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Abstract

The Neighbor-Joining (NJ) method of Saitou and Nei is the most widely used
distance based method in phylogenetic analysis. Central to the method is the selection
criterion, the formula used to choose which pair of objects to amalgamate next. Here
we analyze the NJ selection criterion using an axiomatic approach. We show that any
selection criterion that is linear, permutation equivariant, statistically consistent and
based solely on distance data will give the same trees as those created by NJ.

1 Introduction

The Neighbor-joining (NJ) method of Saitou and Nei (1987) is a phylogenetics classic. It is,
arguably, still the most widely used distance based phylogenetic method. Saitou and Nei’s
original article has been cited at least 10,000 times1, and continues to be cited extensively,
a full 15 years after it first appeared. Numerous simulation studies have established the
effectiveness of NJ as a statistical estimator (Nei, 1991; Charleston et al., 1994; Kuhner and
Felsenstein, 1994).

NJ is an agglomerative method, putting it in the same class of tree construction and
clustering methods as the single linkage method (Gower and Ross, 1969), UPGMA (Sokal
and Michener, 1958), and AddTree (Sattath and Tversky, 1977), to name a few. Initially,
each element is placed in a separate cluster. Two clusters or nodes are selected. These are
combined into one cluster, the dissimilarity matrix is reduced, and the method proceeds
recursively. Within this agglomerative framework, NJ is defined by three components: the
criterion used to select pairs of nodes; the formulae used to reduce the dissimilarity matrix;
and the branch length estimation formulae. These components are discussed formally in
Section 2.2.

Of all the components of the NJ algorithm, the least intuitive is the selection criterion.
The original paper of Saitou and Nei (1987) motivates the selection criterion indirectly, using

1Science Citation Index: http://www.isinet.com/products/citation/sci/
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the principle of minimum evolution. Each pair x, y of objects or nodes is assigned a score as
follows:

• First, branch lengths are estimated for the tree in Figure 1 using ordinary least squares,
so that the sum of squared differences between the input distances and the induced
path length distances in the tree is minimized (following Cavalli-Sforza and Edwards
(1967)).

• Second, the sum of these branch lengths is determined and used as a score for x, y.

The pair x, y giving the minimum score is selected for amalgamation. Saitou and Nei (1987)
provide a direct formula for computing this score. Studier and Keppler (1988) derived the
simpler but equivalent formula

δ(x, y)− 1

(n− 2)

∑
z

δ(x, z)− 1

(n− 2)

∑
z

δ(y, z)

that is in use today. Here δ(x, y) is the input distance between x, y and n is the number of
objects (taxa). The equivalence between the formula of Saitou and Nei and the formula of
Studier and Keppler was first proven formally by Gascuel (1994).

The problem with Saitou and Nei’s formulation of the selection criterion is that it is not
immediately apparent why this selection criterion would be effective. Indeed it was many
years before a correct consistency result was finally published (see Atteson (1999) and the
discussion in Gascuel (1997b)). While the minimum evolution is a consistent criterion for
selecting trees (Rzhetsky and Nei, 1993), the tree in Figure 1 will, in general, be different
from the true tree. The formula itself does not help much. As noted by Felsenstein (2003)
the coefficient 1

n−2
looks (at first glance) like a mistake that should be replaced by 1

n−1
in

order to give a correct average. The fact that this replacement gives an inconsistent criterion
is a direct consequence of our main result.

x

y

e

Figure 1: Tree used to evaluate the NJ selection criterion for combining x and y. Vach and Degens
Vach and Degens (1991) observed that the minimizing NJ criterion is equivalent to maximizing the
length of the branch e.
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A small number of authors have proposed theoretical justifications for the NJ selection
formula. Vach and Degens (1991) observed that the criterion can also be interpreted as
a branch length estimate in this incorrect tree (see Figure 1). Charleston et al. (1993)
demonstrated that the NJ criterion was unique in a parameterized family of net divergence
builders (see Section 3). Atteson (1999) made a significant advance by showing that NJ
will correctly construct trees when the observed distances are ‘sufficiently close’ to the true
distances. Gascuel (1997b), following Mirkin (1996), suggested that the NJ criterion can be
considered an estimator of the a-centrality of a pair of taxa, though this explanation would
be more satisfying if the a-centrality definition didn’t have to be tweaked in order to equal
the NJ criterion. In any case, it is not clear why an estimator of these variables would
provide an effective criterion for selecting pairs to agglomerate.

Swofford et al. (1996) take a different angle, and describe the NJ criterion as a rate-
corrected distance. Unfortunately, the criterion will also correct ultra-metric distances, for
which no rate correction is necessary.

The two other components of the NJ method, the reduction formula and the branch
length formula, are far better understood. For both of these formulae it is clear what is
being estimated. An extensive investigation of the statistical properties of the reduction and
branch length estimation formulae appeared in a series of papers by Gascuel (1997a,b, 2000).
Gascuel described the family of possible linear reduction formulae, showed that the formula
used in NJ was optimal in this family when variances are unknown, and proposed new reduc-
tion formulae that incorporated variance information. Experimental studies suggested that
the resulting method (BioNJ) recovers the model tree more often than NJ, under standard
models of character evolution (Gascuel, 1997a).

In this paper we continue along lines similar to Gascuel, except that we focus exclusively
on the selection criterion. We run immediately into a problem: if we are to justify the choice
of selection formula statistically we need to know what is being estimated. This is unclear,
so we attack the problem sideways. We show, under appropriate assumptions, that whatever
we estimate we will always end up with a criterion equivalent to that used in NJ. Saitou and
Nei did not happen to pick one particularly effective criterion out of many—they chose the
only criterion possible. Put another way, the NJ selection criterion is the best in a class of
one.

Of course, this result is only as significant as our assumptions are reasonable. These are:

• the selection criterion is linear, and is a deterministic function only of the distances;

• there is no a priori significance given to any taxa (or objects under study), so varying
the input order does not affect the relative ordering of pairs;

• the criterion is consistent: given tree-like data the criterion will pick a pair of neigh-
boring taxa.
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These assumptions are formalized in Section 3. Any selection criterion must either violate
one of these assumptions or be equivalent to NJ. We discuss a few of these alternative criteria
in Section 4.

Note that we have assumed that the selection criterion uses only the distance data. If we
drop this assumption then the NJ selection criterion will be far from unique. Future methods
(and some existing methods, see Section 4) could and should utilize far more information
when selecting pairs. What we demonstrate here is that this extra information needs to be
incorporated if we are to progress beyond the NJ method, at least when it comes to selecting
pairs to amalgamate.

The outline of this paper is as follows. In Section 2 we present definitions and notation,
provide a formal description of the NJ method as well as a new, simple, proof of consistency.
Our main result appears in Section 3, where we present several properties satisfied by the NJ
selection criterion then prove that these properties characterize the criterion. We conclude
with a brief discussion of criteria used in alternative methods.

2 Definitions and notation

For the most part, we adopt the notation of Semple and Steel (2003).

2.1 X-trees and dissimilarities

In phylogenetics, the objects, species, or sequences under study are called taxa (sing. taxon),
which is an abbreviation for operational taxonomic units (OTUs). Let X be a finite set of
taxa. A phylogenetic X-tree is a pair T = (T, φ) where T = (V (T ), E(T )) is a tree without
vertices of degree two and φ : X → V is bijection from X to the leaves of T . Two taxa x, y
in a phylogenetic X-tree are neighboring if the path from φ(x) to φ(y) contains at most one
internal vertex.

A map δ : X × X → R is called a dissimilarity map if it satisfies δ(x, x) = 0 and
δ(x, y) = δ(y, x) for all x, y ∈ X.

Let w : E(T ) → R be an assignment of a real-valued lengths to each edge of T . We
will assume that all weights are non-zero, as zero weight edges can be contracted. Edge
weights induce a dissimilarity measure on X, denoted d(T ,w), where for each x, y ∈ X, we
define d(T ,w)(x, y) as the sum of the weights on the unique path between φ(x) and φ(y). If
the weights are all positive then the resulting dissimilarity map is an additive distance2. A
method for constructing trees from dissimilarity functions is said to be consistent if it returns
T (and w) when applied to the additive distance d(T ,w) corresponding to a weighted X-tree.

2Our use of the term additivity differs from that in measure theory
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2.2 The Neighbor-joining method

Let δ be a dissimilarity map on X. For each x ∈ X we define

rδ(x) =
∑
y∈X

δ(x, y). (1)

The Q-criterion for δ is the function Qδ : X ×X → R given by

Qδ(x, y) = δ(x, y)− 1

(n− 2)
(rδ(x) + rδ(y)), (2)

where n = |X|. This formula was proposed by Studier and Keppler (1988) and is equivalent
to the minimum evolution based criterion of Saitou and Nei (1987).

The Neighbor-joining algorithm is recursive. If |X| = 3, say X = {x1, x2, x3}, then we
return the X-tree with three leaves x1, x2, x3 joined to a central vertex and weights as given
in Figure 2.

x1 x2

x3

(d(x1,x2) + d(x2,x3) - d(x1,x3))/2

(d(x1,x3) + d(x2,x3) - d(x1,x2))/2

(d(x1,x2) + d(x1,x3) - d(x2,x3))/2

Figure 2: Tree constructed for three taxa

If |X| > 3 then we choose the pair x, y ∈ X that minimizes Qδ(x, y). We create a new
element vxy and set X ′ = (X − {x, y}) ∪ {vxy}. We construct a new dissimilarity δ′ on X ′

by setting δ′(u, v) = δ(u, v) and

δ′(u, vxy) = 1
2
(δ(u, x) + δ(u, y)− δ(x, y))

for all u, v ∈ X ′ − {vxy}. This is called the reduction step.
We now have a dissimilarity map on a smaller set. Applying the algorithm recursively

we obtain a phylogenetic X ′-tree T ′ with edge weights. We attach vertices labeled x and y
adjacent to vxy to obtain an X-tree. The edge incident with x is assigned weight

bx =
1

n− 2

∑
z 6=x,y

(δ(x, z) + δ(x, y)− δ(y, z)) (3)
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and the edge adjacent to y is assigned weight

by =
1

n− 2

∑
z 6=x,y

(δ(y, z) + δ(x, y)− δ(x, z)) (4)

where n = |X|.
We make two preliminary observations. First, the algorithm can be easily implemented

to run in O(n3) time. Second, it is not clear what to do when there are two pairs x, y
and x′, y′ that both minimize Qδ(x, y). In practice, the dissimilarity maps used are derived
from discrete data, so these ties can and do arise. Ties are usually broken at random, with
multiple runs used to assess the consequences of different choices.

2.3 Consistency of the NJ criterion

For NJ to be consistent, the selection criterion Qδ must select neighboring taxa in T when
applied to an additive distance d(T ,w). Several proofs of consistency, with varying degrees of
accuracy, have been proposed—see the discussion in Gascuel (1997b). Here we give a new,
and particularly simple, proof.

Let d = d(T ,w) be the additive distance corresponding to a phylogenetic X-tree T with
positive weights w. We can extend d to all the vertices of T by letting the distance between
any two vertices equal the sum of weights on the path connecting them. Likewise, for each
vertex v we let rd(v) denote the sum

rd(v) =
∑
x∈X

d(v, x),

thereby extending (1) to all the vertices of T .

Theorem 1 If d = d(T ,w) and x, y minimize Qd(x, y) then x and y are neighboring taxa in
T .

Proof
First observe that for each x ∈ X, if we add a constant amount Kx to each distance d(x, z)
then the only affect on Q is that 2Kx

n−2
is subtracted from the value of Qd(u, v) for all u, v ∈ X.

This does not change the relative ordering of pairs with respect to Q. Consequently, we can
assume that every external edge in T has weight zero.

For each non-zero weight edge e = {u, v} we have that rd(u) > rd(v) exactly when there
are more taxa closer to v than u. Thus the maximum of r(v) over all vertices is obtained for
some vertex v∗ adjacent to exactly one internal edge. Clearly rd(x) = rd(v

∗) for all leaves x
adjacent to v∗, as all external edges have zero weight.

Suppose that x and y are not neighbors. Let z, z′ be any two taxa adjacent to v∗. Since
there is an internal edge separating x and y but none separating z, z′ we have

d(x, y) > 0 = d(z, z′).
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As well, by the choice of v∗ we have rd(x) ≤ rd(v
∗) = rd(z) and rd(y) ≤ rd(v

∗) = rd(z
′).

Hence Qd(x, y) > Qd(z, z
′) and x, y do not minimize the Qd criterion. �

3 Uniqueness of the Q criterion

Gascuel (1997a,b, 2000) showed that there exists a family of admissible reduction formulae
that can replace (3) and (4). This study led to two new versions of NJ. The first, UNJ,
incorporates cluster sizes in order to make branch length estimates identical to those given
by ordinary least squares. The second, BioNJ, incorporates variances and covariances into
the reduction step. Simulation experiments indicate that this second modification improves
the accuracy of tree estimation from sequence data (Gascuel, 1997a).

However, no such investigation was made into the space of admissible selection criteria.
NJ, BioNJ and UNJ all use the Q criterion. Earlier work of Charleston et al. (1993) indicates
that there may not be appropriate alternatives. They showed that the Q criterion is the
only consistent formula in the family of net divergence builders

δ(x, y)− ω(rδ(x) + rδ(y)) ω ∈ R.

Our results strengthen this observation. We show that the Q criterion is unique among
all linear selection criteria, subject to conditions on consistency and independence of input
order. We now formalize the list of proposed conditions that a distance based selection
criterion should satisfy.

(Q1) Q is consistent. If δ = d(T ,w) for some positively edge-weighted X-tree T and x, y
minimize Qδ(x, y) then x and y are neighboring in T .

(Q2) Q is permutation equivariant. For any permutation σ of X we have Qσ(δ)(x, y) =
Qδ(σ(x), σ(y)) for all x, y ∈ X. Here σ(δ) is the dissimilarity defined by σ(δ)(x, y) =
δ(σ(x), σ(y)) for all x, y ∈ X.

(Q3) Q is linear and continuous in δ. Given any two dissimilarities δ and δ′ and constants
λ, λ′ we have

Q(λδ+λ′δ′)(x, y) = λQδ(x, y) + λ′Qδ′(x, y)

Condition (Q1) would need to be satisfied by any alternative to the Q criterion. Condition
(Q2) ensures that the order in which the data are input does not affect the ranking of pairs
- in phylogenetics, the order of sequences should be irrelevant to tree reconstruction (see
Moulton and Steel (1999)). Note that, because of the way ties are broken, the same does not
apply for the NJ method as a whole. The final condition (Q3) is quite restrictive, but given
the centrality of linear estimators in statistics, characterizing the space of linear selection
criterion is a natural starting point. Later (Section 4) we will discuss selection criteria based
on non-linear functions.

The main result for this section is then
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Theorem 2 Let Q̂δ : X×X → R be any function that satisfies (Q1), (Q2), and (Q3). Then
Q̂δ and Qδ order pairs of taxa in the same way. Hence a pair x, y ∈ X minimizes Q̂δ(x, y)
if and only if it minimizes Qδ(x, y).

The theorem is proved in several steps. By (Q3) we can find coefficients λxy;wz such that

Q̂δ(x, y) =
n∑

w=1

n∑
z=w+1

λxy;wzδ(w, z)

for all δ ≥ 0, where n = |X| and the coefficients λxy;wz are functions of n. Next we will use

(Q2) to re-express Q̂δ(x, y) as a linear combination involving only three different coefficients.
Finally, we will use (Q1) to show that Q̂δ is equivalent to a net divergence builder, allowing
us to apply Lemma 1 of (Charleston et al., 1993) to finish the proof.

Claim 1 There exist coefficients α, β and γ such that for all x, y ∈ X,

Q̂δ(x, y) = αδ(x, y) + β

(∑
z 6=x

δ(x, z) +
∑
z 6=y

δ(y, z)

)
+ γ

(∑
w,z

δ(w, z)

)
(5)

The coefficients α, β, γ are all functions of n.

For any u, v, let euv denote the dissimilarity map for which euv(u, v) = 1 and all other
values are zero. We repeatedly apply two observations. First, for any u, v ∈ X we have
Q̂euv(x, y) = λxy;uv. Second, if σ is any permutation on X with s = σ(u) and t = σ(v) then
σ−1(euv) = est.

Let {w, x, y, z} and {i, j, k, l} be subsets of X, each containing four distinct elements.
Let σ be any permutation on X taking w, x, y, z to i, j, k, l respectively. From (Q2) we have
Q̂δ(u, v) = Q̂σ−1(δ)(σ(u), σ(v)), giving

λwx;yz = Q̂eyz(w, x) = Q̂ekl
(i, j) = λij;kl

λwz;yz = Q̂eyz(w, z) = Q̂ekl
(i, l) = λil;kl

λyz;yz = Q̂eyz(y, z) = Q̂ekl
(k, l) = λkl;kl.

Thus all coefficients indexed by four distinct elements are equal, as are all coefficients indexed
by three or two distinct elements. Let λ2, λ3 and λ4 be the common values for coefficients
with two, three, and four distinct indices. Set α = λ2 − 2λ3 + λ4, β = λ3 − λ4 and γ = λ4,
giving (5). ◦

Let S(δ) denote the sum

S(δ) = γ
∑
u<v

δ(u, v).

Since rδ(x) =
∑

y δ(x, y) we can rewrite (5) as

Q̂δ(x, y) = αδ(x, y) + β(rδ(x) + rδ(y)) + S(δ). (6)
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Claim 2 The coefficient α in (6) is positive.

Let T be the tree (i) in Figure 3 if n = |X| is even and tree (ii) if n is odd. Assign all
edges (branches) weight one, and let d be the resulting additive distance on X.

a1

a'1

a'2
a'3

a'4

a'm

am

a2
a3

a4
a1

a'1

a'2
a'3

a'4

a'm

am

a2
a3

a4

am+1

(i) (ii)

Figure 3: Two trees used to prove Claim 2. Let m = bn/2c. All edges have length 1.

First note that there is some constant K such that rd(ai) = rd(a
′
i) = K for all i =

1, 2, . . . ,m. For each i 6= j we have

Q̂d(ai, a
′
i) = Q̂d(aj, a

′
j) = α · 2 + β · 2K + S(d)

while
Q̂d(ai, aj) = Q̂d(ai, a

′
j) = Q̂d(a

′
i, aj) = Q̂d(a

′
i, a

′
j) = α · 4 + β · 2K + S(d).

For Q̂ to satisfy (Q1) we must have Q̂d(ai, a
′
i) < Q̂d(ai, aj), giving α > 0. ◦

Rearranging (6) we see that

1

α
(Q̂δ(x, y)− S(d)) = δ(x, y) +

β

α
(rδ(x) + rδ(y))

is a net divergence builder (see Charleston et al. (1993)) with ω = β
α
. Since α is positive and

S(d) does not depend on x, y we have that (Q̂δ − S(d)) puts pairs in the same order as Q̂δ

and therefore also satisfies (Q2). Lemma 1 of Charleston et al. (1993) states that that the
only value of ω for which

δ(x, y) + ω(rδ(x) + rδ(y))

gives a consistent selection criterion is ω = 1
n−2

. Hence α
β

= 1
n−2

, giving (Q̂δ − S(d)) = Qδ

and
Q̂δ(x, y) = αQδ(x, y) + S(d)

for all x, y. As α > 0 and S(d) is independent of x, y, Q̂ ranks pairs in the same order as Qd. �

The proof of Theorem 2 provides the following result.
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Corollary 1 Let Q̂δ : X × X → R be any function that satisfies (Q1), (Q2), and (Q3).
Then there are α > 0 and β, dependent only on n, such that

Q̂δ(x, y) = αQδ(x, y) + β (7)

for all x, y ∈ X.

4 Discussion

We have shown that under the appropriate, perhaps restrictive, assumptions, the selection
criterion used in NJ, UNJ and BioNJ is unique. Consequently, agglomerative method differ-
ing from NJ in the selection step must violate one of the properties (Q1)—(Q3). We discuss
here three well known methods, each of which satisfy two out of the three conditions. The
discussion also provides a demonstration that the conditions (Q1)—(Q3) are independent:
no two conditions imply the third.

The first method, UPGMA (Sokal and Michener, 1958), (or any of the linkage tree meth-
ods for that matter) chooses a pair of taxa x, y for which δ(x, y) is minimized. This criterion
satisfies (Q2) and (Q3), but not (Q1), since UPGMA is not always consistent on addi-
tive dissimilarities that are not ultrametric (see, for example, the discussion in Felsenstein
(2003)).

The lack of consistency in UPGMA can be corrected by applying an appropriate transfor-
mation to the dissimilarity map, such as that introduced by Farris et al. (1970). An outgroup
taxon v0 is fixed a priori. The selection process is then equivalent to choosing a pair x, y
that minimizes

δ(x, y)− δ(v0, x)− δ(v0, y).

This criterion satisfies (Q1) and (Q3), but not (Q2) since v0 was fixed beforehand. The
criterion therefore gives greater significance to the dissimilarities involving v0, which could
be problematic if v0 is a distantly related taxon for which our distance estimates have high
variance.

Bruno et al. (2000) describe an alternative to the NJ criterion based on weighted least
squares. The variances in the distance estimates are incorporated directly into the selection
criterion, thereby improving the statistical efficiency of the method. The variances are esti-
mated directly from the distance matrix, so the method is still distance based. The selection
criterion used in their method satisfies (Q1) and (Q2), but not (Q3).

Felsenstein concluded a recent discussion on neighbor-joining type methods (Felsenstein,
2003) by stating that there was much left to do in the development of weighted versions
of neighbor-joining that properly reflect the kinds of noise that occur in biological sequence
data. While Bruno et al. (2000) describe their method as likelihood based, their model
of sequence evolution is not that used in the full character likelihood method of Felsenstein
(1981). The closest NJ type algorithm based on character likelihood is the star decomposition
heuristic implemented in PAML (Yang, 1995). However it has not been verified that this
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heuristic provides a consistent phylogenetic estimator. We predict that the appropriate
method might be derived from a character based version of the NJ selection criterion, though
it is not clear exactly how this might be done. A proper understanding of this criterion is
just a beginning.
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