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Abstract

Likelihood estimation is central to many areas of the natural and physical
sciences and has had a major impact on molecular phylogenetics. In this
chapter we provide a concise review of some of the theoretical and com-
putational aspects of likelihood based phylogenetic inference. We outline
the basic probabilistic model and likelihood computation algorithm, as
well as extensions to more realistic models and strategies of likelihood
optimisation. We survey several of the theoretical underpinnings of the
likelihood framework, reviewing research on consistency, identifiability,
and the effect of model mis-specification, as well as advantages, and lim-
itations, of likelihood ratio tests.

0.1 Introduction

Maximum likelihood estimation is arguably the most widely used method for
statistical inference. The framework was introduced in the early 1920s by the
pioneering statistician and geneticist, R.A. Fisher [18]. Likelihood based esti-
mation is now routinely applied in almost all fields of the biological sciences,
including epidemiology, ecology, population genetics, quantitative genetics, and
evolutionary biology.

This chapter provides a concise survey of computational, statistical and math-
ematical aspects of likelihood inference in phylogenetics. Readers looking for a
general introduction to the area are encouraged to consult Felsenstein [15] or
Swofford et al. [48]. A detailed mathematical treatment is provided by Semple
and Steel [41].

Likelihood starts with a model of how the data arose. This model gives a prob-
ability P[D|θ] of observing the data, given particular values for the parameters
of the model (here denoted by the symbol θ). In phylogenetics, the parameters
θ include the tree, branch lengths, the sequence evolution model, and so on.
The key idea behind likelihood is to choose the parameters so that the probabil-
ity of observing the data we have observed is maximised. We therefore define a
likelihood function L(θ) = P[D|θ] (sometimes written as L(θ|D) = P[D|θ]) that
captures how ‘likely’ it is to observe the data for a given value of the parameters
θ. A high likelihood indicates a good fit. The maximum likelihood estimate is
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the value of θ that maximises L(θ). In our context, we will searching for the
maximum likelihood estimate of a phylogeny.

For the remainder of the chapter we will assume that the reader is comfortable
with the concepts and terminology of likelihood in general statistics. Background
material on likelihood (and related topics in statistics) can be found in Edwards
[11] and Ewens and Grant [12].

Molecular phylogenetics is the field aiming at reconstructing evolutionary
trees from DNA sequence data. The maximum likelihood (ML) method was
introduced to this field by Joe Felsenstein [14] in 1981, and since become in-
creasingly popular, particularly following recent increases in computing power.

Maximum likelihood has an important advantage over the still popular Max-
imum Parsimony (MP) method: ML is statistically consistent (see Section 0.6).
As the size of the data set increases, ML will converge to the true tree with
increasing certainty (provided, of course, that the model is sufficiently accurate).
Felsenstein showed that Maximum Parsimony is not consistent, particularly in
the case of unequal evolutionary rates between different lineages [13].

While the basic intuition behind likelihood inference is straight-forward, the
application of the framework is often quite difficult. First there is the problem
of model design. In molecular phylogenetics, the evolution of genetic sequences
is usually modelled as a Markov process running along the branches of a tree.
The parameters of the model include the tree topology, branch lengths, and
characteristics of the Markov process. As in all applied statistics there is a pay-
off between more complex, realistic, models, and simpler, tractable models. More
complex models result in a better fit, but are more vulnerable to random error.

The second major difficulty with likelihood based inference is the problem
of computing likelihood values and optimising the parameters. Likelihood in
molecular phylogenetics is made possible by the dynamic programming algorithm
of Felsenstein [14]. We outline this algorithm in Section 0.3. However, nobody
has found an efficient and exact algorithm for optimising the parameters. The
techniques most widely used are surprisingly basic.

The third difficulty with likelihood is the interpretation and validation of the
results of a likelihood analysis: assessing which results are significant and which
analyses are reliable.

In this chapter we will discuss all three aspects. Firstly (Section 0.2) we
describe the basic Markov models central to likelihood inference in molecular
phylogenetics. Secondly we present the fundamental algorithm of Felsenstein
(Section 0.3), as well as extensions to more complex models (Section 0.4), and a
survey of optimisation techniques use (Section 0.5). Thirdly we review the the-
oretical underpinnings of the likelihood framework. In particular we discuss the
consistency of maximum likelihood estimation in phylogenetics, and the condi-
tions under which maximum likelihood will return the correct tree (Section 0.6).
Finally, we show how the likelihood framework can guide us in the development
of improved evolutionary models, and outline the theoretical justification for the
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standard likelihood ratio tests already in wide use in phylogenetics (Section 0.7).

0.2 Markov models of sequence evolution

Before any likelihood analysis can take place we need to formulate a probabilis-
tic model for evolution. In reality, the process of evolution is so complex and
multi-faceted that there is no way we can completely determine accurate proba-
bilities. Our descriptions of the basic model will involve assumption built upon
assumption. It is a wonder of phylogenetics that we can get so far with the basic
models that we do have. Of course, this phenomenon is in no way unique to
phylogenetics.

The reliance of likelihood methods on explicit models is sometimes seen as a
weakness of the likelihood framework. On the contrary, the need to make explicit
assumptions is a strength of the approach. Likelihood methods enable inferences
about evolutionary history and also assess the accuracy of the assumptions made.
‘The purpose of models is not to fit the data, but to sharpen the questions’ 1

While the basic models we describe in this section do an excellent job explain-
ing much of the random variation in molecular sequences, shortcomings of the
models (for example with respect to rate variation) have led to better models, a
better understanding of sequence evolution, and a host of ‘sharper and sharper’
questions on the relationship between rate variation, structure, and function.

More detailed reviews of these models can be found in [15, 48].

0.2.1 Independence of sites

Our first simplifying assumption is the perhaps unrealistic assertion that sites
evolve independently. Thus the probability that sequence A evolves to sequence
B equals the product, over all sites i, that the state in site i of A evolves to the
state in site i of B. This simplifies computation substantially. In fact it is almost
essential for tractability (though can be stretched a little—see Section 0.4). With
this assumption made, we spend the rest of the section focusing on the evolution
of an individual site.

0.2.2 Setting up the basic model

Consider the cartoon representation of site evolution in Fig. 0.1. Over a time
period t, the state A at the site is replaced by the state T . There are a number
of random mutation events (in this case, three) that are randomly distributed
through the time period. One of these is redundant, with A being replaced by
A. We consider these redundant mutations more for mathematical convenience
than anything else. The mutations from A to G and from G to T are said to be
silent. We do not observe the change to G, only the beginning and end states.

Let E denote the set of states and let c = |E|. For DNA sequences, E =
{A, C, G, T}, while for proteins, E equals the set of amino acids. For convenience,
we assume that the states have indices 1 to |E|. The mutation events occur

1Samuel Karlin, 11th R.A. Fisher Memorial Lecture, Royal Society 20, April 1983.
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Fig. 0.1. Redundant and hidden mutations. Over time t, the site has a redun-
dant mutation, followed by a mutation to G and then to T . The mutation
to G is non-detectable, so is called silent. The timing (and number) of the
mutation events is modelled by a Poisson process.

according to a continuous time Markov chain with state set E . The number of
these events has Poisson distribution: the probability of k mutation events is

P[k events] =
(µt)ke−µt

k!
.

Here µ is the rate of these events, so that the expected number of events in time
t is µt. When there is a mutation event, we let Rxy denote the probability of
changing to state y given that the site was in state x. Since redundant mutations
are allowed, Rxx > 0. Putting everything together, the probability of ending in
state y after time t given that the site started in state x is given by the xyth
element of P(t), where P(t) is the matrix valued function

P(t) =
∞∑

k=0

(Rk)
(µt)ke−µt

k!
. (0.1)

This formula just expresses the probabilities of change summed over the possible
values of k, the number of mutation events. Let E denote the set of states and
let c = |E|. For DNA sequences, E = {A, C, G, T}.

Let Q be the matrix R − I, where I is the c × c identity matrix. After some
matrix algebra, eqn (0.1) becomes

P(t) =
∞∑

k=0

(R − I)k(µt)k

k!
=

∞∑

k=0

(Qµt)k

k!
= eQµt. (0.2)

The matrix Q is called the instantaneous rate matrix or generator. Here, eQµt

denotes the matrix exponential. There is a standard trick to compute it.
First, diagonalise the matrix Q as Q = ADA−1 with D diagonal (for exam-

ple, using Singular Value Decomposition, see [26] ). For any integer k, we have
that

(Q)k = (ADA−1)(ADA−1) · · · · · (ADA−1)

= A(D)kA−1.

Taking the powers of diagonal matrices is just a matter of taking the powers of
its entries. It follows that
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eQµt = eµtAeDA−1,

where eD is a diagonal matrix and, for each x, (eD)xx = eDxx .
As an example, consider the F81 model of Felsenstein [14]. We assume that

the states in E are ordered A, C, G, T . The model is defined in [48] in terms of
its rate matrix

Q =






−(πY + πG) πC πG πT

πA −(πR + πT ) πG πT

πA πC −(πY + πA) πT

πA πC πG −(πR + πC)




 . (0.3)

Rows in Q indicate the initial state, and columns the final state , states being
taken in the A, C, G, T alphabetic order. πA,πC ,πG,πT are probabilities that
sum to one (see the next section), πR = πA +πG and πY = πC +πT . This model
is equivalent to one with discrete generations occurring according to a Poisson
process, and (single event) transition probability matrix

R =






1 − (πY + πG) πC πG πT

πA 1 − (πR + πT ) πG πT

πA πC 1 − (πY + πA) πT

πA πC πG 1 − (πR + πC)




 .

The corresponding transition probability matrix, for a given time perior t, is
obtained by diagonalising Q and taking the exponential. The resulting matrix
can be expressed simply by

Pxy(t) =

{
πy + (1 − πy)e−µt if x = y;

πy(1 − e−µt) if x #= y.
(0.4)

0.2.3 Stationary distribution

We have described here a continuous time Markov chain, the continuous time
analogue of a Markov chain. We will also assume that this Markov process is
ergodic. This means that as t goes to infinity, the probability that the site is in
some state y is non-zero and independent of the starting state. That is, there are
positive values π1, . . . ,πc such that

lim
t→∞

Pxy(t) = πy.

The values π1, . . . ,πc comprise a stationary distribution (also called the equilib-
rium distribution or equilibrium frequencies) for the states. For all t ≥ 0 these
values satisfy

πy =
∑

x∈E

πxPxy(t). (0.5)
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If we sample the initial state from the stationary distribution, then run the
process for time t, then the distribution of the final state will equal the stationary
distribution. A consequence of eqn (0.5) is that

0 =
∑

x∈E

πxQxy,

so that we can recover the stationary distribution directly from Q. We use Π to
denote the c × c diagonal matrix with πx’s down the diagonal.

For the F81 model we see from eqn (0.4) that

lim
t→∞

Pxy(t) = πy,

for x = y or x #= y. The values πA,πC ,πG,πT make up the stationary distribution
for this model. Hence πR is the stationary probability for purines (A or G) and
πY is the stationary probability for pyrimidines (C or T). The matrix Π is given
by

Π =






πA 0 0 0
0 πC 0 0
0 0 πG 0
0 0 0 πT




 .

0.2.4 Time reversibility

The next common assumption is of time reversibility. This is not exactly what
it sounds like. We do not assume that the probability of going from state x to
state y is the same as the probability of going from state y to state x. Instead we
assume that the probability of sampling x from the stationary distribution and
going to state y is the same as the probability of sampling y from the stationary
distribution and going to state x. That is, for all x, y ∈ E and t ≥ 0 we have

πxPxy(t) = πyPyx(t).

One can show that this corresponds to the condition that

πxQxy = πyQyx,

that is, the matrix ΠQ is symmetric.
The F81 model is time reversible even though P(t) is not symmetric. To see

this, consider arbitrary states x, y with x #= y. Then

πxPxy(t) = πxπy(1 − e−µt)

πyPyx(t) = πyπx(1 − e−µt).

Time reversibility makes it much easier to diagonalise Q. Since ΠQ is sym-
metric, so is

Π−
1
2ΠQΠ−

1
2 = Π

1
2 QΠ−

1
2 .
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Finding eigenvalues of a symmetric matrix is, in general, far easier than finding

eigenvalues of a non-symmetric matrix [26]. Hence we first diagonaliseΠ
1
2 QΠ−

1
2

to give a diagonal matrix D and invertible matrix B such that

Π
1
2 QΠ−

1
2 = BDB−1.

Setting A = Π−
1
2 B gives Q = ADA−1. This approach is used by David

Swofford when computing the exponential matrices of general rate matrices in
PAUP [47]. Time reversibility also makes it easier to compute likelihoods on a
tree, since the likelihood becomes independent of the position of the root [14].

0.2.5 Rate of mutation

In molecular phylogenetics, time is measured in expected mutations per site,
rather than in years. The reason is that the rate of evolution can change markedly
between different species, different genes, or even different parts of the same
sequence.

Recall that our model of site evolution has mutation events occurring ac-
cording to a Poisson process, with an expected number of events equal to µt.
However some of these mutation events are nothing more that mathematical
conveniences - the mutations from a state to itself. If we assume that the distri-
bution of the initial state equals the stationary distribution, then the probability
that a mutation event gives a redundant mutation is

∑

x∈E

πxRxx = trace(ΠR).

Hence the probability that the mutation event is not redundant is

1 − trace(ΠR) = −trace(ΠQ).

The expected number of these in unit time (t = 1) is then

−µtrace(ΠQ). (0.6)

This is the mutation rate for the process. Care must be taking when comparing
two different models in case their underlying mutation rates differ. Given a rate
matrix Q we choose µ such that the overall rate of mutation −µtrace(ΠQ) is
one. In this way the length of the branch corresponds to the expected number
of mutations per site along that branch, irrespective of the model.

Applying eqn (0.6) to the F81 model we obtain a rate of

−µtrace(ΠQ) = µ(πA(1 − πA) + πC(1 − πC) + πG(1 − πG) + πT (1 − πT )),

so, given πA, . . . ,πT we would set

µ =
[
πA(1 − πA) + πC(1 − πC) + πG(1 − πG) + πT (1 − πT )

]−1

to normalise the rates.
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0.2.6 Probability of sequence evolution on a tree

We now extend the model for sequence evolution to evolution on a phylogeny.
We are still concerned, at this point, with the evolution of a single site. Because
of independence between sites, the probability of a set of sequences evolving is
just the product of the probabilities for the individual sites.

Each site i in a sequence determines a character on the leaves: a function χi

from the leaf set to the set of states E . An extension χ̂i of a character χi is an
assignment of states to all of the nodes in the tree that agrees with χi on the
leaves.

We define the probability of an extension as the probability of the state at
the root (given by the stationary distribution) multiplied by the probabilities of
all the changes (or conservations) down each branch in the tree. If we use buv

to denote the length of the branch between node u and node v, and let χ̂i(v)
denote the state assigned to v, then we have a probability

P[χ̂i|θ] = πχ̂i(v0)

∏

branches {u, v}
Pχ̂i(u),χ̂i(v)(buv). (0.7)

Here, v0 is the root of the tree. The probability of site i is then the marginal
probability over all the extensions χ̂i of χi:

P[χi | θ] =
∑

χ̂i extends χi

P[χ̂i | θ]. (0.8)

The probability of the complete alignment is simply the product of the probabili-
ties of the sites. The next section gives the details of this fundamental calculation.

Equations (0.7) and (0.8) are perhaps better understood if we consider the
problem of simulating sequences on a tree. To simulate a site in a sequence we
first sample a state at the root from the stationary distribution. Then, working
down the tree, we sample the state at the end of a branch (furthest from the root)
using the value x already sampled at the beginning of the branch, the length of
the branch b, and the probabilities in row x of the transition matrix P(b). The
states chosen (eventually) at the leaves then give the character for one site of our
simulated sequences. The probability P[χi | θ] then equals the probability that
the character χi could have been generated using this simulation method.

0.3 Likelihood calculation: the basic algorithm

Here we describe the basic algorithm for computing the likelihood L(θ) = P[χi | θ]
of a site, given a (rooted) tree, branch lengths, and the model of sequence evolu-
tion. The likelihood of an alignment is computed by multiplying the likelihoods
for each of the n sites

L(θ) =
n∏

i=1

P[χi | θ]. (0.9)
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Fig. 0.2. Illustration of a node v, its children u1, u2, the character χi and its
restriction χv

i to the subtree rooted at v.

Remember that χi is the character (column) corresponding to the ith site in
a sequence alignment. Let v be an internal node of the tree, and let Lv

i (x), x ∈ E
denote the partial conditional likelihood defined as:

Lv
i (x) = P[χv

i | θ, χ̂i(v) = x],

where χv
i is the restriction of the character χi to descendants of node v and χ̂i(v)

is the ancestral state for site i at node v (Figure 0.2). The value Lv
i (x) is the

likelihood at site i for the subtree underlying node v, conditional on state x at
v. The likelihood of the complete character χi can be expressed as:

P[χi | θ] =
∑

x∈E

P[χ̂(v0) = x]Lr
i (x), (0.10)

where v0 is the root node. The probability P[χ̂(v0) = x] equals the probability
for x under the stationary distribution, πx.

The function Lv
i (x) satisfies the recurrence

Lv
i (x) =




∑

y∈E

Pxy(t1)L
u1

i (y)








∑

y∈E

Pxy(t2)L
u2

i (y)



 , (0.11)

for all internal nodes v, where u1 and u2 are the children of v and t1, t2 are the
lengths of the branches connecting them to v. Equation (0.11) results from the
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independence of the processes in the two subtrees below node v. For leaf l, we
have

Ll
i(x) =

{
1 if χi(l) = x,
0 otherwise.

Note that eqn (0.11) can be easily extended to nodes v with more than two
children.

The transition probabilities Pxy(t1) and Pxy(t2) are determined from eqn (0.2).
As observed above, this requires the diagonalisation of the rate matrix Q. How-
ever we need only perform this diagonalisation once, after which point it only
takes O(c) operations, where c is the size of the state set, to evaluate each prob-
ability.

The above calculation was defined on a rooted tree. For a reversible, station-
ary process, however, the location of the root does not matter: the likelihood
value is unchanged whatever the position of the root [14]. As well, the loga-
rithm of the likelihood is usually computed rather than the likelihood itself. The
product in eqn (0.9) becomes a summation if the log-likelihood is computed.

Calculating the log-likelihood of a tree therefore involves

(i) diagonalisation of Q

(ii) for each branch of the tree, taking the exponential of Qµt, where t is the
branch length

(iii) for every site and every possible state, applying eqn (0.11) using a post-
order traversal of the tree

(iv) taking the logarithm and summing over sites.

Recall that c is the number of states, m the number of leaves, and n the
number of sites. Step (i) can be performed in O(c3) time using standard numerical
techniques. Step (ii) takes O(mc3) time. Step (iii) takes O(mnc2) time, and
step (iv) takes O(n) time. The whole algorithm therefore takes O(mc3 + mnc2)
time. Step (iii) is the most computationally expensive step in virtually every
application.

0.4 Likelihood calculation: improved models

The calculation presented above applies to standard Markov models of sequence
evolution, assuming a single, common process to all sites and in all lineages, and
independent sites. Actual molecular evolutionary processes often depart from
these assumptions. We now introduce likelihood calculation under more realistic
models of sequence evolution, with the aim of improving phylogenetic estimates
and of learning more about the evolutionary forces that drive sequence variation.

0.4.1 Choosing the rate matrix

The choice of rate matrix (generator) Q is an important part of the modelling
process. The rate matrix has c · (c− 1) non-diagonal entries, where c is the num-
ber of states. Thus the number of entries equals 12 for DNA sequences, 180 for
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amino-acid sequences, and 3660 for codon sequences. This number is halved if we
also have time reversibility. Allowing one free parameter per rate is not appro-
priate; one has to introduce constraints in order to reach a reasonable number
of free parameters, preferably representing biologically meaningful features of
evolutionary processes.

In practice, the features of Q are determined empirically. For example, in
DNA sequences it has been observed that transitions (mutations between A and
G or between C and T ) are more frequent than transversions (other mutations).
The HKY model [28] incorporates this observation into the rate matrix:

Q =






−(πY + κπG) πC κπG πT

πA −(πR + κπT ) πG κπT

κπA πC −(πY + κπA) πT

πA κπC πG −(πR + κπC)




 .

As before, πR = πA + πG and πY = πC + πT .
This matrix is the same as that for F81, except for an extra parameter κ

affecting the relative rate of mutations within purines or within pyramidines.
When κ = 1.0 we obtain the F81 model again. When κ > 1.0 the rate of transi-
tions is greater than the rate of transversions. A large body of literature discusses
the merits of various parameterisations of rate matrices for DNA, protein and
codon models (e.g. [48]). We do not review this issue here. The above-described
basic likelihood calculation procedure applies whatever the parameterisation.

Non-homogeneous models of sequence evolution, in which distinct branches
of the tree have distinct rate matrices, have been introduced for modelling vari-
ations of the selective regime of protein coding genes [59], or variations of base
composition in DNA (RNA) sequences [22]. The calculation of transition prob-
abilities along branches (Pxy(t) in eqn (0.11)) should be modified accordingly,
using the appropriate rate matrix for each branch. When the distinct rate ma-
trices have unequal equilibrium frequencies [58], [22], the process becomes non-
stationary: stationary frequencies are never reached because they vary in time. In
this case, the likelihood function becomes dependent on the location of the root,
and the ancestral frequency spectrum (P[χ̂(v0) = x] in eqn (0.10)) becomes an
additional parameter: it can no longer be deduced from the evolutionary process.

0.4.2 Among site rate variation (ASRV)

A strong and unrealistic assumption of the standard model is that sites evolve at
the same rate. In real data sets there are typically fast and slowly evolving sites,
mostly as a consequence of variable selective pressure. Functionally important
sites are conserved during evolution, while unimportant sites are free to vary.

Yang first introduced likelihood calculation incorporating variable rates across
sites [55]. He proposed that the variation of evolutionary rates across sites be
modelled by some continuous distribution: the rate of a specific site i is not a
constant, but a random variable r(i). The likelihood for site i is calculated by
integrating over all possible rates:
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P[χi | θ] =

∫ ∞

0
P[χi | r(i) = r, θ] f(r) dr, (0.12)

where f is the probability density of the assumed rates distribution, and where
P[χi | r(i) = r, θ] is the likelihood for character χi conditional on rate r(i) = r for
this site. The latter term is calculated by applying recurrence (0.11) after multi-
plying all of the branch lengths in the tree by r. Typically, a Gamma distribution
is used for f(r). Its variance and shape are controlled by an additional parameter
that can be estimated from the data by the maximum likelihood method.

The integration in eqn (0.12) must be performed numerically, which is time
consuming. In practice, this calculation can be completed only for small trees.
For this reason, Yang proposed to assume a discrete, rather than continuous,
distribution of rates across sites [56]:

P[χi | θ] =
g∑

j=1

P[χi | r(i) = rj , θ]pj , (0.13)

where g is the assumed number of rate classes and pj the probability of rate
class j. Yang [56] uses a discretised Gamma distribution for the probabilities pj .
The complexity of the likelihood calculation under the discrete-Gamma model
of rate variation is O(mc3g + mnc2g), that is, essentially g times the complexity
of the equal-rate calculation. Using Among Site Rate Variation models typically
leads to a large increase of log- likelihood, compared to constant-rate models.
The extension of this approach to heterogeneous models of site evolution is the
subject of chapter 5 in this volume.

Note that sites are not assigned to rate classes in this calculation. Rather,
all possible assignments are considered, and the conditional likelihoods averaged.
Sites can be assigned to rate classes following likelihood calculation. The posterior
probability of rate class j for site Yi can be defined as:

P[site i in class j] =
pjP [χi | r(i) = rj , θ]

P [χi | θ]
, (0.14)

where the calculation is achieved using the maximum likelihood estimates of
parameters (tree, branch lengths, rate matrix, gamma shape). This equation
does not account for the uncertainty in the unknown parameters, an approximate
procedure called “empirical Bayesian” [60].

0.4.3 Site-specific rate variation

In models of between-site rate variation, the (relative) rate of a site is constant
in time: a slow site is slow, and a fast site fast, in every lineage of the tree. In
reality, evolutionary rate might, however, vary in time, if the level of constraint
applying to a specific site changes. The notion that the evolutionary rate of a
site can evolve was first introduced by Fitch [19], and subsequently modelled
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by Tuffley and Steel [51] and Galtier [21]. This process has been named covar-
ion (for COncomitantly VARiable codON [19]), heterotachy, or site-specific rate
variation.

Covarion models typically assume a compound process of evolution. The rate
of a given site evolves along the tree according to a Markov process defined in
the rate space. Thus the site evolves in the state space according to a Markov
process whose local rate is determined by the outcome of the rate process. A site
can be fast in some parts of the tree, but slow in other parts. Such processes are
called Markov-modulated Markov processes or Cox processes. The state process
is modulated by the rate process.

Existing models use a discrete rate space: a finite number g of Gamma dis-
tributed rates are permitted, just like in discretised Among Site Rate Variation
models (see above). Let r = (rj) be the vector of allowed rates (size g), let diag(r)
be the diagonal matrix with diagonal entries rj , and G be the rate matrix of the
rate process, indexed by the rate classes. Let Q be the rate matrix of the state
process. The compound process can be seen as a single process taking values in
{rj}× E , a compound space of size g · c. The rate matrix, Z, of this process can
be expressed using the Kronecker operand ⊗. If A is an m×m matrix and B is
an n × n matrix then A ⊗ B is the mn × mn matrix

A ⊗ B =






A11B . . . A1mB
...

. . .
...

Am1B . . . AmmB




 .

The rate matrix Z can then be expressed as

Z = diag(r) ⊗ Q + G ⊗ Ic, (0.15)

where Ic is the c×c identity matrix [52]. Likelihood calculation under this model
is therefore achieved similarly to the standard model, using a rate matrix of size
g · c. The complexity of the algorithm becomes O(mc3g3 + mnc2g2).

As an example, consider the basic covarion model of Tuffley and Steel [51].
This model uses only two different rates: “on” (r1 = 1) and “off” (r2 = 0). The
switching between rates is controlled by the rate matrix

G =

[
−s1 s1

s2 −s2

]
.

To apply the covarion approach with the F81 model we plug in the rate matrix
Q from eqn (0.3) to give the rate matrix for the compound process of
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Z =

[
Q 0
0 0

]
+

[
−s1Ic s1Ic

s2Ic −s2Ic

]

=






∗ πC πG πT s1 0 0 0
πA ∗ πG πT 0 s1 0 0
πA πC ∗ πT 0 0 s1 0
πA πC πG ∗ 0 0 0 s1

s2 0 0 0 ∗ 0 0 0
0 s2 0 0 0 ∗ 0 0
0 0 s2 0 0 0 ∗ 0
0 0 0 s2 0 0 0 ∗






.

The values along the diagonal are chosen so that the row sums are all zero. The
state set for this process is

{
(A, on), (C, on), (G, on), (T, on), (A, off), (C, off),

(G, off), (T, off)
}
.

0.4.4 Correlated evolution between sites

Independence between sites is a fundamental assumption of standard Markov
models of sequence evolution, expressed in eqn (0.9). The sites of a functional
molecule, however, do not evolve independently in the real world: biochemical
interactions between sites are required for stabilizing the structure, and achieving
the function, of biomolecules.

Pollock and coworkers proposed a model for relaxing the independence as-
sumption [34].

Consider the joint evolutionary process of any two sites of a protein. The
space state for the joint process is E × E . Under the assumption of independent
sites, the rate matrix for the joint process is constructed from that of the single-
site process (assume reversibility):

Q̄xx′,yx′ = Qxy = Sxyπy,

Q̄xx′,xy′ = Qx′y′ = Sx′y′π′y , (0.16)

Q̄xx′,yy′ = 0,

for x #= y and x′ #= y′, where Q̄ixx′,yy′ is the rate of change from x to y at site 1,
and from x′ to y′ at site 2 (in E × E), where Qxy and πx are the rate matrix and
stationary distribution for the single-site process with state space E and where
S = Π−1Q is a symmetric matrix. The joint rate matrix Q̄ has dimension c2.

Modelling non-independence between the two sites involves departing from
eqns (0.16). This is naturally achieved by amending stationary frequencies. It is
easy to show that the stationary frequency π̄xx′ of state (x, x′) ∈ E is equal to
the πxπ

′
x product under the independence assumption. Non-independence can

be introduced by rewriting the above equation as:
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Q̄xx′,yx′ = Sxyπ̄yx′ ,

Q̄xx′,xy′ = Sx′y′ π̄xy′ , (0.17)

Q̄xx′,yy′ = 0,

where π̄xx′ ’s are free parameters (possibly some function of πx’s). This formalisa-
tion accounts for the existence of frequent and infrequent combinations of states
between the two sites, perhaps distinct from the product of marginal site-specific
frequencies. Pollock and co-workers applied this idea in a simplified, two-state
model of protein evolution [34], to be applied to a specific site pair of interest.
The same idea was used by Tillier and Collins [50] when they introduced a model
dedicated to paired sites in ribosomal RNA. From an algorithmic point of view,
accounting for coevolving site pairs corresponds to a squaring of the state space
size c.

Other models aim at representing the fact that two sites have correlated evo-
lutionary rates [57], [17]. Such models are extensions of the ASRV model in which
the distribution of site-specific evolutionary rates are not independent among
sites. More specifically, these two studies propose a model in which neighbour-
ing sites have correlated rates, introducing an autocorrelation parameter. The
idea was extended by Goldman and coworkers when they assumed distinct cat-
egories of rate matrices among amino acid sites, and correlated probabilities of
the various categories between neighbouring sites [49], [35].

0.5 Optimizing parameters

So far we have not considered what is really the most difficult and limiting aspect
of likelihood analysis in phylogenetics: parameter optimisation. The problem of
finding the maximum likelihood phylogeny combines continuous and discrete
optimization. The optimization of branch lengths (and sometimes other param-
eters) on a fixed tree is a continuous optimization problem, while the problem of
finding the maximum likelihood tree is discrete. Both components are difficult
computationally, and computational biologists have not got much past simple
heuristics in either case. While these heuristics are proving highly effective, faster
and more accurate algorithms are still needed.

0.5.1 Optimizing continuous parameters

Given a fixed tree, it is a non-trivial problem to determine the branch lengths
giving the maximum likelihood score. On a hundred taxa tree, there are 197
branches, so we are faced with optimizing a 197 dimensional, non-linear, generally
non-convex, function. Chor et al. [10] have shown that the function can become
almost arbitrarily complex. There can be infinitely many local (or global) optima,
even when there are only four taxa and two states. Rogers and Swofford [37]
observe that multiple optima arise only infrequently in practice. This was not
confirmed by our own, preliminary, investigations, where we found it relatively
easy to generate situations with multiple optima, especially when there was a
slight violation of the evolutionary model.
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Almost all of the widely used phylogeny programs improve branch lengths
iteratively and one at a time. The general approach is to

1. Choose initial branch lengths (here represented as a vector b).

2. Repeat for each branch k:

(a) Find a real number λk so that replacing the length bk of branch k
with bk + λk gives the largest likelihood.

(b) Replace bk with bk + λk and update the partial likelihood computa-
tions (see, for example, the updating algorithm of [1]).

3. If λk was small for all branches then return the current branch lengths,
otherwise go to step 2.

Implementations differ in the one dimensional optimisation technique used to
determine λk. The technique used most often is Newton’s method (also known as
the Newton Rhapson method). The intuitive idea behind Newton’s method is to
use first and second derivatives to approximate the likelihood function (varying
along that branch) by a quadratic function. The branch length is adjusted to
equal the minimum of this quadratic function, a new quadratic function is fitted,
and the procedure repeats until convergence. The search is constrained so as
to maintain non-negative branch lengths. Puzzle, PAUP* and PhyML use
Brent’s method for one-dimensional optimization [4], thereby avoiding the need
for partial derivatives. This method is similar to Newton’s method, but is more
robust. Phylip uses a numerical approximation to Newton’s method.

Two software packages, NHML and Paup*, differ from the standard ap-
proach and implement a multi-dimensional search, so that more than one branch
length is changed at a time. A (fiddly) modification of the pruning algorithm of
Section 0.3 can be used to compute the gradient vector and Hessian matrix
for a particular set of branch lengths in O(mnc3) and O(m2nc3) time respec-
tively. Hence, multi-dimensional Newton Rhapson and quasi-Newton methods
can be implemented fairly efficiently (see [24] for an excellent survey of multi-
dimensional optimisation methods). A combination of full dimensional and sin-
gle branch optimisation is also possible. One complication is the constraint that
branch lengths be non-negative. NHML handles this by defaulting to the simplex
method (see [24]) when one branch length becomes zero.

Surprisingly, there appears to be no published experimental comparison be-
tween single branch and multi-dimensional optimization techniques for likeli-
hood. Our preliminary simulation results indicate that the more sophisticated
algorithms will occasionally find better optima, but the increased overhead makes
the simple, one branch at a time, approach preferable for extensive tree searches.

0.5.2 Searching for the optimal tree

By far the most widely used method for finding maximum likelihood trees is
local search. Using one of several possible methods, we construct an initial tree.
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We then search through the set of all minor modifications of that tree (see Swof-
ford et al. [48] for a survey of these modifications). If we find a modified tree
with an improved likelihood, we switch to that tree. The process then continues,
each time looking for improved modifications, finally stopping when we reach a
local optimum. In practice, users will typically constrain some groups of species,
searching only through the smaller set of trees for which these groups are mono-
phyletic (that is, trees containing these groups as clusters).

There are five standard methods for obtaining an initial tree. Refer to Swof-
ford et al. [48] for further details.

• Randomly generated tree Used to check for multiple local optima.
• Distance based tree Compute a distance matrix for the taxa and apply

a distance based method such as Neighbour-joining [38] or BioNJ [23].
• Sequential insertion Randomly order the taxa. Construct a tree from

the first three taxa. Thereafter, insert the taxa one at a time. At each
insertion, place the taxon so that the likelihood is maximised. Some imple-
mentations perform local searches after each insertion. One advantage of
random sequential insertion is that multiple starting trees can be obtained
by varying the insertion order.

• Star decomposition Start with a tree with all of the taxa and no internal
edges. At each step, choose a pair of nodes to combine, continuing until
the tree is fully resolved.

• Approximate likelihood Perform a tree search using a criterion that is
computationally less expensive than likelihood but chooses similar trees.

A typical maximum likelihood search will involve multiple runs of the starting
tree and local search combination. As in all optimization problems there is a risk
of getting stuck in a local optimum. To avoid this, it is sometimes desirable to
occasionally, and randomly, move to trees with lower likelihood scores. This idea
has been formalised in search strategies based on simulated annealing [39], as well
as approaches using genetic algorithms [3, 30]. Vinh and von Haeseler [54] have
shown recently that deleting and re-inserting taxa can also help avoid getting
trapped in local optima. When multiple searches are run in parallel, information
can be communicated between the different searches in order to more rapidly
locate areas of tree space with higher likelihoods [29].

0.5.3 Alternative search strategies

There have been only a small number of likelihood search methods proposed that
differ significantly from the local search framework described above. NJML [33]
combines a distance based method (Neighbour-Joining) with maximum likeli-
hood. A partially resolved tree (that is, a tree with some high degree nodes) is
obtained by taking the consensus of a number of NJ bootstrap trees. The method
then searches for the tree with maximum likelihood among all trees that contain
all of the groups in this partially resolved tree, PhyML [27] gains considerable
efficiency by not optimising all branch lengths for every tree examined. Instead,
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Data: Nucleotides Proteins and nucl.
Approach to branch length optimisation

Single branch per iteration ∗ ∗ ∗ ∗ ∗ ∗ (a) ∗
Multiple branches per iteration

Newton’s method ∗
BFGS (see [24]) ∗
Brent’s multi-dim. algorithm ∗
Simplex method ∗

Algorithm for 1-dimension optimisation
Newton’s method (or approximation) ∗ ∗ (b) ∗ ∗
Brent’s 1-dim. algorithm ∗ ∗ ∗
Subdivision algorithm ∗

Algorithm for the initial tree
Distance method ∗ ∗
Random tree ∗
Sequential insertion ∗ ∗ ∗ ∗ ∗
Star decomposition ∗ ∗ ∗ ∗
Approximate likelihood ∗ ∗ ∗ ∗ ∗

Hill climbing ∗ ∗ ∗ ∗ ∗

Data: which kind of sequence data is analysed. Approach to branch length opti-
misation: whether branches are optimised individually or all at once, and which
method is used. Algorithm for 1-dim optimisation: which algorithm is used for
optimising a single branch or, in the case of multidimensional optimisation, which
line search algorithm is used (see [24] for more on line search methods). Algorithm
for initial tree: the method used to select the tree (or initial tree when searching).
Hill climbing: implements local search that uses the likelihood optimisation cri-
terion. Notes: (a) PhyML combines branch optimisation with tree optimisation.
(b) Phylip uses a numerical approximation for first and second derivatives in
Newton’s method. Table 0.1 Likelihood algorithms implemented in different
software packages. The asterix indicates that the package implements an algo-
rithm, even if it is not the default algorithm used (as is the case, for example,
in PAUP*). Data: which kind of sequence data is analysed. Approach to branch
length optimisation: whether branches are optimised individually or all at once,
and which method is used. Algorithm for 1-dim optimisation: which algorithm
is used for optimising a single branch or, in the case of multidimensional opti-
misation, which line search algorithm is used (see [24] for more on line search
methods). Algorithm for initial tree: the method used to select the tree (or initial
tree when searching). Hill climbing: implements local search that uses the like-
lihood optimisation criterion. Notes: (a) PhyML combines branch optimisation
with tree optimisation. (b) Phylip uses a numerical approximation for first and
second derivatives in Newton’s method.
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the algorithm combines moves that improve branch lengths and moves that im-
prove the tree. The advantage of this approach is a considerable gain in speed,
as well as the potential to avoid being trapped in some local optima.

A quite different strategy is proposed by Friedman et al. [20]. They treat
a phylogenetic tree as a graph with vertices and edges. One can estimate the
expected mutations between any pair of vertices, then rearrange the tree by re-
moving and adding edges between different pairs of vertices. While the approach
has not yet gained widespread acceptance, it represents a completely new way
to look at likelihood optimisation on trees.

0.6 Consistency of the likelihood approach

In this sction, we focus on the theoretical underpinnings of the likelihood ap-
proach. First we consider the question of consistency: if we have sufficiently long
sequences, and the sequence evolution model is correct, will we recover the true
tree? As we mentioned above, this does not hold for maximum parsimony. It
turns out that maximum likelihood is consistent in most cases. As we shall see,
to establish consistency we need to verify an identifiability condition, which en-
sures that we can distinguish two models from infinite length sequences. We
also discuss the robustness of the likelihood approach in copying with model
misspecifications.

0.6.1 Statistical consistency

Recall that χi represents the character corresponding to the ith site observed
in the m sequences and assume that the n sites are independent. The vector of
parameters θ includes the tree topology, branch lengths and the parameters of the
Markov evolution process. The maximum likelihood estimator θ̂n maximizes the
likelihood L(θ) =

∏n
i=1 Pr(χi | θ), or equivalently the normalised log-likelihood

ln(θ) =
1

n

n∑

i=1

log Pr(χi | θ).

If the estimator θ̂n is used to estimate the true parameter θ0, then it is certainly
desirable that the sequence θ̂n converges in probability to θ0 as n tends to ∞. If
this is true, we say that θ̂n is statistically consistent for estimating θ0.

Clearly, the “asymptotic value” of θ̂n depends on the asymptotic behavior
of the random functions ln. There typically exists a deterministic function l(θ)
such that, by the law of large numbers,

ln(θ)
P−→ l(θ), for every θ.

What is expected is that the maximizer θ̂n of ln converges to a unique point θ0
which, moreover, is the maximum of the function l. This requires two conditions:
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(1) Model identifiability
A model is said to be identifiable if the probability of the observations is
not the same under two different values of the parameter:

l(θ) #= l(θ0) for θ #= θ0.

Identifiability is a natural and a necessary condition: If the parameter is
not identifiable then consistent estimators cannot exist.

(2) Convergence of the likelihood function
Consistency requires an appropriate form of the functional convergence of
ln to l to ensure the convergence of the maximum of ln to a maximum of
l. There are several situations under which this always holds. The “clas-
sical” approach of Wald relies on a continuity argument and a suitable
compactification of the parameter set [53]. In the phylogenetic context,
Wald’s conditions can be adapted for binary trees [7], [36]. In particular,
the continuity of the likelihood reconstruction, with respect to the topology
parameter, relies on an argument of Buneman [6].

In a variety of situations of parametric statistical inference, identifiability is
trivially fulfilled or it implies restrictive but natural conditions on the parameter
space. For most models in the phylogenetic setting, identifiability considerations
are the principal difficulty in establishing the consistency of maximum likelihood.
As long as the model is identifiable, maximum likelihood estimators are typically
consistent.

Note, however, that consistency guarantees identification of the correct pa-
rameter values (e.g. the tree topology) with infinite length sequences. In real data
situations, the sequence length is finite and no method can be sure to recover
the correct parameter values.

0.6.2 Identifiability of the phylogenetic models

In earlier sections, we assumed that there was the same evolutionary model for
each branch of the tree. We generalise this here by assigning a different rate
matrix Q(b) to each branch b. The evolutionary scenario then comprises the tree
topology and the Markov transition matrices across the branches,

P(b)(t) = exp
(
Q(b)t(b)

)
,

where t(b) is the length of branch b. Let πv be the marginal distribution of a site
at node v, πv(x) = P[χ̂i(v) = x].

Identifiability requires that two different scenarios (differing in topology or
transition matrices or both) cannot induce the same joint distribution of the
sites with infinite sequences; if two scenarios were indistinguishable from infi-
nite sequences, there will be no hope that they could be distinguished from
observed finite sequences and that maximum likelihood could consistently re-
cover the correct scenario. Here we review what is and what is not known about
the identifiability of Markov evolutionary scenarios.
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Identical evolution of the sites Suppose that each site evolves according the
same Markov process, that is, the characters χi are independent and identically
distributed. Conditions under which identifiability of the full scenario (topology
and transition matrices) holds were first established formally by Chang [7].

• Identifiability of the topology

Assumption (H) : There is a node v with πv(x) > 0, ∀x, and
det(P(b)) "∈ {−1, 0, 1} for all branches b.

Under assumption (H), the topology is identifiable from the joint distri-
bution of the pairs of sites. Assumption (H) is a mild condition which
ensures that transition matrices are invertible and not equal to permuta-
tion matrices. It enables us to construct an additive tree distance from the
character distribution. The so-called LogDet transform is a good distance
candidate and the tree can be recovered using distance based methods like
those reviewed in Chapter 1 in this volume. Identifiability just of the tree
was proved by [9] and [44] and is more thoroughly discussed in [41].

• Identifiability of the transition matrices
Chang showed that we cannot just consider pairwise comparisons of se-
quences to reconstruct the transition matrices, and that the distribution
of triples of sites is required to ensure the identifiability of the full sce-
nario. More precisely, under assumption (H), if moreover the underlying
evolutionary tree is binary and the transition matrices belong to a class of
matrices that is reconstructible from rows, then all of the transition ma-
trices are uniquely determined by the distribution of the triples of sites.
Chang’s additional condition is somewhat technical: A class of matrices
is reconstructible from rows if no two matrices in the class differ only by
a permutation of rows. An example of such a class is that in which the
diagonal element is always the largest element in a row.

The situation is greatly simplified under the assumptions that the evolution
process is stationary and reversible with equilibrium measure π. In this restricted
class of Markov model, the distribution of the pairs of sites is enough to determine
the full scenario:

Under assumption (H), if the rate matrix is identical on all branches
Q(b) ≡ Q, if it is reversible and the node distribution is the stationary
distribution πv ≡ π, then the (unrooted) topology and the transition
matrix is identifiable from the pairwise comparisons of sequences.

In summary, the parameters are identifiable (and hence maximum likelihood
is consistent) not only for the basic models discribed above, but for far more
general scenarios of sequence evolution.

Sites evolving according to different processes Models that allow different sites
to evolve at different rates can be seen as mixtures of Markov models (see Chap-
ter 5 in this volume in this volume). The difficulty with such heterogeneous
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models is that a mixture of Markov models is generally not a Markov model and
the existence of an additive distance measure to reconstruct a topology, heav-
ily relies upon the Markov property. Baake [2] established that if a rate factor
varies from site to site, different topologies may produce identical pairwise dis-
tributions. Consequently, identifiability of the topology is lost on the basis of
pairwise distributions, even if the distribution of rate factors is known. However
the maximum likelihood method makes use of the full joint distribution of the
sites; it still can be expected that conditions of identifiability may be recovered
from the complete information of infinite sequences in general heterogeneous
models. Nothing has been proved in the general context yet.

Identifiability issues have been discussed under the stationary and reversible
assumption. Results have been established by [45], [8] and are summarised in [41].

Suppose that the Markov process is stationary and time reversible, and that
on every branch b, all sites evolve according to the same rate matrix Q multi-
plied by a rate factor r selected according to a probability distribution f(r).The
transition matrix for the sites evolving at rate factor r is

P(b) = exp
(
rQt(b)

)
, r drawn with distribution f.

Under assumption (H), the topology and the full scenario are identifiable if

• f is completely specified up to one or several free parameters, or

• f is unknown but a molecular clock applies, i.e. all of the leaves of the tree
are equidistant from the root.

The case with f completely specified is formally identical to the situation
with constant rates, if the LogDet transform is replaced by an appropriate tree
distance based on the moment-generating function of f . One tractable case is
where f is a Gamma distribution and its density function is governed by one
parameter estimated from the data (see Section 0.4.2). Without a parameterised
form of the distribution f or without strong assumptions such as a molecular
clock, different choices of f and the transition matrices may be combined with
any tree to produce the same joint distribution of the sites.

Tuffley and Steel [51] analyzed a simple covarion model and compared it
with the rates-across-sites model of Yang [55]. They showed that the two models
cannot be distinguished from the pairwise distribution of the sites but argued
that the two models could indeed be identified from the full joint distribution,
provided the number of leaves is at least four. A proof of the identifiability of Site-
specific Rate Variation models (see Section 0.4.3) remains to be done. However,
these models are already implemented [21] and experience indicates that they
should be identifiable.
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0.6.3 Coping with errors in the model

Current implementations are restricted to stationary and reversible models: ho-
mogeneous or among-site rate variation models, including mixed invariable sites
and gamma-distributed rates. In these cases, the models are identifiable un-
der mild conditions, and maximum likelihood will consistently estimate the tree
topology, the branch lengths and the parameters of the Markov evolution process.

Several authors have published examples where maximum likelihood does not
recover the true tree [8, 15]. However none of these constitute a counterexample
to the consistency of maximum likelihood methods since, in each case, the basic
conditions for consistency are not fulfilled. They either lack identifiability, or the
true model is not a member of the class of models considered.

We have stressed several times that the models used in likelihood analysis
are simplifications of the actual processes. For this reason, it is essential that
we consider the effect of model misspecification. Suppose we postulate a model
{Pθ, θ ∈ Θ}; however the model is misspecified in that the true distribution
P that generated the data does not belong to the model. For instance, we can
perform a maximum likelihood reconstruction with a single stationary Markov
model whereas the observations were truly generated by a mixture of Markov
models (Chapter 5 in this volume). If we use the postulated model anyway, we

obtain an estimate θ̂n from maximizing the likelihood. What is the asymptotic
behavior of θ̂n?

Under conditions (1) and (2) stated above, we can prove that θ̂n converges
to the value θ0 that maximizes the function θ −→ l(θ). The model Pθ0

can be
viewed as the “projection” of the true underlying distribution P on the family
{Pθ} using the so-called Kullback-Leibler divergence as a distance measure. If
the model Pθ0

is not too far off from the truth, we can hope that the estimator
Pbθ is a reasonable approximation for the true model P . At least, this is what
happens in standard classical models, which are nicely parametrised by Euclidian
parameters [53].

In the phylogenetic setting, things are complicated by the presence of a dis-
crete non-Euclidian tree parameter. The standard theory does not extend in a
straightforward manner. It is not surprising that the above-cited “counterex-
amples” all display tree topologies where long branches are separated by short
branches; these situations typically favour a lack of robustness. To what ex-
tent can likelihood reconstructions recover the true topology when the evolution
model is misspecified? A better understanding of the uncertainty in tree esti-
mation is an important direction for future work, so that we can quantify the
robustness of likelihood methods and improve testing procedures (see Chapter 4
in this volume).

0.7 Likelihood ratio tests

Once a model is developed and the likelihood is optimised, that model may
be used to carry out many different statistical tests. In traditional hypothesis
testing one often chooses a null hypothesis H0 defined as the absence of some
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effect; this can be viewed as testing whether some parameter values are equal
to zero. For example, testing whether the proportion of invariant sites is zero,
or whether there is no rate heterogeneity between sites. If the increase in log-
likelihood from raising the proportion of invariant sites from its value under H0,
i.e. 0, to its maximum likelihood estimation is ‘significant’ in some sense, then H0

is rejected at level α (where α is the probability of rejecting H0 when it is indeed
true). Otherwise, we say that the data at hand do not allow us to reject H0; the
proportion of invariant sites may indeed be positive, but we cannot detect this.

Suppose that H0 is derived from a full alternative H1 by setting certain pa-
rameter values to 0. We can then define sets Θ0 and Θ1 such that H0 corresponds
to the situation that the true parameter θ is in Θ0 ⊆ Θ1, and H1 corresponds
to the case θ ∈ Θ1 − Θ0. A natural testing idea is to compare the values of
the log-likelihood computed under H0 and H1 respectively. The corresponding
normalised test statistic is called the (log)likelihood ratio statistic.

LR = −2

[
max
θ∈Θ0

log(L(θ)) − max
θ∈Θ1

log(L(θ))

]
.

The statistic LR is asymptotically chi-squared distributed under the null hy-
pothesis. The decision rule becomes : reject H0 if the value of the likelihood
ratio statistic exceeds the upper α-quantile of the chi-square distribution. Like-
lihood ratio tests turn out to be the most powerful tests in an asymptotic sense
and in special cases. Thus they are widely used as byproducts of maximum like-
lihood estimation. However, it is important to realize that their validity heavily
relies on two main conditions: H0 is a simpler model nested within the full model
H1 and the correct model belongs to the full model H1. For example, in test-
ing whether the proportion of invariant sites is zero, the latter condition implies
that the estimated topology is correct and the true rate distribution belongs to
gamma+invariant distributions.

Several papers have recently documented the incorrect use and interpreta-
tion of standard tests in phylogenetics, due to improper specifications of the
test hypotheses [25], or to biases in the asymptotic test distributions [32] or to
model misspecification [5]. Ewens and Grant [12] present examples where an
inappropriate use of the LR statistic can cause problems. We review here the
assumptions that have to be fulfilled to ensure the validity of likelihood ratio
tests and we make precise some restrictions on their applicability. In particular,
tests comparing tree topologies cannot use directly the asymptotic framework of
likelihood ratio testing.

0.7.1 When to use the asymptotic χ2 distribution

Suppose a sequence of maximum likelihood estimators θ̂n is consistent for a pa-
rameter θ that ranges over an open subset of Rp. This is typically true under
Wald’s conditions and identifiability (see Section 0.6). The next question of in-

terest concerns the order at which the discrepency θ̂n − θ converges to zero. A
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standard result says that the sampling distribution of the maximum likelihood
estimator has a limiting normal distribution

√
n(θ̂n − θ) −→ N (0, i−1(θ)), as n −→ ∞,

where i(θ) is the Fisher information matrix i.e. the p× p matrix whose elements
are the negative of the expectation of all second partial derivatives of log L(θ).

The convergence in distribution means roughly that (θ̂n−θ) is N
(
0, (ni(θ))−1

)
–

distributed for large n. It implies that the maximum likelihood estimator is
asymptotically of minimum variance and unbiased, and in this sense optimal [53].

Suppose we wish to test the null hypothesis H0 that is nested in the full
parameter set of the model of the analysis, say H1. Write θ̂n,0 and θ̂n for the
maximum likelihood estimators of θ under H0 and H1, respectively. The likeli-
hood ratio test statistic is

LR = −2
[
log L(θ̂n,0) − log L(θ̂n)

]
.

If both H0 and H1 are “regular” parametric models that contains θ as an inner
point, then, both θ̂n,0 and θ̂n can be expected to be asymptotically normal with
mean θ and we obtain the approximation under H0

LR ∼
√

n(θ̂n − θ̂n,0)
ti(θ)

√
n(θ̂n − θ̂n,0).

Then the likelihood ratio statistic can be shown to be asymptotically distributed
as a quadratic form in normal variables. The law of this quadratic form is a
chi-square distribution with p − q degrees of freedom, where p and q are the
dimensions of the full and null hypotheses.

The main conditions of this theory to apply are that the null and full hy-
pothesis H0 and H1 are equal to Rq and Rp (or are locally identical to those
linear spaces), and that the maximum likelihood estimator can be found from a
nonboundary point where the likelihood function is differentiable.

0.7.2 Testing a subset of real parameters

The requirement that the parameters of interest be real numbers is not met if
the tree topology is estimated as part of the maximizing procedure. Thus for the
moment we assume that the tree topology is given. θ represents here the scalar
parameters, i.e. the branch lengths and/or parameters of the evolution process.

Suppose that we wish to test a general linear hypothesis H0: Aθ = 0, where
A is a contrast matrix of rank k (i.e. there are p− k free parameters to estimate
under H0). For example, Aθ = 0 could correspond to the situation where a
particular parameter is zero, in which case k = 1. For large n, it can be assumed
in this case that LR has a chi-square distribution with k degrees of freedom
under H0. LR is typically computed by examining successively more complex
models, for example to test whether increasing the number of parameters of the
rate matrix Q yealds a significant improvement in model fitting, with respect to
the chosen topology.
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The LR test is based on the assumption that the tree topology and the
evolutionary model are correct. If it is not the case, the induced model bias can
make tests reject H0 too often, or too rarely [5]. In practice, phylogenetic models
are always mis-specified to a degree. This means that one has to be cautious in
interpreting test results for any real data, even if the test is well-founded with
respect to theory.

0.7.3 Testing parameters with boundary conditions

We have assumed that the topology is given; even under this restriction, the chi-
square approximation fails in a number of simple examples. The “local linearity”
of the hypotheses H0 and H1 mentioned above is essential for the chi-square
approximation. If H0 defines a region in the parameter space where some pa-
rameters are not specified, there is no guarantee in general that the distribution
of the test statistic is the same for all points in this region. If testing one-sided
hypotheses, then the null hypothesis is no more locally linear at its boundary
points. In that case, however, the testing procedure can be adapted: The asymp-
totic null distribution of the LR statistic is not chi-square, but the distribution
of a certain functional of a Gaussian vector [40].

A related example arises when some parameters of interest may lie on the
boundary of the parameter space Θ1. Usual boundary conditions are that the
branch lengths, the proportion of invariant sites or the shape of a gamma dis-
tribution of site substitution rates have nonnegative values and difficulties occur
when testing whether those parameters are zero. Boundary related problems can
also affect tests of the molecular clock. [32] derived the appropriate corrections
to the asymptotic distributions of the likelihood ratio test statistics, which turn
out to be a mixed combination of chi-square distributions and the Dirac function
at 0.

0.7.4 Testing trees

When the tree topology is estimated as part of the testing procedure, the condi-
tions derived at the end of Section 0.7.1 are not fulfilled. This follows essentially
because the tree topology is not a real parameter. Moreover, phylogenetic mod-
els displaying different tree topologies are in general not nested. For all these
reasons, tests involving estimated topologies are simply outside the scope of the
likelihood ratio tests theory.

Tests involving topologies are thoroughly discussed in Chapter 4 in this vol-
ume, and alternatives to the classical likelihood-ratio testing procedure are pro-
posed. Another promising testing framework is provided by the likelihood-based
tests of multiple tree selection developed in the papers by Shimodaira [43, 42].
The model selection approach aims at testing which model is better than the
other, while the object of the likelihood ratio test is to find out the correct
model. This offers a more flexible approach to model testing, where different
topologies combined with different evolution processes can be compared.
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0.8 Concluding remarks

Molecular phylogeny is a stimulating topic in that it is at the boundary of biol-
ogy, algorithmics, and statistics, as illustrated in this chapter. The three domains
have progressed considerably during the last twenty years: data sets are much
bigger, models much better, and programs much faster. Some problems, however,
still have to be solved. Not every model that we would want to use permits fea-
sible likelihood calculation. Models for partially relaxing the molecular clock, for
example, are highly desirable but currently not tractable in the ML framework.
As far as algorithmics is concerned, we have already stressed the probable non-
optimality of the optimization algorithms used in the field, a problem worsened
by the fact that not all algorithms are published. The statistics of phylogeny
also require some clarification, as illustrated in Sections 0.6 and 0.7. The prob-
lem of model choice, for example (which model to choose for a given data set),
is probably not addressed in a satisfactory way in current literature.

An important issue, finally, is the problem of combining data from different
genes (the supertree problem). Most approaches to this question have come from
combinatorics, while a statistical point of view should be the appropriate one.
This would require research into the parametrization of the multi-gene model,
and the ability of ML methods to cope with missing data. Recent progress in
this area is surveyed in Chapter 5 in this volume.
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