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We present fast new algorithms for constructing phylogenetic trees from quar-
Ž .tets resolved trees on four leaves . The problem is central to divide-and-conquer

approaches to phylogenetic analysis and has been receiving considerable attention
from the computational biology community. Most formulations of the problem are
NP-hard. Here we consider a number of constrained versions that have polynomial
time solutions. The main result is an algorithm for determining bounded degree
trees with optimal quartet weight, subject to the constraint that the splits in the
tree come from a given collection, for example, the splits in the aligned sequence
data. The algorithm can search an exponentially large number of phylogenetic
trees in polynomial time. We present applications of this algorithm to a number of
problems in phylogenetics, including sequence analysis, construction of trees from
phylogenetic networks, and consensus methods. � 2001 Academic Press

Key Words: quartets; phylogenetic trees; algorithms; consensus; networks.

1. INTRODUCTION

Ž .The reconstruction of large evolutionary phylogenetic trees from
smaller subtrees is currently receiving considerable attention in the com-

� �putational biology community 6, 10, 23, 29, 31, 37, 38 .
There is a clear computational advantage to analyzing small subsets of

Ž .taxa species . It allows for far more intensive analysis and the application
of more complex models to reconstruct trees from the sequence data. Tree
criteria such as maximum likelihood, which are computationally horren-
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Ž .dous on larger trees, can be solved quickly on four-leaf trees quartets ,
where there are just four possible trees to consider.

There are also biological and statistical advantages of considering only
small subsets of sequences at a time. In many cases the actual data limit
the number of sequences that can be analyzed at one time. The number of
sites that can be aligned across four sequences is generally much more
than the number of sites that can be aligned across the full set of n
sequences, so aligning over the complete set of sequences can result in lost
information. Second, a recognized source of error in standard tree building
methods such as neighbor joining is that distantly related sequences can

� �mislead tree reconstruction 29 . If only small sets of sequences are
considered at one time then those sets containing distantly related

Žsequences can be down-weighted or even given a zero weighting, as in
� �.23, 29 .

The main difficulty with quarter-based methods is the question of how
best to build large trees out of small ones. The general problem�de-
termining a phylogenetic tree that agrees with the largest number of
quartets, or maximum weight set of quartets�is NP-hard by a simple

� �reduction from quartet compatibility 36 . An exhaustive search is generally
Ž .infeasible: there are 1 � 3 � 5 � ��� � 2n � 5 binary trees on n leaves to

choose from. When the number of sequences is limited, and the computa-
� �tional time is not, the exact algorithm of 6 can be used: it runs in time

Ž 4 n. Ž 4.O n 3 on n sequences and O n quartets.
The next alternative to exact solutions is the use of heuristic algorithms

for quartet optimization. These have been produced by a number of
computer scientists, biologists, and mathematicians. The heuristics of

� � � � � �Sattath and Tversky 35 , Fitch 26 , Colonius and Schulze 14 , and Bandelt
� �and Dress 1 combine clustering procedures with a pairwise similarity or

neighborliness score derived from the quartet sets. An alternative agglom-
� �erative algorithm for constructing trees from quartets is provided in 7 .

A novel variation on the scoring approach is described by Ben-Dor et al.
� �6 . Instead of constructing a similarity score and then clustering, they
embed the n leaves as points in � n using semi-definite programming and
then apply a nearest neighbor clustering method.

The tree building, or ‘puzzling’, part of the Quartet Puzzling heuristic of
� �Strimmer and von Haeseler 37 works by ordering the leaf set arbitrarily,

constructing a tree on the first four leaves, and then adding new leaves one
at a time, attaching each leaf to the edge that gives optimum quartet score.

� �The same approach is used in 15, 38 to optimize according to different,
but related, criteria. These procedures can be seen as analogues of the

� �Wagner tree method 24 because they start with a small tree and insert
one leaf at a time.

� �Dekker 17 proposes a method for constructing trees from quartets and
Ž � �.other subtrees using quartet inference rules see also 11 . The Short
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� �Quartet Method 23 constructs trees using inference rules and greedy
selection of quartets.

One important problem with these heuristic approaches is that there has
been little systematic analysis of their strengths and weaknesses. Indeed,
the quartet approximation problem seems to be resistant to an approxima-
tion theoretic approach. A version of the problem was shown to have a

� �PTAS by 30 , but the complexity of the approximation algorithm is so
astronomical that the result is of theoretical interest only.

Polynomial time exact algorithms have been proposed for a number of
� � �constrained versions. The Q method of Berry and Gascuel 10 can be

applied when there is at most one quartet in the input set for each four
leaves and the output tree is constrained to have only quartets from this
set. There is always exactly one maximal tree satisfying these conditions.

� � �The Q method is employed by Kearney 31 to construct trees from
quartets selected by an ordinal quartet method.

The Q� method can be extended by weakening the constraint that all
the quartets in the tree come from the input set. The quartet cleaning

� � � � � �method 30 , C-tree construction 8 , and hypercleaning method 9 all
allow varying degrees of errors in the input set. All run in polynomial time
and are well suited for the situation when the quartet set is unweighted
and almost tree-like.

In this paper we present a polynomial time algorithm for a constrained
version of the quartet optimization problem. The algorithms are fast
enough to be applied to moderately large data sets. The constraints are not
overly restrictive�the algorithm still searches an exponentially large num-
ber of trees�and are general enough to be applied to a wide range of
phylogenetic problems. Finally, we note that the algorithms can be applied
to weighted sets of quartets, with the possibility of more than one quartet
for each set of four leaves.

ŽIn the remainder of this section we present basic definitions Section
. Ž .1.1 , describe the main result Section 1.2 , and outline a number of

applications of the algorithm. In Section 2 we present the constrained
quartet optimization algorithm. In Section 3 we show how the algorithm
can be applied to the extraction of phylogenies from phylogenetic networks
and describe the efficiency gains that can be made in this application.

1.1. Basic Definitions

Ž .Hypotheses about the evolutionary relationships between taxa species
are usually described in terms of a phylogenetic tree. When no ancestral

Ž .node is given we have an unrooted phylogenetic tree which can be
formally defined as an acyclic connected graph with no vertices of degree

Ž .two and all leaves degree one vertices labeled uniquely from some leaf
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set L representing the set of taxa. A phylogenetic tree is binary or resol�ed
if all internal vertices have degree three.

A phylogenetic tree clearly implies relationships between each subset of
its leaf set. This is captured in the notion of induced subtrees. Let T be an
unrooted phylogenetic tree, and let A be a subset of its leaf set. Consider

Ž .the minimal subgraph T A of T that connects elements of A. Delete all
Ž .vertices of degree two in T A and identify their adjacent edges, thereby

obtaining an unrooted phylogenetic tree with leaf set A. This tree is called
the subtree of T induced by A and is denoted T .� A

The information contained in phylogenetic trees can be coded in a
number of ways. Here we consider two encodings: sets of splits and sets of
quartets.

�A split A B is a partition of the leaf set into two nonempty parts, A and
B. If we remove an edge e of a phylogenetic tree we divide the tree into
two connected components and induce a split of the leaf set of the tree.
This split is called the split associated with e, and the set of all such splits in

Ž .a tree is denoted splits T . If e is an external edge then we obtain a split
� � � �A � B with A � 1 or B � 1. We call these splits tri�ial splits. Note that T

Ž .can be reconstructed from the set splits T .
A quartet is a resolved phylogenetic tree on four leaves. There are three

� 4possible quartets on a given set of four leaves a, b, c, d . We use ab � cd to
denote the quartet where a and b are separated from c and d by the
internal edge. A phylogenetic tree T agrees with a quartet ab � cd if
a, b, c, d are all leaves of T and the path from a to b does not share any

Ž .vertices with the path from c to d, that is, if T � ab � cd. Let q T��a, b, c, d4

denote the set of quartets that T agrees with. We can reconstruct T from
Ž .q T .

Ž .To illustrate, we give a simple example Fig. 1 . We have selected two
internal edges and give the associated splits. We have also selected two
sets of four leaves and given the induced quartets.

We need three further definitions in order to be able to summarize our
Ž .results. First, a set of splits SS is compatible if SS � splits T for some tree

T. Second, a set of splits is weakly compatible if for every three splits
A � B , A � B , A � B at least one of the intersections B � B � B ,1 1 2 2 3 3 1 2 3

� �B � A � A , A � B � A , A � A � B is empty 3 . Finally, a set1 2 3 1 2 3 1 2 3
� � Ž .of weakly compatible splits SS on X is maximum if SS � n n � 1 �2

Ž � �.see 3 .

1.2. Main Results

Let w be a weighting function defined on the set of all quartets with
leaves in L. The weights can be negative and do not have to be integers.
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FIG. 1. Splits and quartets of an unrooted phylogenetic tree.

We define the weight of the tree to be

w T � w ab � cd , 1Ž . Ž . Ž .Ý
Ž .ab�cd	q T

the sum of all quartet weights in the tree. We will be examining the
following problem:

SPLIT CONSTRAINED QUARTET OPTIMIZATION

Instance: Weighting w for the quartets on a leaf set L. Set SS of splits
of L. Rational number �.

Parameter: Degree bound d.
Question: Is there a tree T with vertex degree bounded by d and
Ž . Ž .splits T � SS such that w T 
 �?

� � � �Let n � L and k � SS . The computational complexity of this problem
can be summarized:

� Polynomial time solvable for bounded d, with time complexity
Ž 4 2 d�1. Ž . Ž d�2 .O n k � n dk Section 2 . Can be improved to O n time when SS

Ž .is weakly compatible and d equals 3 or 4 Section 3.1 .
� NP-complete without the degree bound d, even when the set of

Ž .splits SS is weakly compatible see Section 3.3 .
� Polynomial time solvable without degree bound when all quar-

Žtet weights are nonnegative and SS is maximum weakly compatible Sec-
.tion 3.2 .

� NP-complete when the quartet’s weights can be negative and d is
Ž . Ž .unbounded, even when SS � splits T for some tree T Section 3.3 .
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The results can be viewed as an extension of the compatibility algo-
� � � �rithms of 11 . In 11 the splits, rather than the quartets, are weighted and

the criteria of optimization is the sum of the weights of the splits in a tree.
The significance of these results is highlighted by the fact that determining
an optimal tree with respect to split weights and no degree bound is

� �equivalent to max clique 16 and so inherits the depressing complexity
� � � �attributes of max clique like W 1 -hardness 19 and nonapproximabil-

� �ity 5 .

1.3. Applications

We outline a number of possible applications of the split constrained
quartet optimization algorithms.

1.3.1. Analysis of sequence data. A natural source of splits to serve as a
split constraint for the algorithm is the sequence data. We first use an

Ž .alignment program to determine which positions or sites in one sequence
correspond to which positions in the other sequences. For each position we
then obtain a map from the set of sequences to the nucleotide for that
sequence at that position. In DNA and RNA there are four nucleotides
possible, and so there are eight ways of partitioning the nucleotides into
two groups. Each of these partitions can be used to construct a split of the
set of sequences.

We have, then, a three step process for inferring phylogenetic trees from
aligned sequence data:

Ž .1 Extract the set SS of splits given by the characters at each site in
the data.

Ž .2 For each set of four sequences, score the three possible quartet
Žtrees using a standard phylogenetic optimization criterion e.g., parsimony

.length, likelihood score . The quartet scores can be scaled to indicate
relative confidence.

Ž .3 Apply the constrained quartet optimization algorithm to the set
Ž .of splits constructed in Step 1 with the quartet weighting constructed in

Ž .Step 2 .

1.3.2. Extracting trees from phylogenetic networks. An approach to phy-
logenetic analysis that is growing in popularity is the construction of
phylogenetic networks, where the evolutionary relationships are repre-
sented by a general graph rather than just a tree.

Phylogenetic networks allow for a more complicated relationship be-
tween the different species and can incorporate recombination, hybridiza-
tion, and horizontal gene transfer. In some cases the data dictate that a
tree representation is not suitable, as in the complex evolutionary relations
between viruses or in intraspecific data with multiple hybridizations.
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Phylogenetic networks can also be employed as an intermediary step
in phylogenetic tree reconstruction. Often a network program such as

� �SplitsTree 21 is used to get a general representation of patterns in the
data and an indication of how tree-like the data actually are. However, the
problem still remains�given a phylogenetic network how does one best
extract a phylogenetic tree?

We apply the constrained quartet optimization algorithms to this prob-
lem by first converting the network into a collection of splits. In Section 3
we discuss this approach in further detail and show that time complexity
gains can be made by exploiting the structure of the network.

1.3.3. Consensus trees, bootstrapping, and quartet puzzling. A common
problem faced by practitioners in evolutionary biology is the representa-
tion of a large collection of trees on the same leaf set by a single consensus
tree. Tree search criteria such as likelihood can have multiple global

Ž � �.optima. Heuristic construction methods such as quartet puzzling 37 that
involve randomness can construct different trees on different runs, and the
user will want to make multiple runs in order to achieve a degree of
confidence in the final hypothesis. Bootstrapping, and its close cousin
jack-knifing, work on the same principle. The data are randomly sampled
and these possibly incomplete samples are used as input for the tree
reconstruction criteria. The collection of trees obtained is then used to
determine confidence levels for a particular evolutionary hypothesis.

By far the most common consensus technique is the majority rule tree,
formed from splits that appear in over half of the input trees. Unfortu-
nately this method will often given uninformative consensus trees, with few
internal edges. A rogue taxa that appears in a large number of different

Ž .places perhaps because it is only distantly related to the other taxa can
force the consensus tree to collapse completely. A major drawback of the

� �popular Quartet Puzzling method 37 is that the consensus tree it pro-
duces tends to be quite poorly resolved.

The constrained quartet optimization algorithm provides a natural solu-
tion to the consensus tree problem. We first construct the set of all splits
that appear in at least one of the input trees. If the input trees are binary
then this set of splits is guaranteed to contain the set of splits of some
binary tree, so we can always use a small degree bound. The quartet
weighting can be taken from the input data, as in the previous section, or
by counting the number of times each quartet appears in an input tree. In
this way the consensus technique can be extended to handle weighted
trees. Finally, the constrained quartet optimization algorithm can be used
to construct, in polynomial time, a consensus tree for the input set of trees.

1.3.4. Optimal trees with excluded quartets. Suppose that we are given,
� 4for each set of four leaves a, b, c, d , a quartet to exclude. We wish to find



BRYANT AND STEEL244

Ž .a tree T of optimal quartet weight such that q T contains none of the
excluded quartets.

We can solve this problem when we also have a degree bound for T. Let
Q be the set of excluded quartets. We first construct the set of splits

� � � � � 4S � A � B : aa � bb � Q, all a, a 	 A , b , b 	 B . 2Ž .

� � Ž .This set is weakly compatible 4 and, furthermore, q T � Q � � if and
Ž .only if splits T � SS . Hence the problem of finding an optimal tree T

containing no excluded quartets reduces to the Split Constrained Quartet
Optimization problem. In Section 3 we give efficient algorithms for con-
strained quartet optimization when SS is weakly compatible.

Note that if we do not force Q to contain an excluded quartet for every
set of four leaves then it becomes NP-hard to determine if there exists a

Ž . � �binary tree T such that q T � Q � � 12 .

1.3.5. Optimal trees with a gi�en circular order. A novel approach to
� �phylogenetic tree construction was introduced by Gonet et al. in 32 . They

first construct a tour x , x , . . . , x , x of the set L of leaves using1 2 n 1
traveling salesman algorithms. They then look for a phylogenetic tree T on
L such that x , x , . . . , x , x is a circular order of T ; that is, each edge in1 2 n 1
T lies on exactly two paths connecting adjacent vertices in the tour. There

n�2 � �are 2 possible circular orderings for a binary tree on n leaves 33 .
Construct the set

� 4 � 4SS � x , x , . . . , x � L � x , x , . . . , x : 1 � i � j � n � 1 . 3Ž .� 4i i�1 j i i�1 j

This set is maximum weakly compatible. Furthermore, x , . . . , x is a1 n
Ž .circular ordering for a tree T if and only if splits T � SS . In Section 3.2 we

show that the Split Constrained Quartet Optimization problem can be
solved in polynomial time without a degree bound when SS is maximum
weakly compatible and all quartet weights are nonnegative. Hence, given a
tour x , . . . , x , x of L and a positive weight for every quartet on L, we1 n 1
can determine an optimal weight tree T from among the exponentially
many trees that have x , . . . , x , x as a circular order.1 n 1

2. CONSTRAINED QUARTET OPTIMIZATION ALGORITHMS

� �The key component of the dynamical programming algorithm of 11 is a
data structure called the decomposition table, which we describe in Section
2.2. We will also use a decomposition table, though we optimize a differ-
ent, and more complex, criterion. First, however, we introduce rooted trees
and clusters.
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2.1. Rooted Trees and Clusters

A rooted phylogenetic tree is defined in the same way as an unrooted
phylogenetic tree, except that one vertex, which may have degree two, is
distinguished and called the root. Given any two vertices u, � in a rooted
phylogenetic tree, if the path from u to the root passes through � then we
say that u is a descendent of � . The descendents of a vertex � that are also
adjacent to � are called the children of � . A rooted phylogenetic tree is
binary or fully resol�ed if every internal vertex has exactly two children.

The rooted analogue of a split is a cluster. Given a vertex � in a rooted
tree the set of leaves that are descendents of � is called the cluster
associated with � . The set of all clusters associated to vertices in a rooted

Ž .tree T is denoted clus T .
We will often be converting rooted trees into unrooted trees. Suppose

Ž . Ž .that T is a rooted tree such that LL T 
 L and LL T � L. We let
Ž .UNROOT T , L be the unrooted tree given by attaching all leaves in

Ž .L � LL T to the root of T and then taking the underlying unrooted
Ž . Ž .topology. For example the trees in Fig. 2 i and 2 ii have unrooted

Ž . Ž .equivalents equal to those trees in Fig. 2 iii and 2 iv .

2.2. The Decomposition Table

The key data structure in the algorithm is a decomposition table DD �
Ž .CC, D . Here CC � C , C , . . . , C is a collection of clusters of some leaf set1 2 K

Ž . Ž . Ž . Ž . Ž . � Ž . Ž . � Ž .FIG. 2. The trees in i TT DD, 5 ; ii TT DD, 9 ; iii TT DD, 5 ; and iv TT DD, 9 .
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� � � �L, and D is a table with a row D i for each cluster C . Row D i containsi
� �a list of unordered tuples p , p , . . . , p satisfying1 2 q

� q 
 2.
� C , C , . . . , C are pairwise disjoint.p p p1 2 q

� C � C � C � ��� � C .i p p p1 2 q

Note that one row can contain tuples of varying lengths and that we are
� �not concerned with the ordering of the indices within the tuple. Let DD

denote the sum of the lengths of all the tuples in all the rows of DD.
� �To each row D i of the decomposition table we associate a set of rooted

Ž . Ž .trees TT DD, i , all of which have leaf set C . The set TT DD, i is definedi
recursively:

� � 4 Ž .if C � a for some leaf a then TT DD, i contains the single vertexi
tree with leaf a;

� � � � � Ž .if C 
 2 and D i � � then TT DD, i � �.i

� Ž .Otherwise, TT DD, i is the set of all possible trees that can be formed
� � � � Ž .by choosing a tuple p , . . . , p in D i , choosing subtrees T 	 TT DD, j for1 r j

each j � 1, . . . , r, and attaching the roots of these subtrees to a new vertex
that becomes the root of a rooted tree with leaf set C .i

� � � � Ž .Since there may be tuples p , . . . , p in D i with TT DD, p � � for1 r j
Ž . � �some j, we can have TT DD, i � � even though D i � �. Note that

Ž .TT DD, i can contain exponentially many trees with respect to the size of
� �DD 11 .
We use dynamical programming to enumerate or extract the trees in
Ž . � � � �TT DD, i . Construct a table s by putting s i � 1 for all i such that C � 1i

and putting

� � � � � � � �s i � s p � s p � ��� � s p 4Ž .Ý 1 2 q
� 4 � �p , p , . . . , p 	D i1 2 q

� � � � � Ž . � � �when C � 1. Then s i � TT DD, i and the values s i can be calculatedi
Ž� �. � �in time O DD 11 .

Ž .Once the trees in TT DD, i have been enumerated we can extract trees
from the collection as follows:

� � �If s i � 0 return �,
� � �else if C � 1 return the single vertex tree labeled by the leaf in C ,i i

� � � � � � �else choose a tuple p , . . . , p such that s p � s p � ��� �1 q 1 2
� �s p � 0.q
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Ž . Ž . Ž .Extract trees T , . . . , T from TT DD, 1 , TT DD, 2 , . . . , TT DD, q , respectively.1 q
Attach the roots of T , . . . , T to a new vertex that becomes the root of a1 q

Ž .tree T in TT DD, i . Return T.
To illustrate, we give a simple example. Table 1 represents a decomposi-

� 4tion table for a collection of clusters of the leaf set L � a, b, c, d, e .
Ž . Ž .Then TT DD, 5 contains the two trees in Fig. 2 i . Each of the trees in

Ž . Ž .TT DD, 5 appears as a subtree of two trees in TT DD, 9 , giving a total of four
Ž . Ž Ž .. Ž .trees in TT DD, 9 Fig. 2 ii . All other collections TT DD, i contain single

trees.
Since decomposition tables can be used to store rooted trees, we can

also use them to store unrooted trees. First fix a leaf x, acting as an
� 4outgroup, and consider a collection CC of clusters on L � x . Let DD be a

decomposition table for CC. For each C 	 CC we define the set of unrootedi
trees

TT
�

DD, i � UNROOT T , L : T 	 TT DD, i . 5� 4Ž . Ž . Ž . Ž .

The operation UNROOT is described in Section 2.1.
� � 4Returning to our example, suppose that L � a, b, c, d, e, x . Then

� Ž . Ž . � Ž .TT DD, 5 contains the two unrooted trees in Fig. 2 iii while TT DD, 9
Ž .contains the four trees in Fig. 2 iv .

2.3. Optimal Weight Trees in Decomposition Tables

Ž .Suppose that DD � CC, D is a decomposition table for a set of clusters
� 4 � Ž .CC of L � x . The collections TT DD, i can contain exponentially many

trees, even when DD is only polynomial in size. Here we show how to
locate, from among these exponentially many trees, a tree with maximum

Ž 4 � � 2 � �.summed quartet weight. The algorithm takes O n CC � n DD time.

TABLE 1
Decomposition Table for a Collection of Clusters

� 4of the Leaf Set L � a, b, c, d, e

� � � �i C D i s ii

� 41 a � 1
� 42 b � 1
� 43 c � 1
� 4 � �4 b, c 2, 3 1
� 4 � � � �5 a, b, c 1, 2, 3 , 1, 4 2
� 46 d � 1
� 47 e � 1
� 4 � �8 d, e 6, 7 1
� 4 � � � �9 a, b, c, d, e 5, 8 , 5, 6, 7 4
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We use dynamic programming. At each step we optimize with respect to
Ž .a modification of the quartet weighting criteria of Eq. 1 .

As before, let w be a weighting function for the quartets with leaves in
L. For each C 	 CC puti

� 4q T � ab � cd 	 q T : a, b , c, d � C 
 3 6� 4Ž . Ž . Ž .i i

and

w T � w ab � cd . 7Ž . Ž . Ž .Ýi
Ž .ab�cd	q Ti

Ž . � Ž .We optimize w T over all of the trees in the collection TT DD, i definedi
Ž .in Eq. 5 . Put

� � �m i � max w T : T 	 TT DD, i 8� 4Ž . Ž . Ž .i

and

� � � � �M i � T 	 TT DD, i : w T � m i . 9� 4Ž . Ž . Ž .i

� � � �Finally, for each tuple p , p , . . . , p 	 D i we define1 2 q

q

Q p , . . . , p � ab � cd : a, b 	 C , c 	 C � C , d 	 L � CŽ . � 4�1 q p i p pj j j
j�1

10Ž .

and

W p , . . . , p � w ab � cd . 11Ž . Ž . Ž .Ý1 q
Ž .ab�cd	Q p , . . . , p1 q

We can now state the basis for the dynamical programming algorithm.

� � � �THEOREM 2.1. If C � 1 then m i � 0; otherwisei

q

� � � � � � � �m i � max W p , . . . , p � m j : p , p , . . . , p 	 D i .Ž . Ý1 q 1 2 q½ 5
j�1

12Ž .

� �Proof. We prove the result by induction on the size of C . If C � 1i i
� Ž .then TT DD, i contains only the trivial unrooted tree with no internal

edges. This has an empty quartet set and, consequently, zero weight.
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� � � �Suppose that the result holds for all C 	 CC such that C 	 C .j j i
� � � � Ž . � � Ž Ž .Suppose that T 	 M i . By the definition of TT DD, i and M i Eqs. 5

Ž .. Ž . � Ž .and 9 there is T 	 TT DD, i such that T � UNROOT T , L . Let T , T ,1 2
. . . , T be the maximal subtrees of T rooted at the children of the rootq
of T.

Ž . � �By the definition of TT DD, i there is a tuple p , . . . , p such that for1 q

� 4 Ž . Ž .each j 	 1, . . . , q we have C � LL T and T 	 TT DD, p .p j j jj

Ž � . �� 4 �Consider an arbitrary quartet ab � cd 	 q T . Then a, b, c, d � C 
i i
3 and exactly one of the following must hold:

� � 4 �� 4 �There is j 	 1, 2, . . . , q such that a, b, c, d � C 
 3, orpj

� � 4 � 4 � 4There is j 	 1, 2, . . . , q such that a, b, c, d � C equals a, b orpj
� 4c, d . Hence

q
�w T � w T � W p , . . . , p 13Ž . Ž . Ž .Ž .Ýi p j 1 qj

j�1

� �� m i 14Ž .

by the induction hypothesis applied to C , . . . , C .p p1 q

� � Ž .Conversely, suppose that p , . . . , p maximizes Eq. 12 . There is1 q

Ž . � �T , . . . , T such that unroot T , L 	 M p for all j � 1, 2, . . . , q. Con-1 q j j
struct a rooted tree T by attaching the roots of T , . . . , T to a new root.1 q

�Ž . Ž . Ž . � �Then unroot T , L 	 TT DD, i and w T � m i .i

Theorem 2.1 leads immediately to a compact representation of the
Ž .optimal trees. We construct a new decomposition table DD � CC, Do pt o pt

� � � � � �by letting D i equal the set of tuples p , . . . , p in D i that maximizeo pt 1 q

Ž .Eq. 12 . It then follows that

COROLLARY 2.1. For each C 	 CC we ha�ei

� � �M i � TT DD , i . 15Ž .Ž .o pt

To improve the time complexity we precompute the value

� �W C ; a, b � w xy � ab 16Ž . Ž .Ýi
x , y	Ci

Ž 4 � �.for all C 	 CC and all a, b 	 L � C . This takes O n CC time.i i
Ž 2 � �. � �It takes a further O n D time to calculate m i for all i and construct

� �the optimal tree decomposition table DD , where we use D to denoteo pt

the sum of the tuple lengths over all tuples in all rows of D. The optimal
trees can be enumerated using techniques outlined in Section 2.2.
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The complete algorithm is summarized in Algorithm 1.

Ž Ž ..ALGORITHM 1 OPTIMALD DD, W .

1. begin

� 42. Sort CC � C , . . . , C so that C 
 C implies i 	 j.1 k i j

3. for i from 1 to k do

4. for a, b 	 L � C doi

� � Ž .5. W i; a, b � Ý w xy � abx, y 	 Ci

( )6. end for

( )7. end for

8. for i from 1 to k do

� �9. if D i � � then

� �10. M i � 0

11. else

12. best � ��

� � � �13. for all p , p , . . . , p 	 D i do1 2 q

Ž� �. � �14. calculate W p , p , . . . , p using W � ; � ; � .1 2 q

Ž . q � �15. score � W p , . . . , p � Ý M p1 q j�1 j

� �16. if score � best then D i � �o pt

17. if score 
 best then

� � � � �� �418. D i � D i � p , . . . , po pt o pt 1 q

19. best � score
( )20. end if

( )21. end for all

( )22. end if-else

( )23. end for

24. end.

2.4. An Algorithm for Split Constrained Quartet Optimization

We are now in a position to give the main result. Let w be a weighting
on the quartets of a leaf set L, let SS be a set of splits of L, and let d be a
degree bound. We will assume that SS contains all of the trivial splits
Ž . � �those that separate a single element from everything else . Let n � L

� �and k � SS .
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Let x be an arbitrary leaf in L. We construct a collection of clusters

� 4CC � A : A � B 	 SS , x 	 B 17Ž .

and order these C , C , . . . , C so that C , C 	 CC and C 
 C implies1 2 k i j i j

� 4i 	 j. Hence C � L � x , the cluster corresponding to the trivial splitk
� 4 � 4x � L � x .

Ž .We construct a decomposition table DD � CC, D as follows:

� � � � �If C � 1 then D i � �.i

� � �If C � 1 theni

C , . . . , C are pairwise disjoint� �p p1 q� �C � C � ��� � C� � � �D i � p , p , . . . , p : . 18Ž .i p p1 2 q 1 q� �q � d � 1

This table is called the complete decomposition table for CC with degree
Ž d�1. � �bound d. It can be constructed in O nk time, where k � CC and

� �n � L , by considering all tuples of indices of length less than d, comput-
ing intersections and union, and then determining if they should be
included in some row of D.

Furthermore, a simple proof by induction gives

� � � 4LEMMA 2.1 11 . If DD is constructed as abo�e, and C � L � x , thenk
� � Ž . �T 	 TT DD, k if and only if T has splits in SS and degree bound d.

The decomposition table DD containing the optimal trees in DD can beo pt

Ž 4 2 d�1.constructed in O n k � n dk time using Algorithm 1. We have now
established:

THEOREM 2.2. The Split Constrained Quartet Optimization problem can
Ž 4 2 d�1.be sol�ed in O n k � n dk time.

3. OPTIMAL QUARTET TREES IN
PHYLOGENETIC NETWORKS

The algorithm for split constrained optimization described in the previ-
ous sections makes no assumptions about the structure of the set of splits
SS . In many cases, prior knowledge of the structure of SS allows us to
achieve tighter complexity bounds or even to drop the degree constraint
altogether.

ŽOne structure that arises in applications see Sections 1.3.2, 1.3.4, and
.1.3.5 is weakly compatible splits. In Section 3.1 we describe gains in



BRYANT AND STEEL252

efficiency that can be made when the set of input splits SS is weakly
compatible. In the case that SS is a maximal collection of weakly compati-
ble splits, and the quartet weights are nonnegative, we can solve the Split
Constrained Quartet Optimization problem without having to apply a

Ž .degree bound Section 3.2 .
We conclude with two complexity results. We show that the results in

Section 3.2 for maximal collections of weakly compatible splits cannot be
Žextended to arbitrary collections of weakly compatible splits unless P �

.NP . Then we prove the rather surprising result that if we allow negative
quartet weights then the Split Constrained Quartet Optimization problem
Ž .with no degree bound is NP-hard even when the set of splits SS equals

Ž .splits T of some tree T.

3.1. Quartet Optimization with Weakly Compatible Splits

Let SS be a collection of weakly compatible splits on L and let d be a
degree bound. As in Section 2.4 we choose a leaf x and construct

� 4CC � A : A � B 	 SS , x 	 B . 19Ž .

� �Then CC is a weak hierarchy 3 , which means that for all U, V, W 	 CC

� 4U � V � W 	 U � V , U � W , V � W . 20Ž .

² : � 4Define a closure operator � on subsets of L � x byCC

² :A � C. 21Ž .�CC

C	CC : A�C

Weak hierarchies have the property that for every subset A � L, there is
� ² : ²� �4: � � ² �: ²� �4:a, a 	 A such that A � a, a 2 . We write a, a for a, aCC CC CC CC

and construct a table mapping each pair of leaves a, a� to the correspond-
² �: Ž 5.ing subset a, a . The table can be constructed in O n time using theCC

² �:property that y 	 a, a if and only if there is no cluster C 	 CC withCC

a, a� 	 C and y � C.
The first efficiency gain we make is to speed up the calculation of
� � Ž Ž ..W C ; a, b Eq. 16 . First a special case. Recall that a chain is ai

collection of clusters AA such that A, B 	 AA implies A � B or B � A.

LEMMA 3.1. If CC is a chain and a and b are any two lea�es then we can
� � Ž 2 .compute W C ; a, b for all C 	 CC in O n time.i i
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� 4Proof. Suppose that CC � C , C , . . . , C where C � C or all i � j.1 2 k i j
� � � �We calculate W C ; a, b directly. Given W C ; a, b we can calculate1 i

� �W C ; a, b usingi�1

� � � �W C ; a, b � W C ; a, b � w cd � ab . 22Ž . Ž .Ýi�1 i
c, d	Ci�1
� 4c , d �Ci

2Ž .The amortized complexity is then O n .

When CC is not a chain, which is usually the case, we can apply Lemma
� �3.1 by first partitioning CC into chains. We use Dilworth’s theorem 18 to

Ž .show that when CC is a weak hierarchy we can partition CC into O n
chains. Recall that an antichain is a collection of clusters AA such that
A, B 	 AA implies A � B and B � A.

� 4LEMMA 3.2. Suppose that CC � A : A � B 	 SS , x 	 B for some collec-
tion SS of weakly compatible splits on a set X of n elements.

� 41. For each element a 	 X � x there are no three elements a , a , a1 2 3
² : ² : ² :such that a, a , a, a , and a, a form an antichain in CC.CC CC CC1 2 3

2. CC can be partitioned into n � 1 chains.
Ž . Ž 3.3. We can partition CC into O n chains in O n time.

Ž . ² :Proof. 1 Suppose there was such an antichain. Then a � a, a forCCi j
² :all i � j. Put A � a, a for i � 1, 2, 3, and B � X � A . Then eachCCi i i i

A � B is a split in SS . Furthermore we havei i

x 	 B � B � B 23Ž .1 2 3

a 	 B � B � A 24Ž .3 1 2 3

a 	 B � A � B 25Ž .2 1 2 3

a 	 A � B � B 26Ž .1 1 2 3

Ž .which contradicts the weak compatibility of SS see Section 1.1 .

Ž .2 Let AA � A , A , . . . , A be a maximum cardinality antichain in1 2 k
² :CC. Let Y be the set of elements y such that y, y 	 AA. Let Z be the setCC

� ² �:of elements z for which there exists z such that z, z 	 AA. SinceCC

² : ² :y, y � y, z for all z and AA is an antichain we must have that YCC CC

and Z are disjoint.

² :The number of clusters A 	 AA such that A � y, y for some y 	 YCCi
� �is bounded above by Y . For the remaining clusters in AA there are at least

² �: �two elements a, b 	 Z such that A � a, a for some a and A �CC

² �: � Ž .b, b for some b . By 1 for each element z in Z there are at most twoCC
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² : ² :clusters A , A 	 AA such that A � z, z for some z and A � z, zCC CCi j i i i j j

² :for some z . Hence the number of clusters that do not equal y, y forCCj

� �some y 	 Y is bounded above by Z .
� � � � � � � � 4 �Therefore AA � Y � Z � X � x � n � 1. The maximum size an-

� �tichain contains at most n � 1 clusters, so by Dilworth’s theorem 18 the
collection CC can be covered by n � 1 chains.

Ž .3 Since Dilworth’s theorem is nonconstructive it does not guaran-
Ž .tee an efficient algorithm for constructing the covering. Instead we use 1

� 4again. For each a 	 X � x put

² �: �� 4CC � A 	 CC : A � a, a for some a . 27Ž .CCa

Ž .Then by 1 we have that CC has a maximal antichain of size two and cana
Ž 2 .hence be decomposed into two chains. It takes O n time to decompose

CC into two chains: first construct an incomparability graph for the clustersa
Ž ² : ² : ² : .noting that a, a � a, a if and only if a 	 a, a and thenCC CC CC1 2 1 2
2-coloring. Repeating the process for all a gives a partition into at most

3Ž . Ž .2 n � 1 chains in O n time.

Ž .Note that the bound of n � 1 of Lemma 3.2 2 is obtained in the case
that SS is maximum weakly compatible.

We now focus our attention on the complete decomposition table for CC.

LEMMA 3.3.

� �1. If p , p is a tuple in a decomposition table for CC then there is1 2
² : ² : ² :a , a , a such that C � a , a and C � a , a � a , a .CC CC CC1 2 3 p 1 2 p 1 3 1 21 2

� �2. If p , p , p is a tuple in a decomposition table for CC then there is1 2 3
² : ² :a , a , a , a such that C � a , a , C � a , a ,CC CC1 2 3 4 p 1 2 p 3 41 2

² : ² : ² :C � a , a � a , a � a , a . 28Ž .CC CC CCp 1 3 1 2 3 43

Proof.

Ž . � � ² � :1 There is y , y and y , y such that C � y , y and C �CC1 1 2 2 p 1 1 p1 2

² � : ²� � � : �y , y . Hence C � C � y , y , y , y . Thus there is a 	 y ,CC CC2 2 p p 1 1 2 2 1 11 2
� 4 � � 4 ² :y and a 	 y , y such that C � C � a , a . We can then let aCC1 3 2 2 p p 1 3 21 2

� � 4 � 4equal the element in y , y � a .1 1 1

Ž . � ² �:2 This time we choose y , y for i � 1, 2, 3 such that C � y , y .CCi i p i ii
² � � � : �Then C � C � C � y , y , y , y , y , y . There is a , a 	 y ,CCp p p 1 2 3 1 2 3 1 3 11 2 3

� � � 4 ² :y , y , y , y , y such that a , a � C � C � C . We then choose a2 3 1 2 3 1 3 p p p 21 2 3

� � � � 4 � 4 ² : ² :and a from y , y , y , y , y , y � a , a so that a , a and a , aCC CC4 1 2 3 1 2 3 1 3 1 2 3 4
equal two of C , C , C . The result follows.p p p1 2 3
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We now have the tools we need to derive the efficient algorithm.

THEOREM 3.1. If SS is a set of weakly compatible splits and d equals 3 or
Ž d�2 .4 then split constrained quartet optimization can be sol�ed in O n time.

� 4Proof. Fix x and construct CC � A : A � B 	 SS , x 	 B and the table
² �: � Ž 5.containing a, a for each a, a . This takes O n time. By Lemma 3.2CC

Ž . Ž 3.we can partition CC into O n chains in O n time. Applying Lemma 3.1
for each chain and each pair of leaves a, b we can calculate the values

� � Ž 5.W C ; a, b for all a, b and all C 	 CC in O n time.i i
Ž d .By Lemma 3.3, since d equals 3 or 4 there are at most O n tuples in

� � Ž d .the decomposition table, so D is O n and the complete decomposition
Ž d�1.table can be constructed in O n time. We can now apply Algorithm 1

to obtain the result.

We conjecture that Theorem 3.1 can be extended for larger values of d,
though we suspect that a different proof technique is required. In any case,

Ž 6.the complexity of O n when d � 4 is about the limit of a practical
algorithm.

3.2. Maximum Weakly Compatible Splits

The maximum cardinality of a collection of weakly compatible splits on
n nŽ . � � Ž .a set of n elements is . Those collections SS for which SS � are2 2

called maximum weakly compatible. These collections have a special struc-
� �ture, allowing them to be represented in terms of cuts in a circle 3 or as a

� �planar splitsgraph 21 . For every tree T there is a maximum weakly
Ž .compatible set containing splits T . In many ways, these collections of

splits fall between trees and weakly compatible splits in terms of generality
and complexity.

Here we show that the structural properties of maximum weakly com-
patible splits allows us to solve split constrained quartet optimization in
polynomial time without a degree bound. The key result is

LEMMA 3.4. Let SS be a maximum weakly compatible set of splits and let
Ž . �T be a tree such that splits T � SS . Then there is a binary tree T such that

Ž . Ž �.splits T � splits T � SS .

� �Proof. By Theorem 5 of 3 we can order the leaf set as x , x , . . . , x0 1 n�1
such that for every split A � B with x 	 B we have A � B 	 SS if and only0
if there is i, j for which

� 4A � x , x , . . . , x . 29Ž .i i�1 j

That is, if and only if A is an inter�al with respect to the ordering
x , . . . , x .1 n�1
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We proceed by induction. Let d be the maximum degree of any vertex
in T. The result holds, trivially, if d � 3. Suppose that the result holds for
all T with maximum degree less than d and that T is a tree with maximum
degree d.

� 4 ŽLet T be the rooted tree with leaf set L � x such that UNROOT T ,0 0 0
.L � T. Let � be a vertex of T with degree d. The corresponding vertex

� in T has d � 1 children.0 0
There is a 	 a 	 ��� 	 a such that the cluster sets corresponding to1 2 d

the children to � equal0

x : a � i 	 a : j � 1, 2, . . . , d � 1 . 30� 4 Ž .� 4i j j�1

� 4If we insert the cluster x : a � i � a into T , and the correspondingi i 3 0
split into T , then � will have degree d � 1 and T will still have splits
contained in SS . We repeat the process to obtain a tree that contains all
the splits of the original tree, has splits contained in SS , and has maximum
degree d � 1. The result follows from the inclusion hypothesis.

Suppose now that all quartet weights are nonnegative. If SS is a
maximum weakly compatible collection of splits and T is a nonbinary tree

Ž . �such that splits T � SS then by Lemma 3.4 there is binary T such that
Ž . Ž �. Ž . Ž �.splits T � splits T . Furthermore, q T � q T and since all quartets

Ž . Ž �.have nonnegative weight we have w T � w T . Hence we can find a tree
with optimal weight and splits in SS by searching through the just binary
trees with splits in SS . By Theorem 3.1 we now have

THEOREM 3.2. Let SS be a maximum weakly compatible set of splits of L
and let w be a nonnegati�e weighting for quartets of L. We can find a tree T

Ž . Ž 5.with splits T � SS and maximum quartet weight in O n time.

Note that if we drop the nonnegativity constraint then the problem
Ž .becomes NP-hard Theorem 3.4 .

3.3. Complexity Results

We conclude with two complexity results, showing that the polynomial
time results are, in a sense, tight. First we consider the case when SS is
weakly compatible and all quartets have nonnegative weight.

THEOREM 3.3. Split constrained quartet optimization is NP-complete when
d is unbounded, e�en when all quartet weights are nonnegati�e and SS is
weakly compatible.

Proof. The problem is clearly in NP.
We provide a reduction from the problem of determining a maximum

compatible subset of a set of weakly compatible splits, which was shown to
� �be NP-complete in 12 .
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� � Ž .For every split A � B 	 SS there exists a quartet a a � b b 	 q A � Bi i i i i i i i
� � Ž . � �such that a a � b b � q A � B for all other splits A � B 	 SS 3, 4 .i i i i j j j j

Choose one of these quartets for each split and give it weight one. Give all
Ž .other quartets weight zero. Then for any tree T with leaf set L and q T

we have

w ab � cd � splits T . 31Ž . Ž . Ž .Ý
Ž .ab�cd	q T

Hence the weight of the optimal weight tree equals the size of the
maximum compatible subset of SS .

Our second complexity result rules out the possibility of an extension of
Theorem 3.2 to include negative quartet weights.

THEOREM 3.4. Split constrained quartet optimization is NP-complete when
Ž .d is unbounded and some quartet weights are negati�e, e�en when SS-splits T

for some tree T.

Proof. The problem is clearly in NP.
We provide a reduction from Vertex cover. Let G be a graph with ver-

� � � � 
 4tex set V and edge set E. Put M � 2 V . Put L � � , � : � 	 V and let
� � 
4T be the tree only containing clusters � , � and one central vertex x of

� �degree V .
Label the internal vertex adjacent to � � and �
 by � . Let Q be the setE

of quartets
� 
 � 
 � 4Q � u u � � � : u , � 	 E 32� 4 Ž .E

and let Q be the set of quartetsV

� � 
 � � 4Q � � � � w x : � , w , x 	 V . 33Ž .V

We give each quartet in Q weight M and each quartet Q weightE V
�2 � �, where n � V .Ž .Ž .n � 2 n � 3

Suppose that V � is a vertex cover for G with size k. Construct T � with
�� � 
4 Ž � � 
4. �4 Ž �.split set � , � � L � � , � : � 	 V . Then q T contains all quartets

in Q and exactly those quartets in Q of the form � � �
 � w� x� for some1 V
u 	 V. It follows that T � has summed quartet weight kM � k.

Conversely, if T � has summed quartet weight kM � k then T � must
Ž .Ž .n � 2 n � 3contain all quartets in Q and only k quartets in Q . We canE V2

then construct a vertex cover

� � � 
 4 � � 
 4 �V � � : � , � � L � � , � 	 splits T 34� 4Ž . Ž .Ž .

for G of size k.
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