
Advances in Applied Mathematics 27, 705–732 (2001)
doi:10.1006/aama.2001.0758, available online at http://www.idealibrary.com on

A Structured Family of Clustering and
Tree Construction Methods

David Bryant

LIRMM, Montpellier, France; and Departments of Mathematics and
Computer Science, McGill University, Canada

E-mail: bryant@math.mcgill.ca

and

Vincent Berry

LIRMM, Montpellier, France
E-mail: vberry@lirmm.fr

Received January 24, 2001; accepted May 30, 2001

A cluster A is an Apresjan cluster if every pair of objects within A is more similar
than either is to any object outside A. The criterion is intuitive, compelling, but
often too restrictive for applications in classification. We therefore explore exten-
sions of Apresjan clustering to a family of related hierarchical clustering meth-
ods. The extensions are shown to be closely connected with the well-known single
and average linkage tree constructions. A dual family of methods for classification
by splits is also presented. Splits are partitions of the set of objects into two dis-
joint blocks and are widely used in domains such as phylogenetics. Both the cluster
and split methods give rise to progressively refined tree representations. We exploit
dualities and connections between the various methods, giving polynomial time con-
struction algorithms for most of the constructions and NP-hardness results for the
rest.  2001 Elsevier Science

Key Words: clustering; splits; tree construction; algorithms; classification; compat-
ibility; quartets; hierarchies; single linkage tree; average linkage tree.

1. INTRODUCTION

A cluster is a subset of a collection of objects. A split is a separation of
the collection into two disjoint parts. We will be investigating methods for
classification using clusters and methods usings splits, repeatedly exploiting

705

0196-8858/01 $35.00
 2001 Elsevier Science

All rights reserved.

706 bryant and berry

connections between the two approaches. We start with two classification
methods that are now almost classical: Apresjan clusters [1] and Buneman
splits [10]. We will show how these closely related constructions can be
extended and refined to give a highly structured family of clustering and
“splitting” classification methods.
The aim of almost every clustering method is to cluster objects together

that are more similar to one another than they are to objects outside the
cluster. We represent the level of similarity between elements of a set X
using a similarity function s� X ×X → � which we define to be any sym-
metric function from pairs of objects to �. The intuitive notion of clustering
is captured in the definition of Apresjan clusters [1], which is the first clus-
tering method we investigate. Following Bandelt and Dress [2], we define
Apresjan clusters in terms of similarity functions, rather than dissimilari-
ties, to emphasize the mathematical duality between the clustering and the
splitting constructions. All of the clustering methods we describe here can
be modified to handle dissimilarity data.
Define the Apresjan clusters of a similarity function s to be �A � A ⊆

X� ιs�A� > 0	, where ιs�A� is the strong isolation index

ιs�A� �= min
a�a′�x

�s�a� a′� − s�a� x� � a� a′ ∈ A�x ∈ X −A		 (1)

The construction was first studied by Parker-Rhodes and Needham [22] who
called the clusters K-clumps. Apresjan clusters are also known as L-groups,
K-groups, and strong clusters [2, 14, 18].
The Apresjan clusters of a similarity function form a (strong) hierarchy,

in the sense that if two Apresjan clusters intersect then one contains the
other. If we have that s�a� a� > s�a� b� for all a �= b, as is usually the case,
then all singleton clusters are Apresjan and we obtain a proper hierarchy.
The clusters can then be represented using a rooted tree T with leaves
labelled by members of X. Every node v in T is associated with the cluster
C�v�, the set of all leaves that are descendents of v. For each node v we
assign the length ιs�C�v�� to the edge connecting v and its parent node.
If s�a� a� is constant for all a ∈ X then the rooted tree will be a den-

drogram, with all leaves the same distance from the root. Furthermore, if s
satisfies the (sign reversed) ultrametic inequality

s�a� b� ≥ min�s�a� c�� s�b� c�	

for all a� b� c then the tree T will be the dendrogram corresponding to s [2].
Buneman introduced a related classifcation method in a paper on the fila-

tion history of ancient manuscripts [10]. The input for Buneman’s method
is a dissimilarity function δ� X ×X → �+, and the basic grouping unit is
a split (bipartition A�B of X) rather than a cluster. The Buneman splits of

clustering and tree construction methods 707

δ are �A�B � µδ�A�B� > 0	, where µδ is the strong separation index

µδ�A�B� = 1
2
min

{(
δ�a� b� + δ�a′� b′�)

− (
δ�a� a′� + δ�b� b′�)� a� a′ ∈ A� b� b′ ∈ B}	 (2)

An X-tree is an unrooted tree T = �V�E� with labelling L� X → V such
that every node of degree less than three is labelled. The Buneman splits
can be represented using a valued X-tree. If we remove any edge e in an
X-tree we divide the tree into two components and induce a split S�e� of X
given by the label sets of the two components. Buneman showed that there
is an X-tree T such that the splits �S�e� � e ∈ E	 are exactly the Buneman
splits for δ. We say that T is the Buneman tree for δ. We can construct a
valued X-tree by assigning the length µs�A�B� to the edge corresponding
to A�B. In this way we obtain a mapping from dissimilarity functions to
valued X-trees, which can be computed in polynomial time with respect to
�X�. The separation indices µδ�A �B� are continuous, so a small change in
δ will induce only a small change in the tree. One can show that if δ is
additive, that is,

δ�a� b� + δ�c� d� ≤ max�δ�a� c� + δ�b� d�� δ�a� d� + δ�b� c�	�
for all a� b� c� d, then the tree T will be the valued X-tree corresponding
to δ.
The methods of Apresjan and Buneman are quite conservative, only

returning groupings with a lot of support in the data. With Apresjan clus-
ters, the condition that ιs�A� > 0 is very strong: for every choice of a� a′ ∈ A
and x ∈ X −A we must have s�a� a′� > s�a� x�. A single “errant” similar-
ity would exclude the cluster from the collection. Similarly, the condition
for Buneman splits that µδ�A�B� > 0 is also very strong, with a small per-
tubation in the input dissimilarity potentially excluding all splits from the
Buneman tree. Consequently, when the similarity or dissimilarity data are
not sufficiently “tree-like,” the methods produce poorly resolved trees with
high degree internal nodes and only a few small clusters or splits.
Both methods are continuous, in the sense that a small change in the

input will induce only a small change in the final tree. This, as well as the
ability to construct the corresponding trees in polynomial time and invari-
ance on tree-like dissimilarities (i.e., respectively ultrametric and additive),
makes the two methods attractive for numerous applications such as phy-
logenetics. The uninformative output tree is still a shortcoming. The lack
of resolution in the Buneman tree motivated Moulton and Steel [20] to
investigate modifications of the Buneman tree construction. They defined
a new separation index µrδ such that µrδ�A�B� ≥ µδ�A�B� for all splits A�B
and yet the collection of splits �A�B � µrδ�A�B� > 0	 could still be repre-
sented by an X-tree. The new separation index leads to a tree construction

708 bryant and berry

method that is continuous, polynomial time, and invariant on additive dis-
similarities and gives trees that contain all of the Buneman splits and often
additional splits. The tree produced is called the refined Buneman tree.
A tree T ′ refines a tree T if every split induced by an edge of T is also
induced by some edge of T ′.
In this paper we extend the work of Moulton and Steel [20] in several

directions. Our goal is to derive clustering and tree construction meth-
ods that are continuous, polynomial time, and informative. To this end we
present a family of methods containing and extending the clustering method
of Apresjan and the tree construction method of Buneman. We explore
and exploit connections between the methods, formalise the connection
between Buneman splits and Apresjan clusters, and extend this duality to
the new constructions. We prove that Apresjan clusters are contained in
the single linkage tree (Theorem 2.3), and that our extensions to Apresjan
clusters are contained in the average linkage tree (Theorem 2.4). We use
NP-hardness proofs to indicate the limit of this series of refinements and
extensions.
We also extend the Apresjan and Buneman constructions so that they

can accept different kinds of input. One can rewrite the definition of the
strong isolation index (Eq. (1)) as

ιs�A� = min�w�aa′�x� � a� a′ ∈ A�x ∈ X −A	� (3)

where w�aa′�x� = s�a� a′� − max�s�a� x�� s�a′� x�	. We can now replace w
with another function. Different weighting functions w give different clus-
tering methods. We explore the conditions that the weighting function w
has to satisfy for the resulting clusters to form a hierarchy, and we introduce
equivalent extensions for splits and unrooted tree constructions. The abil-
ity to use more general weighting functions greatly increases the flexibility
and utility of these methods.
The algorithms have been implemented in C++. Source code will

be made available by the authors or online at http://www.math.mcgill.
ca/∼bryant.

2. A FAMILY OF CLUSTERING METHODS

2.1. Definitions

A rooted X-tree is a rooted tree T = �V�E�, with nodes V and edges E,
together with a labelling function L� X → V such that every node with less
than two children is labelled. Put n = �X�. Given two nodes u and v we
write u ≺T v if u is a strict descendent of v in T . The cluster associated to
v is the set of labels on nodes that are descendents of v (including v) and

clustering and tree construction methods 709

is denoted C�v�. The clusters of T are clus�T � = �C�v� � v ∈ V 	. A cluster
A is trivial if �A� = 1 or A = X. We use lca�x� y� to denote the node that
is the least common ancestor of the nodes labelled by x and y.
A set of clusters � is compatible if � = clus�T � for some rooted X-tree

T , which holds if and only if � forms a hierarchy. It is a classical result that
� is compatible if and only if for each pair A�B ∈ � one of A−B, B−A,
A ∩ B is empty (e.g., [10]).
A rooted triple ab�c denotes a grouping of a and b relative to c. The set

of all rooted triples of X is denoted ��X�. The set of rooted triples of a
cluster A ⊆ X is defined as

r�A� = �uv�z � u� v ∈ A� z ∈ X −A		
We say that ab�c is a rooted triple of T if there is a cluster A ∈ clus�T �
such that ab�c ∈ r�A�. The set of rooted triples of T is denoted r�T �.
A similarity function is a symmetric function from X ×X to �. An isola-

tion weighting is a function w� ��X� −→ � such that w�ab�c� +w�ac�b� ≤
0 for all a� b� c ∈ X. The weight w�ab�c� indicates the degree to which c is
excluded the group �a� b	. Given a similarity function s define

ρs�ab�c� = s�a� b� − max�s�a� c�� s�b� c�		 (4)

Then ρs is an isolation weighting.
Given a non-empty set R of rooted triples and an isolation weighting w,

let av�R� denote the average weight of the triples in R and let avmin�R�k�
denote the average weight of the k ≤ �R� triples with minimum weight in
R. Formally,

av�R� = 1
�R�

∑
xy�z∈R

w�xy�z� (5)

avmin�R�k� = min
R′

�av�R′� � R′ ⊆ R� �R′� = k		 (6)

Given disjoint non-empty U�V�Z define

�w�UV �Z� = av�uv�z � u ∈ U� v ∈ V� z ∈ Z	� (7)

the average weight over all triples uv�z with u ∈ U , v ∈ V , and z ∈ Z.

2.2. A Series of Clustering Methods

We investigate a family of hierarchical clustering methods. In each case,
the clusters are selected according to an explicit criterion. The criteria used
by the three methods are closely related and are all based on different def-
initions of an isolation index for selecting clusters of X. Here, and through-
out the paper, we use U �V to denote the union of disjoint sets U and V .

710 bryant and berry

Definition of Clustering Indices. Let w be an isolation weighting
and let A be a cluster of X.

(i) The strong isolation index of A is defined

ιw�A� = min
uv�z

�w�uv�z� � uv�z ∈ r�A�	 = avmin�r�A�� 1�

and the strong clusters of w are �A � ιw�A� > 0	.
(ii) The clean cluster index of A is

ιcw�A� = avmin�r�A�� �A� − 1�
and the clean clusters of w are �A � ιcw�A� > 0	.

(iii) The stability index of A is

ιsw�A� = min
U�V�Z �=�

��w�UV �Z� � A = U�V�Z ⊆ X −A	

and the stable clusters of w are �A � ιsw�A� > 0	.
Define the strong clusters (Apresjan clusters) of a similarity function s to
be the strong clusters of w = ρs, and similarly for clean clusters and stable
clusters of a similarity function.

The name “clean clusters” stems from a connection with the quartet
cleaning construction of [6] (see Section 3.5). The indices, and the con-
struction complexities, for all of the clustering methods are summarised in
Table I. The inclusion relations between the various clustering indices and
methods are presented in Theorem 2.1. The following lemma is used in
both compatibility and inclusion proofs.

Lemma 2.1. If U�V�Z are nonempty subsets of X such that A = U�V
and Z ⊆ X −A then �U ��V ��Z� ≥ �A� − 1.

TABLE I
A Summary of the Cluster Indices and Construction Complexities

for the Family of Clustering Methods

Construction Index Complexity

Strong clusters ιw�A� = min
uv�z

�w�uv�z� � uv�z ∈ r�A�	 O�n2� (sim.a)

O�n3� (iso. wt.b)
Clean clusters ιcw�A� = avmin�r�A�� �A� − 1� O�n3� (sim.)

O�n4� (iso. wt.)
Stable clusters ιsw�A� = min

U�V�Z
��w�UV �Z� � A = U �V�Z ⊆ X −A	 NP-hard

aComplexity when input is a similarity function.
bComplexity when input is an isolation weighting.

clustering and tree construction methods 711

Proof. Put p = �V � = �A−U �. Then
�U ��V ��Z� = ��A� − p�p�Z� (8)

≥ ��A� − p�p� (9)

since �Z� ≥ 1. By straightforward calculus we have ��A� − p�p ≥ ��A� − 1�,
giving the result.

We now show that the clustering methods form a series in the sense of
inclusion relations for the resulting sets of clusters.

Theorem 2.1. For any cluster A we have ιw�A� ≤ ιcw�A� ≤ ιsw�A�.
Hence every strong cluster of w is a clean cluster of w and every clean cluster
is a stable cluster.

Proof. First note that if k ≤ k′ then avmin�r�A�� k� ≤ avmin�r�A�� k′�.
We therefore have

ιw�A� = avmin�r�A�� 1� ≤ avmin�r�A�� �A� − 1� = ιcw�A�	
Choose nonempty subsets U , V , and Z such that A = U �V , Z ⊆ X −A
and �w�UV �Z� = ιsw�A�. By Lemma 2.1, �U ��V ��Z� ≥ �A� − 1 and so

ιcw�A� = avmin�r�A�� �A� − 1�
≤ avmin�r�A�� �U ��V ��Z��
≤ �w�UV �Z�
= ιsw�A�	

Having demonstrated the inclusion relationships between the strong clus-
ters, clean clusters, and stable clusters, we now establish compatibility.

Theorem 2.2. Let w be an isolation weighting. The set of strong clusters
of w, the set of clean clusters of w, and the set of stable clusters of w are all
compatible collections of clusters.

Proof. We first prove that the set of stable clusters is compatible. Let A
be a stable cluster of w and let B be a cluster incompatible with A. Put U =
A− B, V = A ∩ B, and Z = B −A. Since A and B are incompatible, U ,
V , and Z are all non-empty. Then ιsw�A� ≤ �w�UV �Z�, ιsw�B� ≤ �w�VZ�U�,
and

ιsw�A� + ιsw�B� ≤ �w�UV �Z� + �w�VZ�U�

= 1
�U ��V ��Z�

∑
u∈U

∑
v∈V

∑
z∈Z

w�uv�z� +w�vz�u�

≤ 0

712 bryant and berry

since w is an isolation weighting. The cluster A is stable, so ιw�A� > 0
and ιw�B� < 0. Hence B is not a stable cluster and the collection of stable
clusters is compatible.
The inclusion of the set of strong clusters and the set of clean clusters in

the set of stable clusters (Theorem 2.1) proves compatibility for the other
constructions.

The relationship between the three clustering methods can be viewed as a
progressive relaxation of the selection criterion. The criteria differ over the
conditions on the subsets R ⊆ r�A� that can have zero or negative average
weight and the cluster A still be selected: the condition of the strong cluster
method is the most strict; the condition of the stable cluster method is the
most lenient.
The strong cluster construction is the most conservative. The condition

that ιw�A� > 0 implies that no subset R ⊂ r�A� can have negative average
weight.
At the other extreme, a cluster A can be stable and still have a subset

R ⊆ r�A� of size O�n3� with zero or negative average weight. Such sub-
sets R must be of a particular composition related to the conflicting triples
between two incompatible clusters. If A and B are incompatible clusters
then r�A� and r�B� conflict on the resolution of several triples, called con-
flicting triples. These are exactly the rooted triples with one element in
A − B, one element in A ∩ B, and one element in B − A. The stable
cluster selection criterion prohibits exactly those negative weight subsets
R ⊆ r�A� that correspond to the set of conflicting triples between A and
some incompatible cluster B. This guarantees that no two stable clusters
will be incompatible.
The clean cluster method falls in between the two other methods: every

strong cluster is a clean cluster and every clean cluster is a stable cluster.
The clean clustering method bounds the size of subsets R ⊂ r�A� with neg-
ative average weight. The bound ��A� − 1� is equal to the smallest possible
set of conflicting triples between A and any other cluster B. We cannot
increase this bound without losing the connection with stable clusters and,
additionally, the guarantee of compatibility. As we shall see, the bound
enables the efficient construction of clean clusters (Section 2.4) whereas
the construction of stable clusters is an NP-hard problem (Section 2.5).

2.3. Properties and Construction of Strong and Apresjan Clusters

The single linkage tree is one of the oldest hierarchical clustering
methods in classification. The method starts with a collection of single-
ton clusters �1 = ��x	 � x ∈ X	. At each iteration k > 1 the algorithm
chooses a pair of maximal (by inclusion) clusters in �k−1 for which

clustering and tree construction methods 713

maxa�b �s�a� b� � a ∈ A� b ∈ B	 is largest, and puts �k = �k−1 ∪ �A ∪ B	.
Ties are broken randomly. The procedure finishes when �k contains X.
Here we show that Apresjan clusters are always contained in any single

linkage tree for s.

Theorem 2.3. Let s be a similarity function on X. Then every Apresjan
cluster of s is a cluster in every single linkage tree for s.

Proof. We use a characterization of single linkage trees presented in [4]
and used in [12] to solve a related problem. For each k ∈ � we define
the threshold graph G�k� with vertex set X and edge set E�k� = ��a� b	 �
s�a� b� ≥ k	.
Let A be an Apresjan cluster of s and suppose that k is the maximum

value such that the subgraph induced by A is connected in G�k�. This is
well defined since G�−∞� is complete. We will show that no other element
of X is in the same component as A. Given any a in A and x ∈ X −A
if �a� x	 ∈ E�k� then s�a� x� ≥ k. Since A is a strong cluster, there is
ε > 0 such that s�a� a′� ≥ ε + s�a� x� for all a′ ∈ A. Then A is connected
in G�k + ε�, contradicting the maximality assumption for k. We conclude
then that A is a component of G�k�. From [4], every component of G�k�
is a cluster in every single linkage tree for s.

The link leads to an efficient way to compute the Apresjan clusters:

Corollary 2.1. We can construct the Apresjan clusters of a similarity
function s in O�n2� time, where n = �X�.
Proof. One can construct a single linkage tree T for s in O�n2� time

[15, 23]. By Theorem 2.3, clus�T � contains all the Apresjan clusters, and
possibly additional clusters. For each node v and element x ∈ C�v� we
compute

m�v� x� = min
x′

�s�x� x′� � x′ ∈ C�v�	

M�v� x� = max
x′′

�s�x� x′′� � x′′ �∈ C�v�		

Let u be the (unique) child of v such that x ∈ C�u�. If x′ ∈ C�v� then
either x′ ∈ C�u� or lca�x� x′� = v. Hence

m�v� x� = min
{
min
x′

�s�x� x′� � x′ ∈ C�u�	�min
x′

�s�x� x′� � lca�x� x′� = v	
}

= min
{
m�u� x�� min

x′
�s�x� x′� � lca�x� x′� = v	

}
	 (10)

The lca relationships can be precomputed in O�n2� time. A post-order
traversal of T using the above conversion then gives the values m�v� x�

714 bryant and berry

in O�n2� total time. Note that a post-order traversal of T processes the
children of a node before processing the node.
The computation of the values M�v� x� proceeds from the root to the

leaves. Let v be a node, let x be an element of C�v�, and let u be the
unique child of v for which x ∈ C�u�. If x′′ �∈ C�u� then either x′′ ∈ C�u�
or lca�x� x′′� = v. Hence

M�u� x� = max
{
max
x′′

�s�x� x′′� � x′′ �∈ C�v�	�max
x′′

�s�x� x′′� � lca�x� x′′� = v	
}

= max
{
M�v� x��max

x′′
�s�x� x′′� � lca�x� x′′� = v	

}
	 (11)

We can therefore use a pre-order traversal of T to compute all of the
M�v� x� values in O�n2� total time. Note that a pre-order traversal processes
the children of a node after processing the node.
The values M�u� x� and m�u� x� enable the computation of the isolation

index of the clusters of T . Let u be a node of T and let U = C�u�. Then
ιs�U� = min

x∈U

{
min
x′

�s�x� x′� � x′ ∈ U	 − max
x′′

�s�x� x′′� � x′′ �∈ U	
}

= min
x∈U

�m�u� x� −M�u� x�		
The Apresjan clusters are then exactly those clusters of T with positive
isolation index.

The strong cluster construction generalises the method of Apresjan by
allowing an arbitrary isolation weighting w. We show that this more general
construction can be performed using Apresjan clustering method.

Lemma 2.2. Let w be an isolation weighting. For each a� b ∈ X put

s�a� b� = ��ab�y � w�ab�y� > 0	�	 (12)

Then every strong cluster of w is an Apresjan cluster of s.

Proof. Put R = �ab�c � w�ab�c� > 0	. Let A be a strong cluster for
w. Fix a� a′ ∈ A and x ∈ X −A. For all y ∈ X −A we have w�aa′�y� ≥
ιw�A� > 0 so

s�a� a′� = ��y � aa′�y ∈ R	� ≥ �X −A�	
For all a′′ ∈ A, w�aa′′�x� ≥ ιw�A� > 0 so w�ax�a′′� < 0 and ax�a′′ �∈ R.
Since also w�ax�x� ≤ 0 we have that ax�z ∈ R implies z �∈ A ∪ �x	. Thus

s�a� x� = ��z � ax�z ∈ R	� ≤ �X −A− �x	�	
We therefore have s�a� x� ≤ �X −A� − 1 < s�a� a′�. By the same argument,
s�a′� x� < s�a� a′�.
It follows that s�a� a′� > s�a� x� for all a� a′ ∈ A and x ∈ X −A. Hence

A is an Apresjan cluster of s.

clustering and tree construction methods 715

The converse of Lemma 2.2 is not true. For example, if X = �a� b� c� d	,
w�ab�d� = w�ac�d� = w�bc�a� = 1 and all other triples have weight −1
then �a� b� c	 is a strong cluster of s but not of w.

Corollary 2.2. The strong clusters of an isolation weighting can be con-
structed in O�n3� time, where n = �X�.
Proof. First construct s�a� b� = ��ab�y � w�ab�y� > 0	� for all a� b, tak-

ing O�n3� time, and compute the collection � of Apresjan clusters of s
(O�n2� time). The isolation indices ιw�A� for the clusters in � can be com-
puted in O�n3� time using a modification of the quartet path algorithms
of [7].

2.4. Properties and Construction of Clean Clusters

We first examine the special case when w = ρs for some similarity func-
tion s on X (Eq. (4)).
By Theorem 2.1, every Apresjan cluster of s is a clean cluster of s. The

converse is not true. Consider the similarity function s on X = �a� b� c� d	
given in Fig. 1. There are two nontrivial clean clusters, �a� b	 and �a� b� c	,
but only �a� b	 is an Apresjan cluster. Furthermore, the unique single link-
age tree for s contains nontrivial clusters �a� b	 and �a� b� d	, so the clean
clusters of s are not necessarily present in a single linkage tree for s. How-
ever, as we now show, the clean cluster construction is closely connected
with another classical clustering method: the average linkage tree [24] (also
known as the group average linkage tree [14]).

Theorem 2.4. Every stable cluster of s is a cluster in every average linkage
tree for s. Hence every clean cluster of s is a cluster in every average linkage
tree for s.

Proof. For any two disjoint subsets A�B define s̄�A�B� = av�s�a� b� �
a ∈ A� b ∈ B	. The average linkage tree algorithm begins with a collection
of singleton clusters �1 = ��x	 � x ∈ X	. At each iteration k > 1 it chooses
the pair of maximal (by inclusion) clusters A�B ∈ �k−1 for which s̄�A�B�

FIG. 1. A similarity function s on four points, its single linkage tree and clean cluster tree.

716 bryant and berry

is largest and puts �k = �k−1 ∪ �A ∪ B	. Ties can be broken randomly.
The procedure terminates when �k contains X.
Let � be the clusters in the average linkage tree for s and let A be a

stable cluster that is not a cluster in �. Since � is a maximal hierarchy,
� ∪ �A	 is incompatible. Let k be the first iteration of the average linkage
tree algorithm for which �k contains a cluster B that is incompatible with
A. There are maximal clusters V and Z in �k−1 such that V and Z are
amalgamated to give B. Hence B = V �Z and s̄�V�Ai� ≤ s̄�V�Z� for all
maximal Ai ∈ �k−1.
Every cluster in �k−1 is compatible with A, so every maximal cluster

in �k−1 is either contained in A or disjoint with A. W.l.o.g. suppose that
V ⊂ A and Z ∩ A = �. Let U1�U2� 	 	 	 � Up be the maximal clusters of
�k−1 − �V 	 that are also contained in A. Thus s̄�Ul� V � ≤ s̄�V�Z� for all
l = 1� 2� 	 	 	 � p. Let U = A− V , so that U = ⋃p

l=1Ul and

�U �s̄�U�V � =
p∑
l=1

�Ui�s̄�Ul� V �

≤
p∑
l=1

�Ui�s̄�V�Z�

= �U �s̄�V�Z��
giving s̄�U�V � ≤ s̄�V�Z�.
For all u ∈ U , v ∈ V , z ∈ Z we have

ρs�uv�z� = s�u� v� − max�s�u� z�� s�v� z�	 ≤ s�u� v� − s�v� z�	
Let w = ρs. Then

ιsw�A� ≤ �w�UV �Z�

= 1
�U ��V ��W �

∑
u∈U

∑
v∈V

∑
z∈Z

ρs�uv�z�

≤ 1
�U ��V ��W �

∑
u∈U

∑
v∈V

∑
z∈Z

s�u� v� − s�v� z�

= s̄�U�V � − s̄�V�Z�
≤ 0�

a contradiction. Hence A is contained in the average linkage tree.
By Theorem 2.1 all clean clusters are stable clusters and so are contained

in every average linkage tree.

Apart from providing a characterisation of a subset of clusters in the
average linkage tree, Theorem 2.4 leads to an O�n3� time algorithm for
constructing clean clusters of a similarity function (cf. Algorithms 1 and 2).

clustering and tree construction methods 717

Corollary 2.3. The clean clusters of a similarity function s can be con-
structed in O�n3� time, where n = �X�.
Proof. First compute an average linkage tree T for s using the O�n2�

time algorithm of [21]. By Theorem 2.4, every clean cluster of s is a cluster
of T .
For each pair of nodes u� v in T such that u ≺T v, define

R�u� v� = �xy�z � lca�x� y� = u� lca�x� z� = lca�y� z� = v	 (13)

and

R��u� v� = ⋃
u′�T u

R�u′� v�	 (14)

Every rooted triple in r�T � is in exactly one set R�u� v�, and these sets can
be constructed in O�n3� time.
Let R�u� v� n� denote the set of n minimum weight rooted triples of

R�u� v�. It takes O��R�u� v��� time to extract R�u� v� n� from R�u� v� using
the linear time selection algorithm of [8]. It therefore takes O�n3� time to
extract all of the sets R�u� v� n�.
Let R��u� v� n� denote the minimum n triples of R��u� v�. We construct

these sets using dynamic programming. Let u1� u2� 	 	 	 � um be the children
of u. Then R��u� v� n� is equal to the set of n minimum weight triples in

R�u� v� n� ∪ R��u1� v� n� ∪ R��u2� v� n� ∪ · · · ∪ R��um�u�� v� n�	 (15)

For each v, it takes O�n2� to compute all of these sets R�u� v� n� using a
post-order traversal. There are O�n� choices for v so extracting all the sets
R��u� v� n� takes O�n3� time.
Let U = C�u�. Then r�U� = ⋃

v!T u
R��u� v� and so the minimum �U � − 1

triples in r�U� are the minimum �U � − 1 triples in
⋃
v!T u

R��u� v� n�	 Since
there are at most n2 triples in �⋃v!T u

R��u� v� n�� we can compute

ιcw�U� = avmin�r�U�� �U � − 1�
in O�n2� time. It therefore takes O�n3� time to compute the O�n� isolation
indices.

We now consider the generalisation from clean clusters of ρs to clean
clusters of an arbitrary isolation weighting w. There is apparently no ana-
logue of Lemma 2.2 for C-clusters. We have constructed an example for
five elements where a clean cluster of w is not a clean cluster for the sim-
ilarity function s�a� b� = ��ab�y � w�ab�y� > 0	� of Eq. (12). We were also
unable to find a variation on s for which a version of Lemma 2.2 might
hold.
We follow an alternative approach. Given an isolation weighting w and

r ∈ X, put

CH�w� r� = �A ⊆ X � w�ar�x� > 0 for all a ∈ A� x ∈ X −A		 (16)

718 bryant and berry

Lemma 2.3. The set CH�w� r� forms a chain; that is, for each A�B ∈
CH�w� r� either A ⊆ B or B ⊆ A.

Proof. From the definition of an isolation weighting we deduce
w�xr�r� ≤ 0 for all x ∈ X and so if A ∈ CH�w� r� and A �= � then
r ∈ A. Given any two clusters A�B ∈ CH�w� r�, if there is a� b such that
a ∈ A− B and b ∈ B −A then we obtain w�ar�b� > 0 and w�br�a� > 0, a
contradiction.

Lemma 2.4. We can construct a chain containing CH�w� r� in O�n2� time.
Proof. Let G be the semi-complete digraph with vertex set X and edge

set

E = ��u� v� � w�ur�v� ≤ 0		
Use the O�n2� algorithm of [16] to determine a (directed) Hamiltonian
path a1� a2� 	 	 	 � an for G. For each A ∈ CH�w� r� there is no edge �u� v�
in E such that u ∈ A and v �∈ A. Hence there must be i such that A =
�ai� ai+1� 	 	 	 � an	. The collection of sets �ai� ai+1� 	 	 	 � an	 for i = 1� 	 	 	 � n
is a chain containing all of the clusters in CH�w� r�.
Our method for constructing the clean clusters of an isolation weighting

is iterative. We first restrict the isolation weighting to three elements and
then incorporate one element at a time into the analysis. The basis for the
iterative algorithm, and the connection between chains and clean clusters,
is provided by:

Theorem 2.5. Let w be an isolation weighting for X. If A is a clean
cluster of w and r ∈ X then either A ∈ CH�w� r� or A− �r	 is a clean cluster
of w restricted to X − �r	, or both.
Proof. Suppose that A is not a clean cluster of w restricted to X − �r	.

Then there is R such that

R ⊆ �aa′�x � a� a′ ∈ A− �r	� x ∈ X − �r		�
�R� = �A − �r	� − 1, and

∑
aa′ �x∈R w�aa′�x� ≤ 0. If A is also not a cluster

in CH�w� r� then there is a ∈ A and x ∈ X −A such that w�ar�x� < 0.
Putting R′ = R ∪ �ar�x	 we obtain a subset of r�A� containing at least
�A� − 1 elements such that

∑
aa′ �x∈R′ w�aa′�x� ≤ 0. Hence A is not a clean

cluster of w.

Theorem 2.5 leads directly to a polynomial time algorithm for construct-
ing clean clusters of an isolation weighting. Pseudocode is presented in the
Appendix (Algorithm 3).

Corollary 2.4. The clean clusters of an isolation weighting can be com-
puted in O�n4� time.

clustering and tree construction methods 719

Proof. We use an iterative algorithm. Order X arbitrarily as X =
�x1� x2� 	 	 	 � xn	, putting Xk = �x1� x2� 	 	 	 � xk	 for each k � 1 ≤ k ≤ n. Let
w�Xk denote the restriction of w to Xk and let �k denote the clean clusters
for w�Xk . We compute �2 directly.
By Theorem 2.5,

�k+1 ⊆ CH�w�Xk+1
� xk+1� ∪ �A ⊆ Xk+1 � A− �xk+1	 ∈ �k		

We construct CH�w�Xk+1
� xk+1� using Lemma 2.4. The clean cluster

indices of the clusters A ∈ CH�w�Xk+1
� xk+1� can be computed in O�n3�

time using the same technique as in the proof of Corollary 2.3. The clean
cluster indices of the clusters in �A � A− �xk+1	 ∈ �k	 can be computed
by maintaining a list r̂�A�k� of n minimum weight triples for each cluster
A. After each element addition,

r̂�A�k+ 1� ⊆ r̂�A�k� ∪ �aa′�xk+1 � a� a′ ∈ A	 (17)

r̂�A ∪ �xk+1	� k+ 1� ⊆ r̂�A�k� ∪ �axk+1�y � a ∈ A� y ∈ Xk −A		 (18)

Hence we can construct r̂�A�k+ 1� and r̂�A∪ �xk+1	� k+ 1� in O�n2� time
per cluster A. Each iteration step from �k to �k+1 can be completed in
O�n3� time, giving O�n4� time for the entire construction.

2.5. Construction of Stable Clusters

The stable cluster method is the last, and most refined, method in the
series. Let s be a similarity function. By Theorem 2.4 we know that any
average linkage tree T for s contains all of the stable clusters of s. All
that remains is to examine the O�n� clusters in clus�T � and discard those
clusters that are not stable. This proves to be a significantly more difficult
problem.

Theorem 2.6. It is an NP-hard problem to construct the set of stable clus-
ters of a similarity function. Hence it is also NP-hard to construct the stable
clusters of an arbitrary isolation weighting.

Proof. We provide a transformation from:

SPARSEST CUT
Instance: Vertex set V , cost c�u� v� for every unordered pair

�u� v	 ∈ V × V . Rational k.

Question: Is there U�V such that
∑

u∈U�v∈V −U
c�u� v� < k�U ��V −U �?

SPARSEST CUT was shown to be NP-hard in [19].

720 bryant and berry

Let V� c, and k make up an arbitrary instance of SPARSEST CUT. Put
X = V ∪ �z	, where z is a new element. Define a similarity function s on
X by s�u� v� = c�u� v� for all u� v ∈ V and s�z� v� = k for all v ∈ V . For all
u� v ∈ V we have ρs�uv�z� = c�u� v� − k. We claim that ιss�V � > 0 if and
only if there is no U ⊂ V such that

∑
u∈U�v∈V −U c�u� v� ≤ k�U ��V −U �.

All clusters incompatible with V are of the form U ∪ �z	 for some U ⊂
V . For such a cluster, we have

�w�U�V −U���z	� = 1
�U ��V −U �

∑
u∈U�v∈V −U

ρs�uv�z�

= −k+ ∑
u∈U�v∈V −U

c�u� v�
�U ��V −U � 	

Hence ιss�V � > 0 if and only if there is no U such that
∑

u∈U�v∈V −U
c�u� v� ≤ k�U ��V −U �	

The result follows.

3. A FAMILY OF SPLIT METHODS

In this section we present a series of methods for classification using
splits. The series is analogous to the clustering constructions investigated
in the previous section. Indeed, the duality between the cluster and split
cases fits nicely into the framework of [11]: the splits are to clusters what
projective space is to affine space.
Our presentation of the split and unrooted tree constructions follows the

same lines as the presentation of the clustering methods.

3.1. Definitions

Unrooted X-trees and splits were defined in Section 1. Put n = �X�. Let
splits�T � denote the set of splits of a tree T . A set of splits � of X is
compatible if there is a tree T such that � ⊆ splits�T �. Buneman showed
that � is compatible if and only if for each pair A�B, C�D of splits in � at
least one of A ∩ C, A ∩D, B ∩ C, B ∩D is empty [10].
A quartet ab�cd defines a separation of a and b from c and d. The set of

all possible quartets on X is denoted ��X�. The set of quartets of a split
A�B is defined by

q�A�B� = �aa′�bb′ � a� a′ ∈ A� b� b′ ∈ B		
We say that ab�cd is a quartet of T if there is a split A�B ∈ splits�T � such
that ab�cd ∈ q�A�B�. The set of quartets of T is denoted q�T �.

clustering and tree construction methods 721

A dissimilarity function is a symmetric function from X ×X to �+. A
separation weighting is a function ω� ��X� → � such that ω�ab�cd� +
ω�ac�bd� ≤ 0 for all a� b� c� d ∈ X. The weight ω�ab�cd� indicates the
degree to which a and b are separated from c and d. Given a dissimilarity
function δ, define

βδ�ab�cd� = 1
2

�min�δ�a� c� + δ�b� d�� δ�a� d� + δ�b� c�	
− δ�a� b� − δ�c� d��	 (19)

Then βδ is a separation weighting.
Given a set Q of quartets, a separation weighting ω, and a positive integer

k ≤ �Q�, define

av�Q� = 1
�Q�

∑
ab�cd∈Q

ω�ab�cd� (20)

avmin�Q�k� = min
Q′

�av�Q′� � Q′ ⊆ Q� �Q′� = k		 (21)

Given non-empty disjoint subsets U�V�Y�Z define

ω̄�UV �YZ� = av�uv�yz � u ∈ U� v ∈ V� y ∈ Y� z ∈ Z	� (22)

the average weight of all quartets uv�yz with u ∈ U , v ∈ V , y ∈ Y , and
z ∈ Z.

3.2. A Family of Tree Construction Methods

In Section 2.2 we defined a collection of isolation indices and showed
that, for each index, the clusters with positive index formed a hierarchy. In
this section we do the same for splits: we define a collection of separation
indices and then show that the resulting collections of splits are compatible.

Definition of Split Indices. Let ω be a separation index and let A�B
be a split of X.

(i) The strong separation index of A�B is defined

µω�A�B� = min
uv�yz

�ω�uv�yz� � uv�yz ∈ q�A�B�	

and the Buneman splits for ω are �A�B � µω�A�B� > 0	.
(ii) The refined Buneman index of A�B is defined

µrω�A�B� = avmin�q�A�B�� n− 3�
and the refined Buneman splits for ω are �A�B � µrω�A�B� > 0	.

722 bryant and berry

(iii) The clean split index of A�B is defined

µcω�A�B� = avmin�q�A�B�� ��A� − 1���B� − 1��
and the clean splits for ω are �A�B � µcω�A�B� > 0	.

(iv) The split stability index of A�B is defined

µsω�A�B� = min
U�V�Y�Z �=�

�ω̄�UV �YZ� � A = U �V�B = Y �Z	

and the stable splits of ω are �A�B � µsω�A�B� > 0	.
The Buneman splits of a dissimilarity function δ are the Buneman splits of
ω = βδ, similarly for refined Buneman splits, clean splits, and stable splits.

The refinement relations between the different methods are presented
in Theorem 3.1. Theorem 3.2 establishes that each construction gives com-
patible splits. Both theorems use the following bounds on the size of the
conflict set for incompatible splits. The indices, and the construction com-
plexities, for all of the split methods are summarised in Table II.

Lemma 3.1. If U , V , Y , Z are non-empty subsets of X such that A =
U �V and B = Y �Z then

�U ��V ��Y ��Z� ≥ ��A� − 1���B� − 1� ≥ n− 3	

Proof. Put p = �V � and q = �Z�. Then
�U ��V ��Y ��Z� = ��A� − p�p��B� − q�q	 (23)

Using straightforward calculus we can show that ��A� − p�p ≥ ��A� − 1�
and ��B� − q�q ≥ ��B� − 1�, giving the first inequality. For the second, put
m = ��B� − 1� so that �A� − 1 = n − 2 −m and ��A� − 1���B� − 1� = �n −
2 −m�m. The minimum n− 3 is obtained when m = 1.

TABLE II
A Summary of the Split Indices and Construction Complexities

for the Family of Split Methods

Construction Index Complexity

Buneman splits µω�A�B� = min
uv�yz

�ω�uv�yz� � uv�yz ∈ q�A�B�	 O�n3� (dis.a)

O�n4� (sep. wt.b)
Ref. Buneman splits avmin�q�A�B�� n− 3� O�n5�
Clean splits µcω�A�B� = avmin�q�A�B�� ��A� − 1���B� − 1�� O�n5�
Stable splits µsω�A�B� = min

U�V�Y�Z
�ω̄�UV �YZ� � A = U �V� NP-hard

B = Y �Z	
aComplexity when input is a dissimilarity function.
bComplexity when input is a separation weighting.

clustering and tree construction methods 723

Theorem 3.1. Let ω be a separation weighting on X. For any split A�B
we have

µω�A�B� ≤ µrω�A�B� ≤ µcω�A�B� ≤ µsω�A�B�	
Hence the set of Buneman splits is contained within the set of refined Buneman
splits which is contained within the set of clean splits which is contained within
the set of stable splits.

Proof. The inequalities µω�A�B� ≤ µrω�A�B� ≤ µcω�A�B� follow from
the observation that k ≤ k′ implies avmin�q�A�B�� k� ≤ avmin�q�A�B�� k′�.
Choose non-empty and disjoint subsets U�V�Y�Z such that A = U �V ,
B = Y �Z, and µsw�A�B� = ω̄�UV �YZ�. Then

µcω�A�B� = avmin�q�A�B�� ��A� − 1���B� − 1�� (24)

≤ avmin�q�A�B�� �U ��V ��Y ��Z��� (25)

≤ ω̄�UV �YZ� (26)

= µsw�A�B�	 (27)

Theorem 3.2. Let ω be a separation weighting. The sets of Buneman
splits, refined Buneman splits, clean splits, and stable splits of ω are all com-
patible collections of splits.

Proof. We prove that the set of stable splits is compatible. The other
compatibility results follow from Theorem 3.1.
Let A�B be a stable split and let C�D be a split incompatible with A�B.

Put U = A ∩ C, V = A ∩D, Y = B ∩ C, Z = B ∩D. Since A�B and C�D
are incompatible, U , V , Y , and Z are non-empty. Then

µsω�A�B� + µsω�C�D� ≤ ω̄�UV �YZ� + ω̄�UY �VZ�

= 1
�U ��V ��Y ��Z�

∑
u∈U

∑
vV

∑
y∈Y

∑
z∈Z

�ω�uv�yz� +ω�uy�vz��

≤ 0

and so µsω�A�B� > 0 implies µsω�C�D� < 0. It follows that the set of stable
splits is compatible.

The relationship between the tree construction methods parallels that
for the clustering methods. The Buneman split method is quite conserva-
tive. For A�B to be a Buneman split of ω we must have ω�aa′�bb′� > 0 for
all aa′�bb′ ∈ q�A�B�. The refined Buneman index allows n− 3 quartets in
q�A�B� to have negative average weight. The clean split method incorpo-
rates the size of A and B into the calculation of the index. The bound of

724 bryant and berry

��A� − 1���B� − 1� stems from Lemma 3.1. If we increase this bound then
clean splits will no longer necessarily be stable splits and, additionally, we
lose the guarantee of compatibility for the splits selected.
The stable split method allows the largest number of negative weight

quartets. A split A�B can have O�n4� negative weight quartets in q�A�B�
and yet still be stable. There will always, however, be more positive weight
quartets in q�A�B� than negative ones. The stability index of a split can be
viewed as the measure of support for a split A�B on exactly those quartets
with which A�B is in conflict with an incompatible split C�D.

3.3. Properties and Construction of Buneman Splits

We now formalise the connection between the Buneman split method
and Apresjan clusters. Let δ be a dissimilarity function on X. The Farris
transform of δ with respect to x ∈ X is the similarity function sx on X − �x	
with

sx�a� b� = 1
2

�δ�a� x� + δ�b� x� − δ�a� b�� (28)

for all a� b ∈ X − �x	 [13]. The inverse of the Farris transform is given by

δ�a� b� = sx�a� a� + sx�b� b� − 2sx�a� b�
for all a� b ∈ X − �x	, and δ�a� x� = sx�a� a� as well as δ�x� x� = 0.
The Farris transform links Buneman splits and Apresjan clusters. This

connection leads to the suprising algorithmic result that Buneman splits of
a dissimilarity function can be constructed in O�n3� time, even though the
definition appears to imply that O�n4� quartets need to be considered.

Theorem 3.3. (i) Let δ be a dissimilarity function on X and let sx denote
the Farris transform of δ with respect to x ∈ X. For any split A�B of X,

µδ�A�B� = min
b

�ιsb�A� � b ∈ B	 = min
a

�ιsa�B� � a ∈ A		 (29)

Thus A�B is a Buneman split for δ if and only if A is an Apresjan cluster
of sb for all b ∈ B, and this holds if and only if B is an Apresjan cluster of
sa for all a ∈ A. (ii) The Buneman splits of a dissimilarity function δ can be
computed in O�n3� time.
Proof. Equation (29) follows immediately from the observation that

βδ�ab�cx� = ρsx�ab�c�.
We now prove (ii). For each x ∈ X we compute the Farris transform

sx of δ with respect to x (O�n2� time for each x) and then construct the
Apresjan clusters of sx in O�n2� time (Corollary 2.1). Let Sx be the set of
splits A��X −A� such that A is a strong cluster of sx. The Buneman splits
are exactly those splits appearing in all of the sets of splits Sx, and the
corresponding separation indices are given by Eq. (29). Hence the entire
computation takes O�n3� time.

clustering and tree construction methods 725

The Farris transform can be extended to a general separation weighting
ω. For each x ∈ X, define an isolation weighting wx on rooted triples of
X − �x	 by wx�ab�c� = ω�ab�cx� for all a� b� c ∈ X − �x	.
Proposition 3.1. For all splits A�B,

µω�A�B� = min
b

�ιwb�A� � b ∈ B	 = min
a

�ιωa�B� � a ∈ A		

Hence A�B is a Buneman split for ω if and only if A is a strong cluster of wb
for all b ∈ B, if and only if B is a strong cluster of wa for all a ∈ A.
Proof. Follows directly from the definition wx�ab�c� = ω�ab�cx�.
Proposition 3.1 leads directly to a new O�n4� time algorithm for con-

structing the Buneman splits of an separation weighting. The first O�n4�
time algorithm for this problem was given by [7].

3.4. Properties and Construction of Refined Buneman Splits

Theorem 3.3 and Lemma 3.1 link the Buneman method for construct-
ing unrooted trees with the strong cluster method for constructing rooted
trees. There appears to be no analogous relationship between the refined
Buneman tree and a clustering method. One can easily construct a dissimi-
larity matrix δ on five points for which there exists a refined Buneman split
A�B such that A is not a stable cluster of sa for some a ∈ A. Hence A
would also not be a C-cluster or strong cluster for sa.
We can, however, exploit another kind of connection between refined

Buneman splits and the clustering methods. Theorem 3.4, similar in struc-
ture to Theorem 2.5, was used by [9] to show that the refined Buneman
tree can be constructed in polynomial time. For an arbitrary r ∈ X, let wr
denote the isolation weighting on X − �r	 given by wr�ab�c� = ω�ab�cr�
(cf. Section 3.3). The basis of the iterative algorithm is

Theorem 3.4 [9]. Let ω be an separation weighting for X. If A�B is a
refined Buneman split of ω and r ∈ B then either A is a strong cluster of wr
or A��B − �r	� is a refined Buneman split of ω restricted to X − �r	.
The algorithm of [9] runs in O�n6� time. Here we improve this complexity

to O�n5� time, first showing how refined Buneman indices can be quickly
computed on a tree. Pseudocode for the computation of refined Buneman
indices can be found in the Appendix (Algorithm 4).

Lemma 3.2. Let T be an X-tree. We can compute µrω�A�B� for each split
A�B ∈ splits�T � in O�n4� time.

726 bryant and berry

Proof. We adapt the algorithm presented in the proof of Corollary 2.3
to quartets. We first root T at an arbitrary node. For each pair of vertices u
and v in T let Q�u� v� be the set of quartets ab�cd such that the path from a
to c intersects the path from b to d exactly along the path from u to v. Then
every quartet ab�cd induced by the previously unrooted tree corresponding
to T appears in exactly two sets Q�u� v� (noting Q�u� v� = Q�v� u�), and we
can construct these sets in O�n4� time.
Let Q�u� v� n− 3� denote the n− 3 minimum weight quartets in Q�u� v�.

Using the algorithm of [8] we can compute Q�u� v� n− 3� from Q�u� v� in
O��Q�u� v��� time. Hence we can compute all of the sets Q�u� v� n − 3� in
O�n4� time.
For each pair �u� v� such that v �� u we define

Q��u� v� = ⋃
u′�T u

Q�u′� v�

and let Q��u� v� n − 3� denote the set of n − 3 minimum weight quartets
in Q��u� v�. We can compute the sets Q��u� v� n− 3� using one post-order
traversal for each choice of v: Let u1� u2� 	 	 	 � um be the children of u. Then
Q��u� v� n− 3� equals the set of n− 3 minimum weight quartets in

Q�u� v� n− 3� ∪Q��u1� v� n− 3� ∪ · · · ∪Q��um� v� n− 3�	 (30)

For each v it takes O�n2� time to compute all of these sets Q��u� v� n− 3�
using a post-order traversal. There are O�n� choices for v so extracting all
of the sets Q��u� v� n− 3� takes O�n3� time.
Given a vertex u, let U be the set of leaves that are descendents of u

and put V = X − U . Then q�U �V � = ⋃
v � v �≺T u

Q��u� v� and so the n − 3
minimum weight quartets in q�U �V � are the n− 3 minimum weight quartets
in

Qu = ⋃
v �≺T u

Q��u� v� n− 3�	

The refined Buneman index µrw�U �V � can therefore be computed in O�n2�
time. The entire computation takes O�n4� time.

Corollary 3.1. The refined Buneman splits of a separation weighting ω
can be constructed in O�n5� time.
Proof. We use an iterative algorithm, whose pseudocode is given in

the Appendix (Algorithm 5). Order X arbitrarily as X = �x1� x2� 	 	 	 � xn	,
putting Xk = �x1� x2� 	 	 	 � xk	 for each k � 1 ≤ k ≤ n. Let ω�Xk denote the
restriction of ω to Xk and let �k denote the refined Buneman splits for
ω�Xk . We compute �2 directly.

clustering and tree construction methods 727

Put r = xk+1. Let �k+1 denote the set of strong clusters of the isolation
weighting wr on Xk given by wr�ab�c� = ω�ab�cr�. By Theorem 3.4,

�k+1 ⊆ ��A ∪ �r	��B � A�B ∈ �k	 ∪ �A��Xk+1 −A� � A ∈ �k+1		
All refined Buneman indices of splits in ��A ∪ �r	��B � A�B ∈ �k	 can be
computed in O�n4� time in total by maintaining a list qmin�A�B�k� of n− 3
minimum quartets for each split A�B ∈ �k. After each element addition

qmin�A ∪ �xk+1	�B�k+ 1� ⊆ qmin�A�B�k�
∪ �axk+1�bb′ � a ∈ A�b� b′ ∈ B	 (31)

and so qmin�A ∪ �xk+1	�B�k + 1� can be obtained in O�n3� time, simi-
larly for qmin�A�B ∪ �xk+1	� k+ 1�. The refined Buneman indices of splits
in �A��Xk+1 − A� � A ∈ �k+1	 can be computed in O�n4� time using
Lemma 3.2. Hence we can compute �k+1 from �k in O�n4� time and
the entire construction takes O�n5� time.

3.5. Properties and Construction of Clean Splits

There is apparently no analogue of Theorem 3.3 for clean splits. We have
constructed an example on eight elements where δ has a clean split A�B
such that A is not in the average linkage tree for sb for any b ∈ B.
In Section 2.4 we showed how clean clusters can be constructed iteratively

using a connection with rooted chains (Theorem 2.5). Here we show that
an similar connection applies to the clean split case. Let wr denote the iso-
lation weighting on X − �r	 given by wr�ab�c� = ω�ab�cr� (cf. Section 3.3).

Theorem 3.5. Let ω be a separation weighting for X. If A�B is a clean
split of ω and r ∈ B then either A is a clean cluster of wr or A��B − �r	� is
a clean split of ω restricted to X − �r	.
Proof. Suppose that A��B − r� is not a clean split of ω restricted to

X − �r	. Then there is Q ⊆ q�A�B − �r	� such that �Q� = ��A� − 1���B −
�r	� − 1� and

∑
aa′ �bb′∈Q ω�aa′�bb′� ≤ 0. If A is not a clean cluster of wr

then there is R such that

R ⊆ �aa′�x � a� a′ ∈ A� x ∈ X − �r		�
�R� = �A� − 1, and

∑
aa′ �x∈R wr�aa′�x� ≤ 0. Put QR = �aa′�xr � aa′�x ∈ R	,

so
∑

aa′ �xr∈QR
ω�aa′�xr� ≤ 0	

Put Q′ = Q ∪ QR. Then Q′ is a subset of q�A�B� containing ��A�
−1���B� − 2� + ��A� − 1� = ��A� − 1���B� − 1� quartets such that∑
ab�cd∈Q′ ω�ab�cd� ≤ 0. Hence A�B is not a clean split of ω.

728 bryant and berry

Theorem 3.5 provides the reduction step of a polynomial time iterative
algorithm for constructing the set of clean splits.

Theorem 3.6. The clean splits of a separation weighting ω can be con-
structed in O�n5� time.
Proof. First note that we can compute µcω�A�B� for each split A�B ∈

splits�T � in O�n4� time by using a variant of Lemma 3.2. The O�n5� time
algorithm is almost identical to that for refined Buneman splits described
in Corollary 3.1 (cf. Algorithms 4 and 5).

The quartet cleaning method of [6] is a special case of the unrooted C-
tree construction. Let Q be a set of quartets such that for each a� b� c� d ∈ X
at most one of ab�cd, ac�bd, ad�bc is in Q. Define a separation weighting
ω by putting ω�ab�cd� = 1 if ab�cd ∈ Q and ω�ab�cd� = −1 if ab�cd �∈
Q. Then A�B is a clean split of ω if and only if �q�A�B� − Q� < ��A� −
1���B� − 1�/2, the condition for A�B to be a “clean” split with respect to
the terminology of [6].

3.6. Construction of Stable Splits

Like the stable clusters, the stable splits are the last, and most refined,
in the series of constructions. As with stable clusters, the stable splits are
difficult to construct:

Theorem 3.7. It is an NP-hard problem to construct the set of stable splits
of a dissimilarity function. Hence it is also NP-hard to construct the stable
clusters of an arbitrary separation weighting.

Proof. Let V� c, and k make up an arbitrary instance of SPARSEST
CUT. We construct a dissimilarity function δ such that βδ�uv�xy� =
c�u� v� − k for all u� v ∈ V . The result then follows by the same arguments
used to prove Theorem 2.6.

4. DISCUSSION

We have presented two parallel series of tree based classification
methods, one giving clusters and rooted trees, the other giving splits and
unrooted trees. The progression began with two classical constructions,
Apresjan clusters and Buneman splits, and finished with two general (but
NP-hard) constructions, stable clusters, and stable splits. We explored links
between the different constructions and with well-known classification
methods.
We see two major directions for future work. The first is to investigate

the performance of these methods in an applied field of classification such

clustering and tree construction methods 729

as phylogenetics. Three variants of the methods described here [6, 7, 17]
have already been employed by computational biologists. The appeal of
combinatorial approaches in phylogenetics is that quartet weights can be
determined using complex phylogenetic criteria and models that are com-
putationally infeasible for larger sets of taxa. Quartet weights are then used
to construct a tree in a reasonable amount of time. The clean split construc-
tion is particularly well suited for incorporation in a combinatorial strategy
for phylogenetic reconstruction. The method, like others presented here, is
continuous, is clearly defined, has a polynomial time algorithm, and can be
used to analyse both dissimilarity data and quartet weights.
A second direction of future work is further generalisation. Bandelt and

Dress [3] established a duality between weak hierarchies and weakly com-
patible splits [3]. We have already used this to provide a more efficient
algorithm for split decomposition [5]. A series of general clustering meth-
ods, extending work on weak hierarchies, was explored in [11]. The question
arises of whether these two methods can be refined like the strong clusters
and Buneman tree, and whether the connections with single linkage/average
linkage can be generalised to agglomerative methods for non-hierarchical
clustering.

APPENDIX: ALGORITHMS

In the following algorithms we let ��u� denote the labels of the leaves
that are descendents of the node u.
Algorithm 1 (Compute ιcw�U� for all U ∈ clus�T �).
Compute and tabulate lca�x� x′� for all leaves x� x′ in T .
Iterate through all rooted triples xy�z ∈ r�T � and use lca tables to
construct R�u� v� for all u� v ∈ V �T � such that u ≺T v.

For each pair u� v ∈ V �T � such that u ≺T v use the algorithm of [8] to
determine the set R�u� v� n� of n minimum weight triples in R�u� v�.

For all vertices v ∈ V �T � do
For all vertices u in a post-order traversal of T do
Use Eq. (15) and [8] to construct R��u� v� n�.

For all vertices u ∈ V �T � compute
Ru ← ⋃

v!T u
R��u� v� n�

ιcw���u�� ← av min��w�xy�z� � xy�z ∈ Ru	� ���u� − 1��, using [8].
Output cluster indices ιcw���u�� for all u ∈ V �T �.
Algorithm 2 (Rooted C-tree for a similarity function s on X).
Compute an average linkage tree T for s.
Use Algorithm 1 with w = βs to compute ιcw�U� for all U ∈ clus�T �.
Output RC�βs� = �U ∈ clus�T � � ιw�U� > 0	.

730 bryant and berry

Algorithm 3 (Rooted C-tree for an isolation weighting w).

Order X arbitrarily as x1� x2� 	 	 	 � xn
�2 ← ��x1	� �x2		
r̂��x1	� 2� ← �x1x1�x2	; r̂��x2	� 2� ← �x2x2�x1	.
For k from 2 to n− 1 do
Construct CH�w�Xk+1

� xk+1� using the proof of Lemma 2.4.
Use Algorithm 1 to compute ιcw�U� for all U ∈ CH�w�Xk+1

� xk+1�.
�k+1 ← �U ∈ CH�w�Xk+1

� xk+1� � ιcw�U� > 0	
For all A ∈ �k do
Compute r̂�A�k+ 1� from r̂�A�k� ∪ �aa′�xk+1 � a� a′ ∈ A	.
Compute ιcw�A� using r̂�A�k+ 1� and [8].
If ιcw�A� > 0 then add A to �k+1.
Compute r̂�A ∪ �xk+1	� k+ 1� from r̂�A�k� ∪ �axk+1�y � a ∈ A�
y �∈ A	.

Compute ιcw�A ∪ �xk+1	� using r̂�A ∪ �xk+1	� k+ 1� and [8].
If ιcw�A ∪ �xk+1	� > 0 then add A ∪ �xk+1	 to �k+1.

Output �n.

Algorithm 4 (Compute µrw�U �X −U� for all splits U ��X −U� of T).
Root T at an arbitrary vertex.
Compute and tabulate lca�x� x′� for all leaves x� x′ in T .
Iterate through all a� b� c� d ∈ X and use lca tables to
construct Q�u� v� for all u� v ∈ V �T �.
For each pair u� v ∈ V �T � use the algorithm of [8] to
extract Q�u� v� n− 3� ⊆ Q�u� v�.
For all vertices v ∈ V �T � do

For all vertices u for which v �� u in a post-order traversal of T do
Use Eq. (30) and [8] to construct Q��u� v� n− 3�.

For all vertices u ∈ V �T � put U = ��u� and compute
Qu ← ⋃

v ��T u
Q��u� v� n− 3�

µrw�U �X −U� ← avmin��w�ab�cd� � ab�cd ∈ Qu	� n− 3�.
Output split indices µrw�U �X −U� for all U ��X −U� ∈ splits �T �.
Algorithm 5 (Refined Buneman tree for w).

Order X arbitrarily as x1� x2� 	 	 	 � xn
�3 ← �xi�X3 − xi � i = 1� 2� 3	
For i = 1� 2� 3 do
qmin�xi�X3 − xi� = q�xi�X3 − xi�

For k from 3 to n− 1 do
Let T be the strong cluster tree for w�Xk+1

.
Use Algorithm 4 to compute µrw�U �Xk+1 −U� for all U ∈ clus�T �.
�k+1 ← �U �Xk+1 −U � U ∈ clus�T � and µrw�U �Xk+1 −U� > 0	.

clustering and tree construction methods 731

For all U �V ∈ �k do
Construct qmin�U ∪ �xk+1	�V� k+ 1� using Eq. (31) and [8].
Compute µrw�U ∪ �xk+1	�V � using qmin�U ∪ �xk+1	�V� k+1� and [8].
If µrw�U ∪ �xk+1	�V � > 0 then add U ∪ �xk+1	�V to �k+1.
Construct qmin�U �V ∪ �xk+1	� k+ 1� using Eq. (31) and [8].
Compute µrw�U �V ∪�xk+1	� using qmin�U �V ∪�xk+1	� k+1� and [8].
If µrw�U �V ∪ �xk+1	� > 0 then add U �V ∪ �xk+1	 to �k+1.

Output �n.

ACKNOWLEDGMENTS

We thank Olivier Gascuel, Vincent Moulton, and Mike Steel for reading through versions
of this manuscript.

REFERENCES

1. J. D. Apresjan, An algorithm for constructing clusters from a distance matrix, Mashinnyi
perevod: prikladnaja lingvistika 9 (1966), 3–18.

2. H.-J. Bandelt and A. W. M. Dress, Weak hierarchies associated with similarity measures—
an additive clustering technique, Bull. Math. Biol. 51 (1989), 133–166.

3. H.-J. Bandelt and A. W. M. Dress, A canonical decomposition theory for metrics on a
finite set, Adv. Math. 92 (1992), 47–105.

4. J.-P. Barthélémy and A. Guénoche, “Trees and Proximity Representations,” Wiley, Chich-
ester, UK, 1991.

5. V. Berry and D. Bryant, Faster reliable phylogenetic analysis, in “Proc. 3rd International
Conference on Comp. Mol. Biol. (RECOMB),” Vol. 3, pp. 59–68, 1999.

6. V. Berry, T. Jiang, P. Kearney, and M. Li, Quartet cleaning: Improved algorithms and
simulations, Lecture Notes Comput. Sci. 1643 (1999), 313–324.

7. V. Berry and O. Gascuel, Inferring evolutionary trees with strong combinatorial evidence,
Theoretical Comput. Sci. 240 (2000), 271–298.

8. M. Blum, V. Pratt, R. E. Tarjan, R. W. Floyd, and R. L. Rivest, Time bounds for selection,
J. Comput. System Sci. 7 (1973), 448–461.

9. D. Bryant and V. Moulton, A polynomial time algorithm for constructing the refined
Buneman tree, Appl. Math. Lett. 12 (1999), 51–56.

10. P. Buneman, The recovery of trees from measures of dissimilarity, in “Mathematics in
the Archaeological and Historical Sciences” (F. R. Hodson, D. G. Kendall, and P. Tautu,
Eds.), pp. 387–395, Edinburgh Univ. Press, Edinburgh, 1971.

11. A. Dress, Towards a theory of holistic clustering, in “Mathematical Hierarchies and Biol-
ogy” (B. Mirkin, F. R. McMorris, F. Roberts, and A. Rzhetsky, Eds.), DIMACS Series in
Discete Math. and Theoretical Comp. Science, pp. 271–290, Am. Math. Soc., Providence,
1997.

12. M. Farach, S. Kannan, and T. Warnow, A robust model for finding optimal evolutionary
trees, Algorithmica 13 (1995), 155–179.

13. J. S. Farris, A. G. Kluge, and M. J. Eckart, A numerical approach to phylogenetic system-
atics, Systematic Zool. 19 (1970), 172–189.

14. A. D. Gordon, Hierarchial classification, in “Clustering and Classification” (P. Arabie, L.
J. Hubert, and G. DeSoete, Eds.), pp. 65–122, World Scientific, London, 1996.

732 bryant and berry

15. J. C. Gower and G. J. S. Ross, Minimum spanning tree and single linkage cluster analysis,
Appl. Statist. 18 (1969), 54–64.

16. P. Hell and M. Rosenfeld, The complexity of finding generalized paths in tournaments, J.
Algorithms 4 (1982), 303–309.

17. D. Huson, S. Nettles, and T. Warnow, Disk-covering, a fast converging method for phylo-
genetic tree reconstruction, J. Comp. Biol. 6 (1999), 369–386.

18. N. Jardine, Towards a general theory of clustering, Biometrics 25 (1969), 609–610.
19. D. W. Matula and F. Shahrokhi, Sparsest cuts and bottlenecks in graphs, Discrete Appl.

Math. 27 (1990), 113–123.
20. V. Moulton and M. Steel, Retractions of finite distance functions onto tree metrics, Dis-

crete Appl. Math. 91 (1999), 215–233.
21. F. Murtagh, Complexities of hierarchic clustering algorithms: state of the art, CSQ 1

(1984), 101–113.
22. A. F. Parker-Rhodes and R. M. Needham, A reduction method for non-arithmetic data,

and its application to thesauric translation, in “Information Processing, Proceedings of the
International Conference on Information Processing, Paris, 1960,” UNESCO, pp. 321–325.

23. F. J. Rohlf, Algorithm 76: Hierarchical clustering using the minimum spanning tree, Com-
put. J. 16 (1973), 93–95.

24. R. R. Sokal and C. D. Michener, A statistical method for evaluating systematic relation-
ships, Univ. Kansas Sci. Bull. 38 (1958), 1409–1438.

	1.INTRODUCTION
	2.A FAMILY OF CLUSTERING METHODS
	TABLE I
	FIG.1.

	3.A FAMILY OF SPLIT METHODS
	TABLE II

	4.DISCUSSION
	APPENDIX:ALGORITHMS
	ACKNOWLEDGMENTS
	REFERENCES

