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Abstract

Traditional methods for estimating rearrangement distances between
genomes assume that there is at most one copy of each gene in each
genome. In the case that there are multiple genes from the same gene
family in a genome, Sankoff (1999) proposes the estimation of true exem-
plars, a selection of one gene from each gene family in both genomes such
that the distance between the resulting exemplar strings is minimized.
This is the exemplar distance. Here we show that the calculation of the
exemplar distance between two genomes is NP-hard for both the signed
reversals distance and the breakpoint distance.

1 Introduction

The comparative study of gene order rearrangements has, for the most part,
been restricted to the case when the genes in one genome are homologous to
at most one gene in the other genome. In many small virus or mitochondrial
genomes, the single homologue assumption is justified. In most cases, however,
there can be multiple copies of the same gene, or multiple genes that are highly
homologous, and these can be scattered along the length of the genome.

Recently, Sankoff (1999) has proposed a method for estimating which of
the multiple copies of a gene in two genomes G and H best reflects the posi-
tion of the ancestral gene in the common ancestor genome of G and H. The
basic idea is that the direct descendent of a gene (called the true exemplar)
will be marginally less affected by genome rearrangements than the duplicates.
The reduced genomes containing only the true exemplars will therefore be less
arranged with respect to each other than any other pair of reduced genomes.

The problem then becomes one of selecting genes from gene families such that
the distance between the resulting reduced genomes is minimized. This is called
the exemplar distance. Sankoff formulates two versions of the problem—one
based on the signed reversals distance between two gene orders, and the other
based on the breakpoint distance. He provides branch and bound algorithms
for both versions.
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In this paper, we show that both of the exemplar distance problems posed
by Sankoff (1999) are NP-hard, even with quite restrictive conditions on the
input data.

2 Definitions

We will use the same notation as Sankoff (1999). Given an alphabet A, let
G and H be two strings (genomes) of signed (+ or -) symbols (representing
genes) from A, of lengths lG and lH , respectively. For each a ∈ A, let kX(a)
be the number of occurrences (+ or -) of symbol a in genome X. Without
loss of generality, we may assume for all a ∈ A, kG(a) > 0 and kH(a) >
0. All occurrences of the symbol a in both genomes are said to constitute a
gene family, the “a family”. For our purposes, that the genes in a family are
not exact copies is immaterial; we simply assume that the families have been
constructed correctly.

A gene is a singleton in a genome if it is the only member of its family in
that genome. A genome is pegged if every pair of genes from the same gene
family is separated by at least one singleton.

For each genome, an exemplar string is constructed by deleting all but one
occurrence of each gene family. Call these g and h, respectively. Note that h is
just a permutation of the symbols in g. The singletons in a genome G will be
in the same relative order in all exemplar strings for G.

Consider two exemplar strings g = g1 . . . gn and h = h1 . . . hn. Note that
n = |A|. We say gi precedes gi+1 in g. If gene a precedes b in g and neither
a precedes b nor −b precedes −a in h, they determine a breakpoint in g.
Additional breakpoints are posited if g1 6= h1 and if gn 6= hn. The breakpoint
distance (BD) is the number of breakpoints in g, which is clearly equal to
the number of breakpoints in h. The exemplar breakpoint distance (EBD)
between G and H is the minimum, over all choices of exemplar strings g and h,
of the breakpoint distance between g and h.

A reversal transforms a string · · ·xa · · · by · · · to · · ·x − b · · · − ay · · ·. The
reversals distance (RD) between g and h is the minimum number of reversals
necessary to transform g into h, or vice-versa. The exemplar reversals dis-
tance (ERD) between G and H is the minimum, over all choices of exemplar
strings g and h, of the reversals distance between g and h.

Example: Let G = -b -a b a -c d c, H = a -a c a -c b d. Based on the exemplar
strings -b -a -c d and c a b d, the EBD equals 2 and the ERD equals 1.

3 Calculation of EBD and EBD

Theorem 1 The calculation of either the EBD or the ERD between two pegged
genomes G and H is an NP-hard problem, even when kG(a) ≤ 2 and kH(a) ≤ 2
for all a ∈ A.
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Figure 1: An example of the reduction from VERTEX COVER. On the left a graph

G with four vertices and four edges. On the right we have the genomes G and H,

and the exemplar strings corresponding to the vertex cover {a, c}. We represent the

breakpoints by vertical arrows and the two reversals required by dotted lines.

Proof
We provide a reduction from VERTEX COVER:

VERTEX COVER
Instance: Graph G = (V, E). Integer λ.
Question: Is there V ′ ⊆ V such that |V ′| = λ and each edge in E is adjacent to
at least one vertex in V ′.

Let G = (V, E) and λ make up an arbitrary instance of VERTEX COVER
with V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. We construct an alphabet
A of size 2n + m given by

A = V ∪ {v′i : vi ∈ V} ∪ E

For each i = 1, . . . , n let Ei be a string of the symbols ej for the edges that are
adjacent to vi. Let −Ei denote the string Ei with order reversed and opposite
signs—the signed reversal of Ei.

Let
G = v1 E1 v′1 v2 E2 v′2 . . . vn En v′n

and
H = v1 − E1 v′1 v2 − E2 v′2 . . . vn − En v′n.

In figure 1 we give the genomes G and H for a simple graph G with four
vertices and edges.

We claim that

(1) G has a vertex cover of size λ if and only if the EBD between G and H is
at most 2λ.

(2) G has an vertex cover of size λ if and only if the ERD between G and H
is at most λ.

Let V ′ ⊆ V be a vertex cover for G of size λ. The only non-singletons in G
are the symbols ej , which appear in two places. We remove all copies of symbols
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ej in substrings Ei such that vi 6∈ V ′. At least one copy of each ej remains, since
V ′ is a vertex cover. We now select an arbitrary exemplar string, giving an
exemplar string g for G of the form

g = v1 E ′1 v′1 v2 E ′2 v′2 . . . vn E ′n v′n

where each E ′i is a substring of Ei and E ′i equals the empty string for all i such
that vi 6∈ V ′.

For each i let −E ′i be the signed reversal of E ′i . Put

h = v1 − E ′1 v′1 v2 − E ′2 v′2 . . . vn − E ′n v′n.

Then h is an exemplar string for H. See figure 1 for a simple example.
Each breakpoint in g with respect to h is of the form vi x for some x and

vi ∈ V ′, or of the form yv′i for some y and vi ∈ V ′. Hence the breakpoint
distance between g and h is at most 2|V ′| = 2λ. Furthermore, we can obtain
h from g by reversing all strings Ei such that vi ∈ V ′, so the signed reversals
distance between g and h is at most |V ′| = λ.

Conversely, suppose that the EBD between G and H is at most 2λ. There
are exemplar strings g and h of G and H that are breakpoint distance at most
2λ. Put

V ′ = {vi : vi is not adjacent to v′i in g }

which is a vertex cover for G.
There is a breakpoint between vi and its successor and a breakpoint between

v′i and its predecessor for each vi ∈ V ′, so the number of breakpoints between g
and h is at least 2|V ′|. Hence |V ′| ≤ λ, and G has a vertex cover of size λ.

Now suppose that the ERD between G and H is at most λ. Then there
are exemplar strings g and h of G and H that have signed reversals distance at
most λ. Waterson et al. (1982) prove that the breakpoint distance between g
and h is at most 2λ. The result then follows from the EBD case. 2

In the case of the EBD, the complexity result can be strengthened by mod-
ifying the construction.

Lemma 2 The calculation of the EBD between two pegged genomes is NP-hard
even when kG(a) = 1 and kH(a) ≤ 2 for all a ∈ A.

Proof
Once again, let G be an arbitrary graph with vertex set V and edge set E . We
augment the alphabet A with m + 1 new elements x1, x2, . . . , xm+1. Construct
the strings Ei as before. The two genomes now become

G = v1v
′
1v2v

′
2 . . . vnv′nx1−e1x2−e2x3 . . . xm−emxm+1

and
H = vnEnv′nvn−1En−1v

′
n−1 . . . v1E1v

′
1xm+1xm . . . x2x1
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(see figure 2). Observe that G contains only singletons, so the only possible
exemplar string for G is G itself. Secondly, for any exemplar string h of H
the only possible adjacencies between h and G are of the form viv

′
i, and the

number of these adjacencies equals the number of strings Ei which are completely
removed when selecting h (see figure 2). By the similar argument to before we
have that there is a vertex cover of size n − λ for G if and only if the EBD
between G and H is at most 2n + 2m− λ. 2
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Figure 2: An example of the second reduction from VERTEX COVER. On the left a

graph G with four vertices and four edges. On the right we have the genomes G and

H, and the exemplar strings corresponding to the vertex cover {a, c}. The breakpoints

of h with respect to g are marked by arrows.
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Note added much later...

A far easier proof for the hardness of ERD is to construct a reduction from
UNSIGNED REVERSAL DISTANCE. Given two unsigned genomes, replace
each unsigned gene with the two signed genes, adjacent to each other. The
ERD is now the unsigned reversals distance, which was shown to be hard by
Caprara. However it does not seem easy to extend this approach to EBD.
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