn equals the sum of the weights of the splits separating x
and y. We can therefore define a network metric N by

δN =
∑

{A,B}∈splits(N )

w{A,B}δ{A,B}.

The statistical model for distances from splits networks then works exactly
as it did for phylogenetic trees. We assume that the observed distances d are
distributed according to a multi-variate normal centered on the network metric
δN . The covariance matrix can be estimated using the non-parametric method
of [Susko, 2003]. The likelihood of a network metric δ̂N is, as before, given by
L(δ̂N ) = Φ(n

2)
(d − dN |V).

We immediately encounter the problem of identifiability. Phylogenetic trees,
together with their edge lengths, are determined uniquely from their tree met-
rics. The same does not apply for network distances. The split metrics δ{A,B}

associated to splits of a network will not, in general, be linearly independent.
In practice, identifiability has not been too much of a problem. Split decom-

position produces weakly compatible collections of splits. These have linearly
independent split metrics and are uniquely determined from their network
metrics [Bandelt and Dress, 1992]. Neighbor-Net produces networks based on
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circular collections of splits which, as a subclass of weakly compatible splits,
are also uniquely determined from their network metrics.

However the most important shortcoming of distance based methods, for
either trees or networks, is that they lack the statistical efficiency of likelihood
methods based on full stochastic models (see, e.g. [Felsenstein, 2003]). When
we estimate distances from pairwise sequence comparisons we are effectively
ignoring the joint probabilities of larger sets of sequences. What we gain in
speed, we lose in accuracy.

17.4 A graphical model on a splits network?

The Markov model for trees outlined in Chapter 2 and Chapter 4 is just a
special case in a general class of graphical models. Given the vast literature
on graphical models, it seems that the logical generalization of the hidden tree
model would be a graphical model defined on the splits network. This was the
approach taken by [Strimmer and Moulton, 2000, Strimmer et al., 2001].

Let N be a splits network. The first step is to choose a root and direct all
edges away from the root (Figure 17.3). We now can apply a directed graphical
model. The probability that a node is assigned a particular state depends on
the states assigned to its parents: Strimmer and Moulton suggest several ways
that this may be done.

Fig. 17.3. Edge directions induced by placing the root at the white vertex.

There are significant problems with this general approach. Firstly, the prob-
ability of observing the data changes for different positions of the root, even
when the mutation process is a time reversible model. It was claimed that this
permitted estimation of the root, but there is no indication that the differences
in distributions corresponded to any evolutionary phenomenon.

Secondly, different split networks for the same set of splits give different
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pattern probabilities, even though the networks represent exactly the same
information.

Thirdly, the internal nodes in split networks do not represent hypothetical
ancestors. They are products of an embedding in a hypercube.

Strimmer et al. eventually concluded that split networks may not provide
a suitable underlying graph for a stochastic network [Strimmer et al., 2001].
It is true that graphical model technology can not be applied ‘straight-off-
the-shelf’ to split networks. We need to be more sensitive to the particular
properties of split networks. In the following section we will develop a model
for split networks that avoids the problems encountered in this graphical model
approach. The downside, however, is that we must first restrict ourselves to a
special class of mutation models: group based models.

17.5 Group based mutation models

A mutation model on state space {1, 2, . . . , r} is said to be a group based model
if there exists an Abelian group G with elements g1, . . . , gr and a function
ψ : G → R such that the instantaneous rate matrix Q satisfies

Qij = ψ(gj − gi)

for all i, j. The group operation on G is denoted using addition and we will
use 0 for the identity element.

Let f be a homomorphism from G to the multiplicative group if complex
numbers with modulus one. Thus f(g + g′) = f(g)f(g′) for all g, g′ ∈ G. The
set of these homomorphisms forms a group Ĝ that is isomorphic to G. We
label the elements of Ĝ so that the map g (→ ĝ taking g ∈ G to ĝ ∈ Ĝ is an
isomorphism. If g = 0 then ĝ is the function taking every element of G to 1.
As usual, the conjugate of a complex number x is written x.

Lemma 17.1 Suppose that g, h, h′ ∈ G, a ∈ Z. Then we have the following
identities:

ĝ(−h) = ĝ(h);

ĝ(h + h′) = ĝ(h)ĝ(h′);

̂(h + h′)(g) = ĥ(g)ĥ′(g);

âg(h) = ĝ(ah);

as well as the orthogonality property

∑

h∈G

ĝ(h) =

{
|G| if g = h;

0 otherwise.
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Proof See, for example, [Körner, 1989].

Some indexing conventions will make our life easier. Since the elements of
G are in one to one correspondence with {1, 2, . . . , r} we will index Q and P (t)
by group elements. So Qgigj is equivalent to Qij.

We start with some basic observations about group based models.

Lemma 17.2 (i) The eigenvalues of Q are given by

λg =
∑

h∈G

ĝ(h)ψ(h).

(ii) The transition probabilities are given by

Pgg′(t) =
1

r

∑

h∈G

ĥ(g′ − g)eλht.

(iii) The uniform distribution is a stationary distribution.
(iv) If the process is ergodic and time reversible then ψ(g) = ψ(−g) for all

g ∈ G.

Proof Define the r × r matrix K by Kij = ĝi(gj). Then

(KQ)gg′ =
∑

h∈G

ĝ(h)ψ(g′ − h)

=
∑

h∈G

ĝ(g′ − h)ψ(h) [replacing h by g′ − h]

= ĝ(g′)
∑

h∈G

ĝ(h)ψ(h)

= Kgg′λg.

Thus the rows of K are left-eigenvectors for Q. This proves (i). Let Λ be the
diagonal matrix with Λgg = λg. Then Q = K−1ΛK. By the orthogonality
property in Lemma 17.1 we have K−1 = 1

|G|K
∗. Thus

Pgg′(t) = (eQt)gg′

=
1

|G|
(K∗eΛtK)gg′

=
1

r

∑

h∈G

ĥ(g)eλhtĥ(g′)

=
1

r

∑

h∈G

ĥ(g′ − g)eλht

proving (ii). For (iii), observe that the first row of K gives a left-eigenvector
that is all ones. Finally, if the process is ergodic then the uniform distribution
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is the unique stationary distribution. This, together with the assumption that
the process is time reversible, implies that both Q and P (t) are symmetric and
that ψ(g) = ψ(−g) for all g.

As an example, consider the case when r = 4. There are two (up to isomor-
phism) Abelian groups on four elements, Z4 and Z2 × Z2. If G = Z4 then the
condition that ψ(g) = ψ(−g) implies that Q must have the form

Q =






−2a − b a b a
a −2a − b a b
b a −2a − b a
a b a −2a − b






which is Kimura’s two parameter (K2P) model (Chapter 4). If G = Z2 × Z2

then we always have g = −g so there are three parameters available for Q:

Q =






−a − b − c a b c
a −a − b − c c b
b c −a − b − c a
c b a −a − b − c




 .

In this case we obtain Kimura’s three parameter model (K3P) [Kimura, 1981].

17.6 Group based models for trees and splits

Suppose that we have an ergodic, time reversible, group based mutation model
with state set Σ = {1, 2, . . . , r} and Abelian group G, |G| = r, where Qij =
ψ(gj − gi) for all i, j. Let P (t) = eQt denote the corresponding transition
probabilities. Let T = (T, φ) be a phylogenetic tree with n leaves. We use
te = tkl to denote the length of an edge e = kl ∈ E(T ). In terms of the tree
model of Chapter 2, θkl = P (tkl) for all kl ∈ E(T ).

We define

ρt(g) =
1

r

∑

h∈G

ĥ(g)eλht

so that by Lemma 17.2, Pgg′(t) = ρt(g′ − g) for all g, g′ ∈ G and t ≥ 0.

Lemma 17.3 Let σ be a map from V (T ) to Σ. For each edge e = kl define
xe = gσl − gσk . Then

pσ =
1

r

∏

e∈E(T )

ρte(xe).
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Proof By Lemma 17.2 the mutation model has a uniform stationary distribu-
tion. We can therefore apply (1.53), giving

pσ =
1

|Σ|
∏

kl∈E(T )

θkl
σkσl

=
1

r

∏

kl∈E(T )

ρtkl(gσl − gσk)

=
1

r

∏

e∈E(T )

ρte(xe).

Let χ be a map from the leaves of T to Σ. We say that σ : V (T ) → Σ extends
χ if σi = χi for all leaves i. Under the hidden tree model the probability of
observing χ is defined

pχ =
∑

σ:σ extends χ

pσ.

Suppose that E(T ) = {e1, e2, . . . , eq}, let {Ak, Bk} be the split associated to
edge k and let A be the (n − 1) × q matrix defined by

Aik =

{
1 i and n are on opposite sides of {Ak, Bk}
0 otherwise.

(17.3)

The next observation is crucial, since it allow use to re-express the likelihood
in a form that extends immediately to arbitrary collections of splits.

Theorem 17.4 Define the vector y = y[χ] ∈ Gn−1 by yi = gχn − gχi. Let σ
be a map from V (T ) to Σ. For each edge e = kl define xe = gσl − gσk . Then
σ extends χ if and only if Ax = y. Furthermore, the probability of observing
χ is given by

pχ =
∑

x∈Gq :Ax=y

∏

e∈E(T )

ρte(xe). (17.4)

Proof We prove that Ax = y if and only if σ extends χ. The second claim
then follows from Lemma 17.3.

For each leaf i, let Ei be the edges on the path from leaf n to leaf i. We will
assume that T is rooted at leaf n, so all edges in Ei are directed away from n.
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Then

(Ax)i =
∑

kl∈Ei

xkl

=
∑

kl∈Ei

(gσl − gσk)

= gσn − gσi .

Thus Ax = y if and only if gσi = gχi for all leaves i, if and only if σi = χi for
all leaves i, if and only if σ extends χ.

The importance of Theorem 17.4 so far as we are concerned is that pχ is not
expressed in terms of the tree structure: it is defined in terms of splits. We
can therefore generalize the definition of pattern probabilities to any collection
of splits.

Let N be a weighted split network with splits {A1, B1}, {A2, B2}, . . . , {Aq, Bq}
and let tk be the length assigned to split {Ak, Bk}. Let A be the matrix de-
fined by (17.6). The probability of a phylogenetic character χ given N is then
defined by

pχ =
∑

x∈Gq :Ax=y

q∏

k=1

ρtk(xk). (17.5)

The uncanny similarity between (17.4) and (17.5) now gives

Theorem 17.5 Let N be a weighted split network. If the splits of N are
compatible then the character probabilities correspond to exactly those given by
the tree based model.

We can rephrase this model in terms of graphical models on the splits net-
work. We say that a map σ : V (N ) → Σ is concordant if σl − σk = σj − σi

for all pairs of edges ij, kl ∈ E(N ) in the same color class. The probability of
a map σ is just the product of Pσkσl(tkl) over all edges kl ∈ E(T ), where tkl

is the length of the edge. We then have that pχ equals the probability that a
map σ extends χ, conditional on σ being concordant.

17.7 A Fourier calculus for split networks

[Székely et al., 1993] describe a Fourier calculus on evolutionary trees that gen-
eralizes the Hadamard transform of [Hendy and Penny, 1989, Steel et al., 1992].
Using their approach, we can take the observed character frequencies, apply
a transformation, and obtain a vector of values from which we can read off
the support for different splits. They show that if the observed character fre-
quencies correspond exactly to the character probabilities determined by some
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phylogenetic tree then the split supports will correspond exactly to the splits
and branch lengths in the phylogenetic tree. Conversely, the inverse transfor-
mation gives a single formula for the character probabilities in any tree.

This theory generalizes seamlessly from trees to split networks—in fact so
seamlessly that the proofs of [Székely et al., 1993] require almost no modifi-
cations to establish the general case. Their approach was prove that their
transform worked when applied to character probabilities from a tree. The
correctness of the inverse formula then followed by applying a Fourier trans-
formation. In this section, we will prove the same results but working in the
opposite direction. We show that, starting with weights on the splits, a single
invertible formula gives the character probabilities. Our motivation is that,
at some point in the future, we will need to generalize these results beyond
Abelian group based models, and the elegant Fourier inversion formula may
not exist in this context.

For x, y ∈ Gm we define

ŷ(x) =
m∏

i=1

ŷi(xi).

The set {ŷ : y ∈ Gm} forms a group under multiplication that is isomorphic
to Gm.

Lemma 17.6 Suppose that z ∈ Gq and y ∈ Gn−1. Let A be an (n − 1) × q
integer matrix. Either

∑

x∈Gq:Ax=y

ẑ(x) = 0

or there is u ∈ Gn−1 such that z = AT u and so
∑

x∈Gq:Ax=y

ẑ(x) = rq−(n−1)ẑ(u)

Proof Suppose that
∑

x∈Gq:Ax=y ẑ(x) $= 0. For any v such that Av = 0 we
have

∑

x∈Gq:Ax=y

ẑ(x) =
∑

x∈Gq:Ax=y

ẑ(x + v) = ẑ(v)
∑

x∈Gq :Ax=y

ẑ(x)

so ẑ(v) = 1.
For every x, y ∈ Gn−1 we have

Ax = Ay ⇔ A(x − y) = 0 ⇔ ẑ(x − y) = 1 ⇔ ẑ(x) = ẑ(y).

Define H = {Ax : x ∈ Gq}, so that H forms a normal subgroup of Gn−1.
Define the map f : H → C by setting f(Ax) = ẑ(x) for all x ∈ Gq. This is a
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homomorphism from H to the unit circle, since f(Ax + Ay) = f(A(x + y)) =
ẑ(x + y) = ẑ(x)ẑ(y) = f(Ax)f(Ay). By Lemma 104.3 of [Körner, 1989] we
can extend f to the rest of G. Thus there is u such that f = û and, for all
x ∈ Gq, ẑ(x) = û(Ax). The result now follows by expanding û(Ax).

We now arrive at our main theorem. It provides the formula linking weights
on splits to pattern probabilities, for trees and split networks.

Theorem 17.7 Let S be a collection of splits, |S| = q and let A be the (n −
1) × q matrix defined by

Aik =

{
1 i and n are on opposite sides of {Ak, Bk}
0 otherwise.

(17.6)

Let b be the real valued vector with entries indexed by Gn−1 so that for all
z ∈ Gn−1,

bz =






ψ(h)tk if there is h ∈ G and k such that zi = hAik for all i

−
∑

v∈Gn−1−{0} bv if z = 0

0 otherwise.

Let H be the matrix with rows and columns indexed by Gn−1 and Hgg′ = ĝ(g).
Given any map χ from the leaves to the set of states {1, 2, . . . , r} define

y ∈ Gn−1 by yi = gχn − gχi for all leaves i = 1, . . . , n− 1. Then the probability
of χ is given by

pχ =
[
H−1 exp[Hb]

]
y
. (17.7)

Proof From (17.5) we have

pχ =
∑

x:Ax=y
x∈Gq

q∏

k=1

ρtk(xk)

=
∑

x:Ax=y
x∈Gq

q∏

k=1

1

r

∑

h∈G

ĥ(xk)e
λhtk

=
1

rq

∑

x:Ax=y
x∈Gq

∑

z∈Gq

q∏

k=1

ẑk(xk)e
λzk tk

=
1

rq

∑

z∈Gq






∑

x:Ax=y
x∈Gq

ẑ(x)




 exp

[
q∑

k=1

λzktk

]

.
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So far we have just applied the definitions, reversed a summation and product,
and regrouped. From Lemma 17.6 we have that

∑
x∈Gq:Ax=y ẑ(x) equals zero

unless z = −AT u for some u ∈ Gn−1. We therefore ignore all z for which this
does not hold. Substituting in and using −̂u = û we obtain

pχ =
1

rn−1

∑

u∈Gn−1

û(y)eβu

=
[
H−1 exp[β]

]

y

where

βu =
q∑

k=1

λ(AT u)k
tk

=
q∑

k=1

∑

h∈G

ÂT uk(h)ψ(h)tk

=
q∑

k=1

∑

h∈G

û(ηkh)ψ(h)tk

=
∑

v∈Gn−1

û(v)bv

= Hb.

We have proven, more or less, Theorem 6 of [Székely et al., 1993] without
any reference to trees. In the special case that r = 2, (17.7) becomes the
classical Hadamard transform of [Hendy and Penny, 1989, Steel et al., 1992].
This is comforting: [Felsenstein, 2003] describes the Hadamard type approach
as “one of the nicest applications of mathematics to phylogenies so far.”

Note that the formula H−1 exp[Hb] is invertible. This means that every
split network gives a different character distribution. We cannot recover split
networks from their distance metrics dN but we can recover them from their
character probabilities. A maximum likelihood estimator based on (17.7) will
be statistically consistent.

One key problem remains. The constraint that we only use group based
mutation models is too much of a restriction. For nucleotide data, and es-
pecially for protein data, a uniform stationary distribution is unrealistic. It
is reasonable to believe that some reasonable generalization of these results
exists for more general mutation models: after all there is no such restriction
on distance based methods. What exact form these generalizations will take
is, at the moment, anybody’s guess.
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