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There are many ways to combine rooted phylogenetic trees with overlapping
leaf sets into a single “supertree”. The most widely used method is MRP
(matrix representation with parsimony analysis), but other direct methods have
been developed recently. However, all these methods utilize typically only the
discrete topology of the input trees and ignore other information that might be
available. Based, for example, on fossil data or molecular dating techniques,
this information includes whether one particular divergence event occurred
carlier or later than another, and actual time estimates for divergence events.
The ability to include such information in supertree construction could allow
for more accurate dating of certain species divergences. This is a topical
problem in recent biological literature. In this chapter, we describe a way to
incorporate divergence time information in a fast and exact supertree
algorithm that extends the classic BUILD algorithm. The approach is somewhat
flexible in that it allows any combination of relative and/or absolute
divergence times. In addition to this extension, the last section of this chapter
consists of applications of BUILD to problems in phylogenetics that are, in
general, computationally challenging.

BUILD; divergence dates; rooted phylogenetic tree; supertree

Introduction

We will follow mostly the notation of Semple and Steel (2003) and assume
that the reader is familiar with the basic concepts of phylogenetic trees.
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Figure 1. T, displays T;.

Let 7 be a rooted phylogenetic X-tree. Thus, X refers to the leaf set of 7,
here denoted £(7), which represents typically the set of extant species
classified by 7. If X' C X, then the restriction of T to X', denoted T|.X', is the
rooted phylogenetic X'-tree that is obtained from the minimal rooted subtree
of T containing X" by suppressing all non-root vertices of degree two.

Let 7; and 7> be two rooted phylogenetic trees with £(7T7) C £(7T;). We
say that T, displays T, if T,| L(T;) is a refinement of 7. Informally, 7,
displays 7 if, up to polytomies, all the ancestral relationships of 7 are
preserved in T;. This notion is illustrated in Figure 1.

For a collection R of rooted phylogenetic trees, we denote the set
Urex £(7) by L(R). Extending the notion of display to R, we say that a
rooted phylogenetic tree T with L(R) C L(7) displays R if every member of
R is displayed by 7. Via an algorithm called BUILD, Aho ef al. (1981)
showed that there is a polynomial-time algorithm to determine if a rooted
phylogenetic tree exists that displays R and, if so, to construct such a rooted
phylogenetic tree.

Informally, BUILD constructs clusters (subsets of £(R)) that are broken
down successively into disjoint subclusters according to the hierarchical
relationships described by the trees in R. If this process continues until all
singleton clusters (i.e., clusters consisting of just a single species) are
obtained, the rooted tree that corresponds to this resulting set of clusters is
the tree returned by BUILD that displays R. However, if the process stops
before all singleton clusters are obtained, then there is no rooted
phylogenetic tree that displays R.

We remark here that BUILD was applied originally to relational databases
and its application to phylogenetics appeared somewhat later (e.g., Steel,
1992; Constantinescu, 1995; Ng and Wormald, 1996; Semple, 2003). This
fact might explain why BUILD is not that well known in this field.

A natural extension of BUILD is to include as input a collection of
constraints representing the order in which the divergence events of certain
different pairs of species occurred. To make this precise, we need several
further definitions. Let T be a phylogenetic tree. For all vy, v, € V(7T), we
write v; <; v, if v, is a descendant of v,. The relation <;induces a partial
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Figure 2. A ranked phylogenetic tree.

order on the vertices of 7. For a subset 4 of £(7), the unique vertex of 7 that
is the greatest lower bound of 4 under <;is referred to as the most recent
common ancestor of A in T. We denote this vertex as mrcai4). For
simplicity, if 4 = {a, b}, we denote mrca({a, b}) by mrca(a, b).

Let T be a rooted phylogenetic tree. A rank function for T is a function r
from the set V° of interior vertices of T into the set of positive integers such
that, for all vy, v, € V°, r(vy) < r(v,) if v, is a proper descendant of v;. The
pair (7, r) is a ranked phylogenetic tree. Again for simplicity, we denote
r(mrca(A4)) by r(A) for all subsets 4 € L(7T). In this chapter, a ranking of the
interior vertices of T corresponds to an ordering of the occurrence of the
associated speciation events. An example of a ranked phylogenetic tree is
illustrated in Figure 2.

For species a, b, c, d, a relative divergence date is a statement of the form
“div(c, d) predates div(a, b)”, which is interpreted as “the divergence of ¢
and d predates that of a and b”. No specific dates are required to make this
statement, just an ordering on the two associated speciation events.

Let D be a collection of relative divergence dates. We denote the set
U{a, b, c, d} over all statements “div(c, d) predates div(a, b)” in D by L(D).
That is, L(D) is the set of all species that are mentioned by at least one
statement of relative divergence. Also, we say that D is preserved by a
ranked phylogenetic tree (7, r) with L(D) C L(T) if r(c, d) < Ha, b) for all
statements “div(c, d) predates div(a, b)” in D.

In the first part of this chapter, we present an algorithm called
RANKEDTREE that provides a polynomial-time solution to the following
classification problem.

Problem: PHYLOGENETIC RANKING

Instance: A collection R of rooted phylogenetic trees and a collection D of
relative divergence dates.
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Figure 3. Two rooted phylogenetic trees 77 and 7,. Applying RANKEDTREE to these
trees with the two relative divergence dates “div(c, d) predates div(a, b)” and “div(a, e)
predates div(c, d)” gives the ranked phylogenetic tree shown in Figure 2.

Question: Does a ranked phylogenetic tree on L(R) U L(D) exist that
displays R and preserves D and, if so, can we construct such a ranked
phylogenetic tree in polynomial time?

To illustrate PHYLOGENETIC RANKING, consider the phylogenetic trees
T: and T,, and the two relative divergence dates shown in Figure 3.
Applying RANKEDTREE to T; and 7, and these relative divergence dates
results in the ranked phylogenetic tree (7, r) shown in Figure 2. Observe that
T displays both 77 and 75, and 7T preserves both relative divergence dates. In
this case, (7, r) is unique; however, this does not generally happen. Note that
it is possible for the interior vertices to have the same rank, in which case
there is no particular ordering of the associated speciation events.

The chapter is organized as follows. In the next section, we describe
briefly some necessary concepts. In Section 3, we present RANKEDTREE and
show that it does indeed give a polynomial-time solution to PHYLOGENETIC
RANKING. In Section 4, we extend the input of RANKEDTREE to include
interval constraints on divergence dates. Lastly, in Section 5, we describe
some applications and extensions of the BUILD algorithm.

2.  Clusters, hierarchies, and precedence constraints

Let 7 be a rooted phylogenetic X-tree. A cluster of T'is a subset of X whose
elements are the set of descendants of a vertex of 7. Observe that X is a
cluster of 7 and, for all x € X, {x} is a cluster of 7. We denote the set of
clusters of Tby H(7T).

The set of clusters of a rooted phylogenetic X-tree is an example of a
hierarchy 7 on X; that is, a collection of subsets of X that has the property
that, for all 4, B € H,

ANBE {©,4,B).
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Hierarchies and rooted phylogenetic trees are related closely. In
particular, given a hierarchy J on X that contains X and all 1-element
subsets of X, there is a unique rooted phylogenetic X-tree the set of clusters
of which is . Thus, a rooted phylogenetic tree T is determined by its set of
clusters H(T). Indeed, T can be constructed quickly and easily from H(7).
Furthermore, we can associate a rank function to a hierarchy in the same
way we associate a rank function to the interior vertices of a rooted
phylogenetic tree. Let  be a function from H — {{x} : x € X} into the set of
positive integers such that, for all 4, BE H — {{x} : x € X}, (4) < r(B) if B
is a proper subset of 4. If HH contains X and all 1-element subsets of X, the
pair (H, r) is called a ranked hierarchy on X and the function r is a rank
function for H. Observe that, by the remarks above, we can view ranked
hierarchies on X as ranked phylogenetic X-trees. This viewpoint is used
freely throughout this chapter.

Lastly, a precedence constraint is a pairwise relationship of the form

(¢, d) < (a,b),

where a, b, ¢, and d are species. Note that a, b, ¢, d are not necessarily
different because we might wish to allow constraints such as (a, c¢) < (a, b)
(i.e., where the same species is involved in both divergence events). In the
context of this chapter, such a constraint denotes that the divergence of ¢ and
d predates that of a and b. For a collection 2 of precedence constraints, we
denote the set U{a, b, c, d} over all (c, d) < (a, b) € P by L(P). A collection
P of precedence constraints is preserved by a ranked phylogenetic tree (7, r)
with L(P) C L(T) if r(c, d) < r(a, b) for all (¢, d) < (a, b) E P.

3. RANKEDTREE

In this section, we present RANKEDTREE, a polynomial-time solution to
PHYLOGENETIC RANKING.

The input to RANKEDTREE is a collection of precedence constraints.
These constraints are constructed from the collection R of rooted
phylogenetic trees and the collection D of relative divergence dates.
Evidently, a ranked phylogenetic tree preserves the relative divergence date
“div(c, d) predates div(a, b)” if and only if it preserves (¢, d) < (a, b). We
next show that a rooted phylogenetic tree 7 displays R if and only if (7, r)
preserves a certain collection of precedence constraints for some rank
function r for 7.

A rooted triple is a rooted binary phylogenetic tree 7 on three leaves.
The rooted triple with leaves a, b, and ¢ is denoted ab | c if mrcagia, b) is a
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descendant of mrca,{(a, c) or, equivalently, a descendant of mrca b, c¢). The
straightforward proof of the next lemma is omitted.

Lemma 3.1. Let T be the rooted triple ab | ¢, let T' be a rooted phylogenetic
tree with {a, b, ¢} C L(T"), and let r be a rank function for T! Then T'
displays T if and only if 1(a, ¢) < r(a, b).

For a rooted phylogenetic tree 7, let R(T) denote the set of rooted triples
displayed by 7. It is well known that all rooted phylogenetic trees that
display R(7) are refinements of 7 (e.g., see Theorem 1 of Bryant and Steel,
1995). Lemma 3.2 is an immediate consequence of this result and Lemma
3.1

Lemma 3.2. Let R be a collection of rooted phylogenetic trees and let

P={(a,c)<(a,b):ab|cER(T)and TE R}.

Let T' be a rooted phylogenetic tree with L(T") = L(R). Then T displays
R if and only if there is rank function r for T' such that (T, r) preserves P.

The algorithm RANKEDTREE is shown in Figure 4. Note that, for a graph
G and a subset V' of the vertex set of G, G[V'] denotes the subgraph of G
induced by V; that is, the subgraph of G that has vertex set /' and edge set
{{a, b} EEG):a,bEV}.

Briefly, RANKEDTREE works as follows. The input to RANKEDTREE is a
collection P of precedence constraints. If there exists a ranked phylogenetic
tree that preserves P, then RANKEDTREE builds a ranked hierarchy (#, r) on
L(P) recursively beginning with the hierarchy {L£(7?)}. At iteration £, a
hierarchy H; on L(P) is constructed by adding the blocks of particular
partitions of minimal members of F; ;. Which blocks are added is
determined by the components of a certain graph that is constructed at each
iteration. This process ends when the constructed hierarchy contains {x} for
all x € L(P). If there is no such ranked phylogenetic tree, then at some
iteration, i say, no new blocks are added to #{; | and RANKEDTREE returns
“not compatible”, indicating that there is no such ranked phylogenetic tree.

Theorem 3.3 is the main result of this section.

Theorem 3.3. Suppose that RANKEDTREE is applied to a collection P of
precedence constraints.
@) If RANKEDTREE returns a ranked hierarchy on L(P), then this
ranked hierarchy preserves P.
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RANKEDTREE(P)

Input:
A collection 2 of precedence constraints
Output:
A ranked hierarchy (#, r) on L(P) that preserves P or the phrase “not compatible” if
no such hierarchy exists
Data structures:
Partitions my, 7, ... of L(P)
Hierarchies H,, 35, ... on L(P)
Graphs G, = (L(P), E}), G, = (L(P), Ey), ...
Rank function r

begin
k<1
Hy < {L(P)}
<= {L(P)}
repeat while m; contains a block with at least two elements
Ey < {{a, b} : there exists B € m;and ¢, d € B with (¢, d) < (a, b) € P}
Gy < (L(P), Ep)
if G,[B] is connected for all B € n;, then
return “not compatible” and halt
else
Let 144+ be the partition of X given by the components of G;.
Hir <= Hy U iy
for all blocks B in m; that are not blocks of 1;.; do
rB) <k
end (for)
k<—k+1
end (if-else)
end (repeat)
H— H,
return # and r
end.

Figure 4. RANKEDTREE.

(ii) If RANKEDTREE returns ‘“not compatible”, then there is no
ranked hierarchy that preserves P.

Proof. To prove (i), suppose that RANKEDTREE returns a ranked hierarchy
on L(P). Furthermore, suppose that (c, d) < (a, b) € P and r(c, d) = /. Then ¢
and d are clements of the same block of w; for all £ </, and therefore
{a, b} € E; for all k < [. It follows that a and b are elements of the same
block of ny for all £k <[+ 1. Thus r(c, d) <[+ 1 <r(a, b). It follows that the
returned rank hierarchy preserves 2.
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Now consider (ii). Suppose that there exists a ranked hierarchy (H, ")
that preserves P, but RANKEDTREE returns “not compatible” at iteration k.
Then, for all blocks B of m;, the graph G,[B] is connected.

Let B be a block of wt; that minimizes

max{r (4): A€ H ,BC A},

and let A be the member of " that corresponds to this minimization. By the
minimality of 4, there exist disjoint members 4;, 4, € H such that
Ay, A; C A, and 4, N B and 4, N B are both non-empty. Choose 4; and A4, to
be maximal with these properties.

Because Gy[B] is connected, there is an edge in this graph joining a
vertex a € A1 N B and a vertex b € 4, N B. This implies that there is a
precedence constraint (¢, d) < (a, b) € P such that ¢ and d are elements of
the same block B’ of m;. Because (H, ") preserves P, we have r(c,d) <
¥ (a, b). By the choice of a and b, we have r (a, b) = r (4) = r (B). But then

¥ (BY<r (c,d)<r'(a,b)=r(B),
contradicting the choice of B. This completes the proof of (ii).

Proposition 3.4. For a collection P of precedence constraints,
RANKEDTREE can be implemented to run in 0(| fP| + n’) time, where n =
| L(P)|.

Proof. The running time of RANKEDTREE is dominated by the time taken to
complete the main loop. Provided the statement “not compatible” is not
returned, each pass through this loop adds at least one cluster to the
hierarchy being built. Because there are at most 2n — 2 clusters that can be
added, there are at most O(n) iterations of this loop. Now, for each iteration k&
of this loop, we construct a graph, determine its components, and update the
hierarchy assigning a ranking to certain members of the resulting hierarchy.
For the first iteration, the graph G, takes O(| P’|) time to construct. After
that, for all k£, we can construct G4 from G, by deleting the appropriate
edges. Over all iterations, the total time required to construct all these graphs
is 0(| fP| ). Lastly, for each iteration, it takes O(n”) time to determine the
components, update the hierarchy, and assign a ranking as above.

Combining the remarks at the beginning of this section with Theorem 3.3
and Proposition 3.4, we get the following corollary immediately.

Corollary 3.5. The algorithm RANKEDTREE provides a polynomial-time
solution to PHYLOGENETIC RANKING.
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1 2

Figure 5. Two rooted phylogenetic trees 7; and 7T>.

Remarks.

(1)

(i)

4.

Those readers familiar with BUILD will observe that
RANKEDTREE works in a similar way. Indeed, if the input to
RANKEDTREE arises from just a collection R of rooted
phylogenetic trees and includes no relative divergence dates, then
its output is identical to that returned by BUILD applied to R.
However, there is one significant difference. In BUILD, one
considers a single minimal block of the current hierarchy at each
iteration. Here, we need to consider all such blocks to guarantee
an appropriate ranking.

The rooted phylogenetic tree that is associated with the ranked
phylogenetic tree returned by RANKEDTREE when applied to a
collection R of rooted phylogenetic trees and a collection of
relative divergence dates is not necessarily a refinement of the
rooted phylogenetic tree returned by BUILD when applied to R.
For example, consider the two rooted phylogenetic trees 7, and
T, shown in Figure 5 and the relative divergence date “div(a, c)
predates div(a, b)”. Applying BUILD to 7; and 7, returns the
rooted phylogenetic tree shown in Figure 6(a). However,
applying RANKEDTREE to T; and 7, as well as the relative
divergence date, returns the ranked phylogenetic tree shown in
Figure 6(b).

Divergence time intervals

In this section, we extend the input of RANKEDTREE to include time bounds
on speciation events.

Let 7 be a rooted phylogenetic X-tree. A divergence time function for T
is a function ffrom the set V° of interior vertices of 7T into the set R of
positive reals, so that, if vi, v, € V° and v, is a proper ancestor of v,, then
f(v1) > fivy). The pair (7, f) is a dated phylogenetic tree. For a subset 4 of X
of size at least two, we denote fimrca{4)) by f{4). In the context of this
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(a) (b)

Figure 6. Rooted phylogenetic trees produced by (a) BUILD when applied to the trees
7, and 75 in Figure 5 and (b) RANKEDTREE when applied to 77 and 7, in Figure 5 as well
as the relative divergence date “div(a, ¢) predates div(a, b)”.

chapter, the values assigned to the interior vertices of 7 in this way represent
the number of years ago that the corresponding speciation events occurred.

For species a and b, a divergence time bound on a and b is a lower or
upper bound, denoted by /(a, b) and u(a, b), respectively, on the number of
years ago that ¢ and b diverged. If a and b have both a lower and upper
bound, then /(a, b) < u(a, b). If no information is provided concerning a
lower or upper bound on the divergence time of @ and b, we can always take
l(a, b) = 0 and u(a, b) = «, respectively.

Let I be a collection of divergence time bounds. We denote the set
U{a, b} over all l(a, b), u(a, b) € I by L(I). Furthermore, J is preserved by a
dated phylogenetic tree (7, f) if /(a, b) < fla, b) and f(a, b) < u(a, b) for all
l(a, b), u(a, b) € I

Farach et al. (1995) showed that, given a collection I of divergence time
bounds, there is a polynomial-time solution for determining and, if possible,
constructing a dated phylogenetic tree with leaf set £(I) that preserves I.
They refer to this problem as the “sandwich-to-ultrametric” problem, and the
running time of the algorithm is O(|I| + n log(n)) where n = | £(I)| . In this
section, we show that there is a polynomial-time solution to the following
extension of this problem.

Problem: PHYLOGENETIC DIVERGENCE TIMES

Instance: A collection R of rooted phylogenetic trees, a collection D of
relative divergence dates, and a collection I of divergence time bounds.
Question: Does a dated phylogenetic tree with leaf set L(R) U L(D) U L(])
exist that displays R and preserves D and I and, if so, can we construct such
a tree in polynomial time?

Like PHYLOGENETIC RANKING, one can obtain a polynomial-time
solution to PHYLOGENETIC DIVERGENCE TIMES via RANKEDTREE. Indeed,
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by transforming 7 to the collection of precedence constraints in the statement
of Theorem 4.1, such a solution immediately follows from Theorems 3.3 and
4.1.

Theorem 4.1. Let T be a collection of divergence time bounds and let
P, u)={(c, d) < (a, b) : l(c, d) > u(a, b), where l(c, d), u(a, b) € I}.

Let T be a rooted phylogenetic tree on L(I). Then there is a divergence time
Sfunction f for T with (T, f) preserving I if and only if there is a rank function
r for Twith (T, r) preserving P.

Proof. First suppose that there is divergence time function f for 7 such that
(7, /) preserves I. Let vy, s, ..., v, be an ordering of the interior vertices of T
such that

Sv) = fva) = ... = fv).

Let 7 be the function from the set ¥ of interior vertices of 7 into the set of
positive integers defined, for all i, by #(v;}) = i. We next show that (7, r)
preserves P(/, u).

Let (¢, d) < (a, b) € P(l, u), and let v; = mrca,{(c, d) and v; = mrca(a, b).
Because (¢, d) < (a, b) € P(I, u), we have u(a, b) < l(c, d). Therefore,

Aa, b) <u(a, b)<i(c, d) < flc, d)

and so f{v;) > f(v;). This implies that i <j and so r(c, d) = r(v;\) < r(v)) =
r(a, b). It follows that (T, r) preserves P(l, u).

For the converse, suppose that there is a rank function r for 7 such that
(7, r) preserves P(I, u). For each v € V°, let

€)) fi(v) =max{{0} U {l(a, b) : r(a, b) > r(v) and l(a, b) € I}}

and

(2) fu(v) =min {{o} U {u(c, d) : r(c, d) < r(v) and u(a, b) € 1} }.

We show first that fi(v) < f,(v) for all v. Suppose there exists an interior
vertex v such that f(v) > f,(v). Then there are elements a, b, ¢, d € X such

that I(a, b) > u(c, d), r(a, b) > r(v), and r(c, d) < r(v). This implies that
(a,b) < (c, d) € P(l, u) and so r(a, b) < r(c, d); a contradiction. Thus,
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fi(v) < fu(v) for all v € V°. Furthermore, by construction, if #(v) < r(v') for
vertices v, v' € V°, then fi(v) > fi(v) and f,(v) > f.(v").
Now let vy, vy, ..., v, be an ordering of the interior vertices of 7T such that

r(v)) <r(vy) < ... <r(vy).

Let f be the function from V*into the set of positive reals that is defined
recursively as follows:

(1) set f{v1) so that fi(v1) < fivy) < f.(»1), and
(i1) for all i € {2, ..., n}, set f{v;) so that fi(v;) < fiv;) < min{f(viy),

Juvi)}-

Observe that, if v = mrca(a, b) for some a, b € X, then

l(a, b) < fi(v) <f(v) <fuv) = w(a, D).

Moreover, if v'is a proper descendent of v, then, by the minimality condition
in (ii), f{v") < f{v). We conclude that (7T, f) preserves I.

Example 4.2. To illustrate PHYLOGENETIC DIVERGENCE TIMES, suppose
that we have as our instance R = {7, T,}, where 7| and 7, are as shown in
Figure 7; D consisting of the statement “div(a, e) predates div(c, f)”’; and J
consisting of the divergence time bounds (in millions of years) /(a, d) = 1
and u(a, d) = 3.5, l(a, b) = 4 and u(a, b) = 6, and l(c, f) = 3 and u(c, f) = 5.
Treating this instance as input, RANKEDTREE returns the ranked
phylogenetic tree (7, r) shown in Figure 8.

Figure 9(a) shows 7T together with the values fi(v) and f,(v) for each
interior vertex v given by (1) and (2), respectively. Furthermore, Figure 9(b)
shows 7 together with a divergence time function f for 7 given by (i) and (ii)
in the proof of Theorem 4.1.

Suppose that RANKEDTREE applied to collections R, D, and I of rooted
phylogenetic trees, relative divergence dates, and divergence time bounds
returns a ranked phylogenetic tree. Let a, b € L(R) U L(D) U L(I). We
would like to find the most recent (respectively, most ancient) admissible
dates of the divergence of a and b. This is the smallest (respectively, largest)
date measured from the present into the past at which a and b could have
diverged so that RANKEDTREE applied to these collections together with the
lower bound (respectively, upper bound) corresponding to this date returns a
ranked phylogenetic tree. Note that these values are not given immediately
by the output of RANKEDTREE applied to R, D and I. There are two reasons
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a b ¢ f e d a
T, T,

Figure 7. Two rooted phylogenetic trees 7; and 7T>.

(T.7)

Figure 8. The ranked phylogenetic tree produced by RANKEDTREE when applied to
7, and T, in Figure 7 together with the relative divergence dates and divergence time
bounds given in Example 4.2.

®) (T./)

Figure 9. Assigning a divergence time function to the ranked phylogenetic tree
shown in Figure 8. (a) The assignment of intervals as given by (1) and (2) in the proof of
Theorem 4.1. (b) One allowable choice of divergence dates.

for this. First, for any interior vertex v, the interval [f(v), f,(v)] described in
the proof of Theorem 4.1 does not necessarily contain all possible admissible
dates for v in the tree returned by the algorithm. As a simple illustration of
this, consider the pair d and e in Example 4.2. The most recent admissible
divergence date for d and e is just before the present time (technically, 0 + €,
where € > 0) and not the value 3 as illustrated in Figure 9(a). Second, there
might exist many rooted phylogenetic trees that display R and preserve D
and 7 for which there is a divergence time function that allows more ancient
or more recent divergence times for a particular pair of species than that
given by the tree returned by RANKEDTREE. To avoid having to search a
possibly exponential set of trees, it is therefore comforting to have the
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following result, which shows that the problem can be solved in polynomial
time.

Corollary 4.3. Suppose that RANKEDTREE applied to collections R, D, and
I returns a ranked phylogenetic tree. Let a, b € L(R) U L(D) U L(]). Then
there is a polynomial-time algorithm for determining the most ancient and
most recent admissible dates for the divergence of a and b over all possible
rooted phylogenetic trees and divergence time functions that display R and
preserve D and 1.

Proof. We will describe a simple polynomial algorithm that uses
RANKEDTREE as a subroutine. It is possible that a more direct algorithm can
be developed, but we do not explore this here.

We ensure first that u and / are defined for all pairs of species by
extending I as follows: if u(x, y) & I, then set u(x, y) = o and, if I(x, y) & I,
then set /(x, y) = 0.

We describe a method for determining the most ancient admissible date
of the divergence of a and b; an analogous result for most recent admissible
date is similar. Let

T = {t:t Zu(a, b) and ¢ = u(x, y) for some u(x, y) € I with
u(x, y) > l(a, b)}.

Then, for any ¢ > 0, the most ancient admissible date for the divergence of a
and b is the maximum value of ¢ — € over all ¢t € T, with the property that
RANKEDTREE applied to R, D, and I together with /(a, b) = ¢ — ¢ returns a
ranked phylogenetic tree. Clearly, the running time of this method is
polynomial in | L(P)|.

5. Methodological applications of BUILD

The aim of this section is to illustrate how some problems in phylogenetics
that, in general, appear computationally intractable (NP-hard) can be solved
efficiently in certain cases by applying the simple supertree method BUILD.
We have chosen four problems to illustrate the scope of this approach. In
each of these problems, the computational part of the solution is done using
BUILD. The first two consider the supertree problem for unrooted
phylogenetic trees and the second two consider the compatibility of two-
state characters.
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5.1 Combining unrooted trees

Let 7 be a phylogenetic X-tree and let X’ C X. Analogous to the rooted case,
the restriction of T to X' is the phylogenetic X'-tree obtained by suppressing
all degree-two vertices of the minimal subtree of 7 containing X'. We denote
this restriction by 7T]|X. For two phylogenetic trees 7, and 7, with
L(T)) C L(T;), we say that T, displays T, if T, | £(T) is a refinement of 7.
A collection ‘U of phylogenetic trees is compatible if there is a phylogenetic
tree 7 that displays every member of U, in which case we say that 7'
displays ‘U.

For a collection of phylogenetic trees, determining the compatibility of
this collection is NP-complete in general (Bodlaender et al., 1992; Steel,
1992). However, the first two problems show that particular cases can be
solved efficiently.

5.1.1 Specified split

For our first problem, suppose we have a collection ‘U = {77, T, ..., Tz} of
unrooted phylogenetic trees together with a split 4 |B of Uar L(T). We
wish to determine if there is a phylogenetic tree that displays ‘U and induces
the split A | B. For the biologist, 4 | B should be thought of as some “reliable”
split of the taxa that is expected to be present in all acceptable supertrees of
‘U. The introduction of this split is important computationally because it can
allow for the fast solution of the problem of determining the compatibility
of U. This is described in Theorem 5.1, the proof of which provides a
polynomial-time algorithm.

Theorem 5.1. Let U = {Ty, Ty, ..., Ti} be a collection of phylogenetic trees
and let A| B be a split of X = U~y L(T)). Suppose that, for all i, L(T) N A
and L(T;) N B are both non-empty. Then there is a polynomial-time
algorithm to determine if a phylogenetic X-tree that displays ‘U and induces
the split A | B exists and, if so, to construct such a phylogenetic tree.

Proof. If, for some i, the split (4 N L(T)) | (B N £(T)) is not a split of T,
then there is no phylogenetic tree satisfying the statement of the theorem.
Thus, we can assume, for all i, that 0;= (4 N L(T})) | (B N L(T))) is a split of
T, Now, for each i, let 77" and 7;” denote the two rooted phylogenetic trees,
with £(T7) = L(T;) N 4 and L(T?) = L(T;) N B, obtained by deleting the
unique edge of 7 corresponding to o; and distinguishing the end vertices of
this edge as root vertices. Let R' = {71, To*, ..., T,y and R® = {7, T.°,
N
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If the application of BUILD to either R' or R” detects that either of these
is incompatible, then no phylogenetic X-tree exists that displays ‘U and that
also induces the split 4 | B. Otherwise, we will let T 4 and 7% denote the
rooted phylogenetic trees returned by BUILD when applied to R* and R”,
respectively. Thus, assume that two such trees are returned. Let T be the
phylogenetic X-tree obtained by adjoining the roots of 7 and T” with a new
edge. It now follows that T displays U, and 4 | B is an induced split of 7.

5.1.2 Quartet compatibility

Binary phylogenetic trees with just four leaves — quartet trees — play a
special role in phylogenetics. For example, the problem of determining the
compatibility of a set of unrooted phylogenetic trees can be reduced to
determining the compatibility of a set of associated quartet trees (see Steel,
1992). Furthermore, many techniques for reconstructing phylogenies (such
as the “quartet puzzling” approach of Strimmer and von Haeseler, 1996) are
based on quartet trees. Supertree techniques based on quartet methods have
also been proposed (e.g., Piaggio-Talice et al., 2004).

We will write xy | uv to denote the quartet tree in which the interior edge
separates the pair of leaves x, y from u, v. For a set Q of quartet trees, we let

L= JLD).

TE9

The proof of Theorem 5.2 describes an algorithm to determine the
compatibility of an arbitrary set of quartet trees. Although not in polynomial
time, this method might be practical when @ is reasonably small. McMotris
et al. (1994) provide a more general algorithm for this problem, but it has
complexity O(n*") where k= | Q| and n = | £(Q) |, which, in general, will
be larger than the complexity of the following approach.

Theorem 5.2. Let Q be a set of k quartet trees. Then there is an O(k*2")-time
algorithm for determining the compatibility of Q.

Proof. First note that, for a collection R of k rooted triples, BUILD can be
implemented to run on R in O(K*) time (see Aho et al., 1981).

To describe an algorithm that satisfies the statement of the theorem, let x
be an element not in £(9Q) and, for each g = ab | cd in 9, consider the
collections of rooted triples S1(¢) = {cd | a, cd|b} and Sx(q) = {ab|c, ab|d}.
For each g € 9, every rooted phylogenetic tree 7 that displays either Si(q) or
S»(g) has the property that the phylogenetic tree obtained from 7 by not
distinguishing the root and suppressing this vertex if it has degree two,
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displays ¢. Now, for each of the 2" functions ©: @ — {1, 2}, BUILD can
determine the compatibility of U,coSr)(¢g) in O(nk) time. Moreover, it is
checked easily that @ is compatible if and only if U,coSx)(q) 1s compatible
for some choice of n. The theorem now follows.

We note in passing that the running time of the algorithm in Theorem 5.2
could be improved slightly by invoking the approach of Henzinger et al.
(1999).

5.2 Two-state character compatibility

In the next two problems, we consider characters that assign one of two
states to some or all of the species. More precisely, a two-state character on
X is a function ¢ : X' — {0, 1}, where X" is some subset of X. Allowing X" to
be a strict subset of X allows for uncertainty or ambiguity of the character
state of certain species in X. The two-state character i is convex on a
phylogenetic X-tree if there exists a split 4 | B of T for which % '(0) C 4 and
% '(1) C B. Furthermore, a collection C of two-state characters on X is
compatible if there exists a phylogenetic X-tree on which all the characters in
C are convex, in which case we say that 7T displays C. The biological
relevance of these concepts, in particular their close connection with the
concept of homoplasy, is described by Semple and Steel (2002). In general,
determining the compatibility of Cis an NP-complete problem.

In both problems presented here, we consider the following collection of
rooted phylogenetic trees. For a two-state character y : X' — {0, 1}, let T,
denote the rooted phylogenetic X'-tree that has exactly two interior vertices
with the non-root vertex adjacent to the leaves in X_l(l) and the root vertex
adjacent to the leaves in % '(0). For a collection C of two-state characters on
X, let

) RO =1{T,:x € C}.

5.2.1 Directed case

Let % be a two-state character on X and let 7 be a rooted phylogenetic X-tree.
We say that y is convex on T relative to 0 — 1 if there is a function
f: V(T) — {0, 1} that extends  so that

@) there is no arc (u, v) of T with f{u) = 1 and Av) = 0, and
(i1) there is at most one arc (u, v) of 7 with f{u) =0 and f{v) = 1.
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Here, we view the edges of a rooted phylogenetic tree as arcs directed away
from the root. A collection C of two-state characters on X is compatible
relative to 0 — 1 if there is a rooted phylogenetic X-tree 7 on which all the
characters in C are convex relative to 0 — 1, in which case we say that T
displays C relative to 0 — 1.

The setup of the previous paragraph is useful for modeling situations in
which 0 represents some specific “ancestral” state and 1 represents a specific
“derived” state, and where transitions are rare and always proceed from the
ancestral to the derived state. If there is uncertainty as to whether the state
for species x is ancestral or derived, no state is assigned to that species. This
formulation of compatibility has been applied, for example, to certain
molecular genetic data known as SINEs (“short interspersed nuclear
elements™), where the states 0 and 1 denote the absence and presence,
respectively, of a particular sequence inserted into a particular region of a
genome (see Pe’er et al., 2000). The present setting is also relevant to a
modification of the MRP technique for supertree construction (Baum, 1992;
Ragan, 1992) described by Bininda-Emonds and Bryant (1998), where
reversals (i.e., 1 — 0 transitions) are prohibited during the parsimony
optimization step.

The question of determining the compatibility of a collection of two-
state, directed characters has been shown to have a polynomial time solution
by Pe’er et al. (2000), and, as a special case of a more general result, by
Benham et al. (1995). The following theorem provides a further polynomial-
time approach to the problem, showing that it can be regarded as a special
case of the supertree problem for rooted phylogenetic trees.

Theorem 5.3.
@) Lety : X' — {0, 1} be a two-state character on X and let T be a

rooted phylogenetic X-tree. Then  is convex on T relative to
0 — 1 if and only if T displays T,.

(i1) Let C be a collection of two-state characters on X. Then a rooted
phylogenetic X-tree T displays C relative to 0 — 1 if and only if
T displays R(C)

Proof. Now % is convex on 7 relative to 0 — 1 if and only if there exists a
cluster 4 of T 'such that

4) v '(1)C 4 and % '(0) C X — 4.

Furthermore, (4) holds if and only if x'(1) is a cluster of T | X". Because
%'(1) is the only -non-trivial cluster of Ty, this last condition holds if and
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only if 7 displays T,. This completes the proof of (i). Part (ii) is an
immediate consequence of (i).

5.2.2 Undirected case

In this problem, we again consider two-state characters taking values in the
set {0, 1} except that we no longer regard 0 as “ancestral”. The notion of
convexity for a character on a phylogenetic tree T as defined before the
previous problem is consistent with the concept of characters evolving
without homoplasy — it allows at most one occurrence of either the
transition 0 — 1 or the transition 1 — 0 on 7.

Theorem 5.4. Let C= {x1, X2, ..., Xx} be a collection of two-state characters
on X. Suppose that, for alli,j € {1, 2, ..., k},

% (0) Ny '(0) £ Q.

Then there is a polynomial-time algorithm to determine if C is compatible
and, if so, to construct a phylogenetic X-tree that displays C.

Proof. We establish Theorem 5.4 by showing that Cis compatible if and
only if the associated collection R(C) of rooted phylogenetic trees (described
by (3)) is compatible, and that, when this occurs, the rooted phylogenetic
tree returned by BUILD when applied to R(C) immediately gives a
phylogenetic tree that displays C.

First, suppose that R(C) is compatible and that T'is a rooted phylogenetic
X-tree that displays R(C) (e.g., the rooted phylogenetic tree produced by
BUILD when applied to R(C)). Let 7 * be the phylogenetic X-tree obtained
from T by not distinguishing the root p. Note that if p has degree two, then
this vertex is also suppressed. By Theorem 5.3, for each x € C,  is convex
on 7 relative to 0 — 1. But this implies that 7 is convex on 7 *. It follows
that 7 * displays C.

Now suppose that Cis compatible and that 7'is a phylogenetic X-tree that
displays C. For alli € {1, 2, ..., k}, let V; denote the vertex set of the
minimal subtree of 7;that contains the leaves of %,'(0). Because
% '(0) Ny '(0)#@, forall i, j € {1,2, ..., k}, it follows that

ViNVi#0

for all 7, j. Thus, by the Helly intersection property of subtrees of a tree (see
Golumbic, 1980), there exists a vertex v, of 7T such that
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k
Vo € ﬂ Vi.
i=1

If v, is an interior vertex of 7T, then it is checked easily that the rooted
phylogenetic X-tree obtained by rooting 7 on v, displays R(C). If v, is not an
interior vertex, then the rooted phylogenetic tree obtained by rooting T on
the vertex adjacent to v, displays R(C). In both cases, the resulting rooted
phylogenetic X-tree displays R(C). This completes the proof of the theorem.

Note that a particular case where the intersection condition in Theorem
5.4 applies is when

FROIERAPY
foralli € {1, 2, ..., k}. In particular, we have the following corollary.

Corollary 5.5. Let C be a collection of two-state characters on X. If each
character in C assigns a strict majority of elements of X to some particular
state, then there is a polynomial-time algorithm for determining the
compatibility of C.

6. Conclusion

Supertree methods continue to be extended and applied in various ways to
study interesting problems in phylogenetics. In this chapter, we have
considered how the BUILD algorithm can be extended to account for relative
and absolute divergence date information. In the last section, we also
described applications of BUILD to some other problems arising in
phylogeny reconstruction.

One of the limitations of these approaches is that they are essentially “all-
or-nothing”; that is, they return a tree (and dates) only if the input trees (and
input dates) are compatible. But, incompatibility tends to be the rule rather
than the exception for real biological data. However, the point in developing
“exact” methods such as BUILD and the extensions described in this paper is
that they form the basis for methods that apply in the general (incompatible)
setting. Indeed, the BUILD approach was extended recently to the supertree
method MINCUTSUPERTREE (Semple and Steel, 2000; also Page, 2002) that
returns a supertree for every input of rooted phylogenetic trees. We believe
that similar techniques can be applied to extend algorithms such as
RANKEDTREE, and we hope to explore this in further work.
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